CN109638244A - 一种硫化锌@碳复合微球及其制备方法与应用 - Google Patents

一种硫化锌@碳复合微球及其制备方法与应用 Download PDF

Info

Publication number
CN109638244A
CN109638244A CN201811481462.4A CN201811481462A CN109638244A CN 109638244 A CN109638244 A CN 109638244A CN 201811481462 A CN201811481462 A CN 201811481462A CN 109638244 A CN109638244 A CN 109638244A
Authority
CN
China
Prior art keywords
zinc
complex microsphere
preparation
carbon complex
zinc sulphide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811481462.4A
Other languages
English (en)
Inventor
马琳
许丽梅
周晓平
唐晓山
凌妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lingnan Normal University
Original Assignee
Lingnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lingnan Normal University filed Critical Lingnan Normal University
Priority to CN201811481462.4A priority Critical patent/CN109638244A/zh
Publication of CN109638244A publication Critical patent/CN109638244A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种硫化锌@碳复合微球及其制备方法与应用,包括如下步骤:S1.将葡萄糖酸锌和硫源在水中溶解后进行水热反应,经后处理,得到固体粉末;S2.将固体粉末在惰性氛围中热处理,得到硫化锌@碳复合微球。本发明提供的硫化锌@碳复合微球是结合水热法和热处理技术,以葡萄糖酸锌作为锌源和碳源制备得到。该硫化锌@碳复合微球的循环稳定性更高,导电性更强,且形貌较为均匀、产率高。并且制备工艺简单,成本低廉、可快速大量合成。该硫化锌@碳复合微球在超级电容器电极材料、锂离子电池电极材料或光电催化剂领域中具有很好的应用前景。

Description

一种硫化锌@碳复合微球及其制备方法与应用
技术领域
本发明涉及微纳米半导体复合材料领域,更具体地,涉及一种硫化锌@碳复合微球及其制备方法与应用。
背景技术
当代社会,能源问题是全球重大问题之一,并引起了广泛的关注,寻找在储能和使用方面有优异效果的新型材料成为科学工作者的重要任务。石墨类碳材料由于其良好的循环稳定性,理想的充放电平台和较高的性价比等优点,仍是未来锂离子电池负极材料的首选。但碳材料的充放电比容量和体积比容量较低,需要开发新型负极材料来满足电池高容量化的要求。在新型非碳负极材料的研究中,Zn基材料显示出较好的循环性能,加上我国锌储量丰富,使得Zn基材料成为极有前景的负极材料。
但是,Zn基材料的金属与Li在合金化过程中存在体积效应,影响电极材料结构的稳定性。研究表明硫可以缓冲金属与Li在合金化过程中的体积效应,进一步加强结构的稳定性。现有技术中常利用无机锌和额外的碳源来制备复合材料,制备工艺复杂。
因此,需要制备一种循环稳定性更高,导电性更强的硫化锌@碳复合微球。
发明内容
本发明为克服上述现有技术所述的循环稳定性较差的缺陷,提供一种硫化锌@碳复合微球的制备方法,该制备方法制得的硫化锌@碳复合微球循环稳定性更高,且导电性更强。
本发明的另一目的在于提供上述方法所制备的硫化锌@碳复合微球。
本发明的还一目的在于提供上述硫化锌@碳复合微球在超级电容器电极材料、锂离子电池电极材料或光电催化剂领域中的应用。
为解决上述技术问题,本发明采用的技术方案是:
一种硫化锌@碳复合微球的制备方法,包括如下步骤:
S1.将葡萄糖酸锌和硫源在水中溶解后进行水热反应,经后处理,得到固体粉末;
S2.将固体粉末在惰性氛围中热处理,得到硫化锌@碳复合微球。
本发明提供的硫化锌@碳复合微球是结合水热法和热处理技术,以葡萄糖酸锌作为锌源和碳源制备得到。葡萄糖酸锌中锌与有机配体之间强的相互作用,使得制备的硫化锌@碳复合微球结构更加牢固,具有更稳定的电化学性能。碳材料有效地缓解了电极材料在充放电过程中产生的体积效应,提高了电极材料的循环稳定性能;电极材料与碳材料的复合增强了电极材料的导电性,在大电流下提高了其充放电特性。该硫化锌@碳复合微球具有良好的循环稳定性和导电性,并且制备工艺简单,不需要额外的去寻找碳源。
优选地,步骤S1.中所述葡萄糖酸锌的摩尔浓度为0.02~0.1mol/L。更优选地,步骤S1.中所述葡萄糖酸锌的摩尔浓度为0.06~0.08mol/L。葡萄糖酸锌的浓度太大,会导致硫化锌@碳复合微球尺寸过大;还会造成碳材料的含量太多,虽然碳材料对硫化锌@碳复合微球的稳定性有利,但由于碳的储锂容量比较小,会降低硫化锌@碳复合微球的储锂容量。当葡萄糖酸锌的浓度太小,使得形成的碳材料较少,不能很好地包覆硫化锌,影响硫化锌@碳复合微球的循环稳定性。进一步优选地,步骤S1.中所述葡萄糖酸锌的摩尔浓度为0.067mol/L。
优选地,步骤S1.中所述葡萄糖酸锌与硫源的摩尔比为1∶(1~5)。更优选地,步骤S1.中所述葡萄糖酸锌与硫源的摩尔比为1∶(2~4)。进一步优选地,步骤S1.中所述葡萄糖酸锌与硫源的摩尔比为1∶3。
优选地,步骤S1.中所述硫源为硫脲。
优选地,步骤S1.中所述水热反应的温度为180~220℃,时间为20~24小时。在一定的水热环境下,葡萄糖酸锌才可以发生水解反应形成锌化合物与碳的复合材料。葡萄糖酸在180℃以上的温度才会解离产生无定形碳,锌与硫脲的反应一般至少在140℃以上发生。为了保证反应完全,需要控制水热反应的条件。更优选地,步骤S1.中所述水热反应的温度为200℃,时间为24小时。
优选地,步骤S1.中所述后处理为冷却、过滤、漂洗、分离、干燥。优选地,步骤S1.中所述冷却为自然冷却。优选地,步骤S1.中所述漂洗是用水和无水乙醇。优选地,步骤S1.中所述漂洗是用水和无水乙醇分别漂洗三次。优选地,步骤S1.中所述分离为离心分离。优选地,步骤S1.中所述干燥为真空干燥。优选地,步骤S1.中所述干燥的温度为60~100℃。更优选地,步骤S1.中所述干燥的温度为60℃。
优选地,步骤S2.中所述热处理的温度为400~600℃,时间为2~4小时。如果热处理的时间太短,碳化程度不够,时间太长,会造成能源浪费。更优选地,步骤S2.中所述热处理的温度为500℃,时间为2小时。
优选地,步骤S2.中所述惰性氛围为氩气氛围、氮气氛围或氦气氛围。更优选地,步骤S2.中所述惰性氛围为氩气氛围。
上述硫化锌@碳复合微球的制备方法的具体步骤如下:
S1.将葡萄糖酸锌在搅拌下溶于水中形成澄清溶液,葡萄糖酸锌的摩尔浓度为0.02~0.1mol/L;
S2.在搅拌下加入硫脲,葡萄糖酸锌与硫脲的摩尔比为1:(1~5);
S3.将步骤S2.得到的溶液转移到反应釜中,180~220℃条件下加热20~24小时,然后自然冷却,将所得棕黑色沉淀用去离子水和无水乙醇分别漂洗三遍,离心分离并于60~100℃真空干燥;
S4.将得到的固体产物在氩气气氛中于400~600℃下热处理2~4小时得到产品。
本发明同时保护上述制备方法制得的硫化锌@碳复合微球。
本发明还保护上述硫化锌@碳复合微球在超级电容器电极材料、锂离子电池电极材料或光电催化剂领域中的应用。
硫化锌@碳复合微球可以作为超级电容器的负极材料;同时,硫化锌@碳复合微球也可以作为锂离子电池电极的负极材料;再者,硫化锌@碳复合微球在光电催化剂领域中可以作为催化剂。
与现有技术相比,本发明具有如下有益效果:
本发明提供的硫化锌@碳复合微球是结合水热法和热处理技术,以葡萄糖酸锌作为锌源和碳源制备得到。该硫化锌@碳复合微球的循环稳定性更高,导电性更强,且形貌较为均匀、产率高。并且制备工艺简单,成本低廉、可快速大量合成。该硫化锌@碳复合微球在超级电容器电极材料、锂离子电池电极材料或光电催化剂领域中具有很好的应用前景。
附图说明
图1为实施例1制得的硫化锌@碳复合微球的XRD图。
图2为实施例1制得的硫化锌@碳复合微球的扫描电镜图。
图3为实施例2制得的硫化锌@碳复合微球的扫描电镜图。
图4为实施例1制得的硫化锌@碳复合微球的元素分布图。
图5为实施例1制得的硫化锌@碳复合微球的循环性能测试曲线。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明,但本发明的实施方式不限于此。实施例中的原料均可通过市售得到;除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
在搅拌下将4mmol的葡萄糖酸锌和12mmol的硫脲溶于60mL水中形成透明溶液,溶液中葡萄糖酸锌的浓度为0.067mol/L,葡萄糖酸锌与硫脲的摩尔比为1∶3。将此溶液转移至100mL内衬为聚四氟乙烯的不锈钢反应釜中。置于干燥箱中,于200℃下反应24小时。然后自然冷却至室温,将所得棕黑色沉淀用去离子水和无水乙醇分别漂洗三遍,离心分离并于60℃真空干燥12小时。将得到的固体产品在氩气气氛中于500℃下热处理2小时得到产品。
实施例2
本实施例与实施例1的区别在于,本实施例的葡萄糖酸锌的浓度为0.1mol/L,葡萄糖酸锌与硫脲的摩尔比为1∶2.7,水热反应的温度为220℃;
其他条件及操作步骤与实施例1相同。
实施例3
本实施例与实施例1的区别在于,本实施例的葡萄糖酸锌的浓度为0.03mol/L,葡萄糖酸锌与硫脲的摩尔比为1∶2.5,水热反应的温度为180℃;
其他条件及操作步骤与实施例1相同。
实施例4
本实施例与实施例1的区别在于,本实施例的葡萄糖酸锌的浓度为0.02mol/L;
其他条件及操作步骤与实施例1相同。
实施例5
本实施例与实施例1的区别在于,本实施例的葡萄糖酸锌的浓度为0.08mol/L;
其他条件及操作步骤与实施例1相同。
实施例6
本实施例与实施例1的区别在于,本实施例的葡萄糖酸锌的浓度为0.1mol/L;
其他条件及操作步骤与实施例1相同。
实施例7
本实施例与实施例1的区别在于,本实施例的葡萄糖酸锌与硫脲的摩尔比为1∶1;
其他条件及操作步骤与实施例1相同。
实施例8
本实施例与实施例1的区别在于,本实施例的葡萄糖酸锌与硫脲的摩尔比为1∶4;
其他条件及操作步骤与实施例1相同。
实施例9
本实施例与实施例1的区别在于,本实施例的葡萄糖酸锌与硫脲的摩尔比为1∶5;
其他条件及操作步骤与实施例1相同。
实施例10
本实施例与实施例1的区别在于,本实施例的水热反应的时间20小时;
其他条件及操作步骤与实施例1相同。
对比例1
本对比例与实施例1的区别在于,本实施例用柠檬酸锌作为碳源和锌源,柠檬酸锌的浓度为0.067mol/L,柠檬酸锌与硫脲的摩尔比为1∶3;
其他条件及操作步骤与实施例1相同。
对比例2
本对比例与实施例1的区别在于,本实施例用酒石酸锌作为碳源和锌源,酒石酸锌的浓度为0.067mol/L,酒石酸锌与硫脲的摩尔比为1∶3;
其他条件及操作步骤与实施例1相同。
对比例3
本对比例与实施例1的区别在于,本对比例用硫化钠作为硫源,葡萄糖酸锌的浓度为0.067mol/L,葡萄糖酸锌与硫化钠的摩尔比为1∶3;
其他条件及操作步骤与实施例1相同。
表1为实施例1~10和对比例1~3中原料在进行水热反应时,影响产品形貌和性能的相关条件设置及结果。
表1实施例1~10和对比例1~3的水热反应的条件设置和结果
性能测试
测试方法:
(1)XRD测试
仪器为日本理学公司的D/MAX2550型X射线衍射仪,所用靶材为Cu Ka,入射波长0.15405nm,管电压50kv,管电流200mA,功率18kW,衍射角度范围10°~80°,扫描步长0.02°,速度4°/min。测试结果用软件MDI JADE分析。
(2)形貌测试
采用日本电子JSM-7610扫描电子显微镜,样品超声分散在无水乙醇中,然后滴加在铜制样品台上,晾干。
(3)循环性能测试曲线
制备电极:分别将实施例和对比例制备的材料作为电化学储钠的电极活性物质,与乙炔黑及聚偏氟乙烯的N-甲基吡咯烷酮溶液在搅拌下充分混合调成均匀的浆料,将该浆料均匀地涂到作为集流体的铜箔上,110℃下真空干燥,再滚压得到电极。电极中各组分质量百分含量为:复合材料80%,乙炔黑10%,聚偏氟乙烯10%。
用锂片作为对电极,以体积比为1∶1的1.0mol/LLiPF6的碳酸乙烯酯和碳酸二乙烯酯溶液为电解液,隔膜是聚丙烯膜(Celguard-2300),在充满氩气的手套箱中组装成二电极测试电池,电池恒电流充放电测试在程序控制的自动充放电仪器上进行,采用武汉蓝电公司CT2001A充放电测试仪,充放电电流密度100mA/g,电压范围0.005~3.00V。
测试结果
图1为实施例1制得的硫化锌@碳复合微球的XRD图,XRD图显示各衍射峰位置及强度均与硫化锌标准衍射卡片(JCPDS65-0309)一致。实施例2~10的结果与实施例1一致,说明所制得的产品含硫化锌。
对比例1和对比例2分别采用柠檬酸锌和酒石酸锌作为锌源和碳源,XRD图的结果表明所制备出的样品属于六方晶相的硫化锌,与标准衍射卡片(JCPDS80-0007)一致。这可能是因为柠檬酸根和酒石酸根离子对锌离子有较强的络合能力,导致硫化锌晶体的生长方向有所变化。对比例3采用硫化钠作为硫源时,比容量较低,循环稳定性较差,因为直接加入硫化钠后会立刻生成硫化锌沉淀,这样合成出来的产品复合程度不好。
图2为实施例1制得的硫化锌@碳复合微球的扫描电镜图,产品的形貌为较为均匀的微球,平均直径约为2.1μm。图3为实施例2制得的硫化锌@碳复合微球的扫描电镜图,产品的形貌为较为均匀的微球,平均直径约为2.3μm。实施例3~10制得的硫化锌@碳复合微球形貌也是较为均匀的微球,平均直径见表1。葡萄糖酸锌的浓度越大,反应温度越高,反应时间越长,使得所得到的硫化锌/碳微球的尺寸越大。
图4为实施例1制得的硫化锌@碳复合微球的元素分布图,图4中白色的球体为产品在测量元素分布时的扫描电镜图像,其他则为显示的球体表面各元素的分布状态。可以看出产品中含有碳、硫和锌元素,且各元素在球的表面分布比较均匀。
图5为实施例1制得的硫化锌@碳复合微球在0.1A/g的电流密度下的循环性能图,图5中黑球代表充电容量,白球代表放电容量。可以看出经过100次循环后,硫化锌@碳复合微球的容量没有明显的衰减,显示出良好的循环稳定性。
综上所述,本发明制备的硫化锌@碳复合微球的循环稳定性更高,导电性更强。而且,硫化锌@碳复合微球的形貌和尺寸较为均匀、产率高。此外,本发明利用葡萄糖酸锌作为锌源和碳源,制备工艺简单。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种硫化锌@碳复合微球的制备方法,其特征在于,包括如下步骤:
S1. 将葡萄糖酸锌和硫源在水中溶解后进行水热反应,经后处理,得到固体粉末;
S2. 将固体粉末在惰性氛围中热处理,得到硫化锌@碳复合微球。
2.根据权利要求1所述的制备方法,其特征在于,步骤S1.中所述葡萄糖酸锌的浓度为0.02~0.1 mol/L。
3.根据权利要求2所述的制备方法,其特征在于,步骤S1.中所述葡萄糖酸锌的浓度为0.06~0.08 mol/L。
4.根据权利要求3所述的制备方法,其特征在于,步骤S1.中所述葡萄糖酸锌的摩尔浓度为0.067 mol/L。
5.根据权利要求1所述的制备方法,其特征在于,步骤S1.中所述葡萄糖酸锌与硫源的摩尔比为1:(1~5)。
6.根据权利要求5所述的制备方法,其特征在于,步骤S1.中所述葡萄糖酸锌与硫源的摩尔比为1:(2~4)。
7.根据权利要求1所述的制备方法,其特征在于,步骤S1.中所述水热反应的温度为180~220 ℃,时间为20~24小时。
8.根据权利要求1所述的制备方法,其特征在于,步骤S2.中所述热处理的温度为400~600 ℃,时间为2~4小时。
9.权利要求1~8任一项所述的制备方法制得的硫化锌@碳复合微球。
10.权利要求9所述的硫化锌@碳复合微球在超级电容器电极材料、锂离子电池电极材料或光电催化剂领域中的应用。
CN201811481462.4A 2018-12-05 2018-12-05 一种硫化锌@碳复合微球及其制备方法与应用 Pending CN109638244A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811481462.4A CN109638244A (zh) 2018-12-05 2018-12-05 一种硫化锌@碳复合微球及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811481462.4A CN109638244A (zh) 2018-12-05 2018-12-05 一种硫化锌@碳复合微球及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN109638244A true CN109638244A (zh) 2019-04-16

Family

ID=66071293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811481462.4A Pending CN109638244A (zh) 2018-12-05 2018-12-05 一种硫化锌@碳复合微球及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109638244A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203963A (zh) * 2019-04-30 2019-09-06 昆明理工大学 一种回收利用过期葡萄糖酸锌的方法
CN111293295A (zh) * 2020-01-13 2020-06-16 宁夏博尔特科技有限公司 废旧橡胶材料基二次电池用电极材料及其制备方法
CN113539698A (zh) * 2021-07-09 2021-10-22 南京大学 一种锌/氮/硫共掺杂碳材料复合材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103496733A (zh) * 2013-09-30 2014-01-08 陕西科技大学 一种制备碳掺杂氧化锌的方法
CN107265495A (zh) * 2017-07-20 2017-10-20 济南大学 非模板法制备硫化锌微球

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103496733A (zh) * 2013-09-30 2014-01-08 陕西科技大学 一种制备碳掺杂氧化锌的方法
CN107265495A (zh) * 2017-07-20 2017-10-20 济南大学 非模板法制备硫化锌微球

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINYAO MA ET AL.: ""Hollow ZnS submicrospheres encapsulated in carbon shells with enhanced lithium and sodium storage properties"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203963A (zh) * 2019-04-30 2019-09-06 昆明理工大学 一种回收利用过期葡萄糖酸锌的方法
CN111293295A (zh) * 2020-01-13 2020-06-16 宁夏博尔特科技有限公司 废旧橡胶材料基二次电池用电极材料及其制备方法
CN111293295B (zh) * 2020-01-13 2021-08-03 博尔特新材料(银川)有限公司 废旧橡胶材料基二次电池用电极材料及其制备方法
CN113539698A (zh) * 2021-07-09 2021-10-22 南京大学 一种锌/氮/硫共掺杂碳材料复合材料及其制备方法和应用
CN113539698B (zh) * 2021-07-09 2022-09-23 南京大学 一种锌/氮/硫共掺杂碳材料复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN111554896B (zh) 硒化钴镍氮掺杂无定形碳纳米复合负极材料及制备与应用
CN108855145B (zh) 一种两步法制备硫化钴/硫化钼复合材料及在氢气析出反应应用
CN107248569B (zh) 以1-乙基-3-甲基咪唑二氰胺为碳源制得的锑/氮掺杂碳复合物及其制备方法和应用
CN105883940B (zh) 一种块状NiS2的制备方法及其在钠离子电池中的应用
CN109273691B (zh) 一种二硫化钼/氮掺杂碳复合材料及其制备方法与应用
CN107093739B (zh) 钾离子电池正极材料用钾锰氧化物及其制备方法
CN113121836B (zh) 一种纳米框架状超级结构Fe-Co-Ni金属有机框架及其制备方法与应用
CN109638244A (zh) 一种硫化锌@碳复合微球及其制备方法与应用
CN107732235A (zh) 一种锂离子电池三元正极材料nca的制备方法
WO2023097983A1 (zh) 一种普鲁士白复合材料及其制备方法和应用
CN110350157A (zh) 基于MOFs的片层状锌钴硫化物复合材料及制备和应用
Fang et al. Establishment of PPy-derived carbon encapsulated LiMn2O4 film electrode and its performance for efficient Li+ electrosorption
CN108598409B (zh) 一种锂离子电池负极材料FeS/Fe/C及其制备方法
CN107026263B (zh) 海胆状硫化铋/大孔石墨烯复合材料、制备方法及其应用
CN108400296A (zh) 异质元素掺杂四氧化三铁/石墨烯负极材料
CN113097464B (zh) 一种ZnS-SnS@3DC复合材料及其制备方法和应用
CN109473634A (zh) 固相共热合成二硒化钼/氮掺杂碳棒的方法
CN111320207B (zh) 一种硫化钼材料的制备和应用
CN115440507B (zh) 一种锡基氧化物/氮掺杂石墨烯复合材料及其制备方法和应用
CN105826515A (zh) 一种锂离子电池负极材料及其应用
CN114566627B (zh) 一种Co3S4-CoN@NC钠离子电极材料的制备方法
CN115084509A (zh) 钾离子电池用硒硫化铟/碳负极材料的制备方法及应用
CN113023778A (zh) 二硫化钼纳米片包覆钛基mof衍生二氧化钛复合材料、制备方法及应用
CN112079385A (zh) 一种铝离子电池正极材料及其制备方法
Sun et al. Review on Layered Manganese‐Based Metal Oxides Cathode Materials for Potassium‐Ion Batteries: From Preparation to Modification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190416

RJ01 Rejection of invention patent application after publication