CN109355673A - 一种Au-Ag/Ag2S异质结纳米析氢催化剂及其制备方法 - Google Patents

一种Au-Ag/Ag2S异质结纳米析氢催化剂及其制备方法 Download PDF

Info

Publication number
CN109355673A
CN109355673A CN201811273711.0A CN201811273711A CN109355673A CN 109355673 A CN109355673 A CN 109355673A CN 201811273711 A CN201811273711 A CN 201811273711A CN 109355673 A CN109355673 A CN 109355673A
Authority
CN
China
Prior art keywords
hetero
liberation
junctions
junctions nanometer
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811273711.0A
Other languages
English (en)
Other versions
CN109355673B (zh
Inventor
王倩玉
胡建强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201811273711.0A priority Critical patent/CN109355673B/zh
Publication of CN109355673A publication Critical patent/CN109355673A/zh
Application granted granted Critical
Publication of CN109355673B publication Critical patent/CN109355673B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

本发明属于能源纳米材料技术领域,公开了一种Au‑Ag/Ag2S异质结纳米析氢催化剂及其制备方法。所述制备方法包括如下步骤:将金源、银源、包裹剂和还原剂溶于水中得到混合溶液并置于水热釜中进行反应;反应结束后取出产物,经离心洗涤后分散于水中得到Ag‑Au‑Ag异质结纳米棒分散液;再加入硫源,陈化后经洗涤得到Au‑Ag/Ag2S异质结纳米析氢催化剂。本发明采用水热法一步制备Ag‑Au‑Ag异质结纳米棒,用水作溶剂代替传统的有机试剂,对环境无污染。本发明制备的Au‑Ag/Ag2S异质结纳米催化剂具有优越的太阳光利用能力,呈现出很好的催化性能,在光电催化析氢领域具有广泛的应用前景。

Description

一种Au-Ag/Ag2S异质结纳米析氢催化剂及其制备方法
技术领域
本发明属于能源纳米材料技术领域,具体涉及一种Au-Ag/Ag2S异质结纳米析氢催化剂及其制备方法。
背景技术
随着工业的快速发展与人口数量的急剧增加,对资源的需求量日益加大。然而化石燃料的燃烧会释放出大量的有毒气体,不仅会造成环境污染,而且还威胁着人类的生命健康。与此同时,化石燃料在地球的储量非常有限,因此,开发一种清洁能源对社会长久稳定的发展起着至关重要的作用。氢气是一种很好的清洁能源,相对于风能、潮汐能、核能等新能源来说,氢气的制备方法相对简单,而且氢气燃烧的产物是水,没有任何副产物,绿色环保。因此,氢气作为一种清洁能源具有非常大的应用前景。光电催化析氢可以通过将太阳能转化为电能实现氢气的制备,同时降低电能的消耗。所以,光电催化析氢的材料需要具有很好的太阳光吸收能力,并且具备很好的电化学活性。
Au和Ag具有非常优越的表面等离子体共振效应,Ag2S是一种活性较高的析氢阴极催化剂,而且其带宽与太阳光谱匹配,能够增强对全光谱太阳光的利用。但是,目前仍然缺少一种有效的手段能够将上述材料结合在一起,制备出高效析氢且实现太阳光全光谱吸收的光电催化材料。Ag-Au-Ag异质结纳米棒因其独特的一维结构引起了广泛的研究兴趣,但目前Ag-Au-Ag异质结纳米棒的合成大多需要两步法,而且需要在有机相中完成,污染环境。所以,开发出一种可以在水相中一步合成Ag-Au-Ag异质结纳米棒的方法显得尤为重要。
发明内容
为了解决现有技术的缺点和不足之处,本发明的首要目的在于提供一种Au-Ag/Ag2S异质结纳米析氢催化剂。
本发明的另一目的在于提供上述Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法。
本发明的目的通过以下技术方案实现:
一种Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法,包括如下步骤:
(1)将金源、银源、包裹剂和还原剂溶于水中得到混合溶液;
(2)将步骤(1)得到的混合溶液置于水热釜中进行水热反应,初始压力控制在0.6~1.2MPa,反应温度控制在180~230℃,反应时间控制在16~24h;
(3)待步骤(2)反应结束后冷却至室温,取出产物,经离心洗涤后分散于水中得到Ag-Au-Ag异质结纳米棒分散液;
(4)在步骤(3)制得的Ag-Au-Ag异质结纳米棒分散液中加入硫源,陈化后经洗涤得到Au-Ag/Ag2S异质结纳米析氢催化剂。
优选地,步骤(1)所述金源与银源的摩尔比为1:1~10。
优选地,步骤(1)所述包裹剂、还原剂和金源的摩尔比为1800~2000:1.8~2.8:19.424~24.28。
优选地,步骤(1)所述水与金源的摩尔比为400000~560000:19.424~24.28。
优选的,步骤(4)所述的硫源的加入量与步骤(1)所述金源的摩尔比为0.2~0.4:19.424~24.28。
优选地,步骤(1)中所述金源为氯金酸、氯化金和金的络合物中的一种或两种以上。
优选地,步骤(1)中所述银源为硝酸银、氯化银和银的络合物中的一种或两种以上。
优选地,步骤(1)中所述还原剂为抗坏血酸、柠檬酸钠、聚乙烯吡咯烷酮和葡萄糖中的一种或两种以上。
优选地,聚乙烯吡咯烷酮的K值为30。
优选地,步骤(1)中所述包裹剂为柠檬酸钠、十六烷基三甲基溴化铵、聚乙烯吡咯烷酮和十六烷基三甲基氯化铵中的一种或两种以上。
优选地,步骤(4)中所述硫源为硫化钾和硫化钠中的一种。
优选地,步骤(3)所述Ag-Au-Ag异质结纳米棒分散液的浓度为0.08~0.3mg/mL.
优选地,步骤(1)所述反应时间控制为20h。
优选地,步骤(3)所述室温为20~30℃。
优选地,步骤(3)所述离心洗涤的溶剂是去离子水。
优选的,步骤(4)所述陈化的时间为2~4h。
上述Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法制备得到的Au-Ag/Ag2S异质结纳米催化剂。
本发明提出了一种Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法。首先,采用水热法一步合成Ag-Au-Ag异质结纳米棒,然后对其表面进行硫化并制备出Au-Ag/Ag2S异质结纳米催化剂,表面Ag2S的存在不仅能够增加反应的活性位点,而且能够拓宽该材料对太阳光的吸收范围。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明利用水热法一步制备Ag-Au-Ag异质结纳米棒,用水作溶剂代替传统的有机试剂,对环境无污染。用硫化钠或硫化钾作硫源,制备Au-Ag/Ag2S异质结纳米析氢催化剂,制备工艺简单、容易操作,且重复性好。
(2)本发明制备的Au-Ag/Ag2S异质结纳米析氢催化剂具有优越的太阳光利用能力,呈现出很好的催化性能。用光吸收最强处所在的波长照射时(700nm),在-0.7V处电流密度能达到近-400mA/mg,用300W氙灯作模拟太阳光光源,用相同强度的模拟太阳光照射,电流密度达到约-360mA/mg,与光吸收最强处所在的波长照射时得到的电流密度相比并没有明显差异,进一步证明了本发明制备的Au-Ag/Ag2S异质结纳米析氢催化剂对全光谱太阳光具有很好的吸收。
附图说明
图1为实施例1制得的Ag-Au-Ag异质结纳米棒的透射电镜图。
图2为实施例1制得的Au-Ag/Ag2S异质结纳米催化剂的透射电镜图。
图3为实施例1制得的Au-Ag/Ag2S异质结纳米催化剂的高分辨图。
图4为实施例1制得的Au-Ag/Ag2S异质结纳米催化剂的X射线光电子能谱图,其中,a对应Au的X射线光电子能谱图,b对应Ag的X射线光电子能谱图,c~d对应S的X射线光电子能谱图。
图5为实施例1制得的Ag-Au-Ag异质结纳米棒以及Au-Ag/Ag2S异质结纳米催化剂的紫外光谱图。
图6为实施例1制得的Au-Ag/Ag2S异质结纳米催化剂的线性扫描伏安图。
图7为实施例2制得的Au-Ag/Ag2S异质结纳米催化剂的线性扫描伏安图。
图8为实施例3制得的Au-Ag/Ag2S异质结纳米催化剂的时间-电流曲线。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
以下实施例所述的室温为25℃。
实施例1
(1)在聚四氟乙烯内衬中加入90mg聚乙烯吡咯烷酮(K30)、620mg十六烷基三甲基氯化铵、450μL浓度为48.56mM的氯金酸、1000μL浓度为102mM的硝酸银和8.6mL水,搅拌4min使其混合均匀得到混合溶液;
(2)将步骤(1)得到的混合溶液置于水热釜中,把水热釜和内衬密封后,充入气体将初始压力设定为0.8Mpa,将水热釜的反应温度控制在200℃,水热反应时间控制在20h,得到分散度较好的Ag-Au-Ag异质结纳米棒;
(3)待步骤(2)反应结束后冷却至室温,取出Ag-Au-Ag异质结纳米棒,经离心洗涤3次后分散于6mL水中得到Ag-Au-Ag异质结纳米棒分散液;
(4)取16μL浓度为0.02M的Na2S水溶液加入到步骤(3)所述的Ag-Au-Ag异质结纳米棒分散液,陈化反应4h,用去离子水离心洗涤三次,得到Au-Ag/Ag2S异质结纳米催化剂。
实施例1步骤(2)制得的Ag-Au-Ag异质结纳米棒的透射电镜图如图1所示,由图1可以得到,Ag-Au-Ag异质结纳米棒长度在90~110nm,单分散性好,粒子尺寸分布均一。
实施例1制得的Au-Ag/Ag2S异质结纳米析氢催化剂的透射电镜图如图2所示,由图2可以得到,Ag2S的加入没有改变Ag-Au-Ag异质结纳米棒的一维结构但增加了表面粗糙度。
实施例1制得的Au-Ag/Ag2S异质结纳米析氢催化剂的高分辨图如图3所示,从图3可以看到,Ag-Au-Ag异质结纳米棒的表面Ag2S的晶向为[110]。
实施例1制得的Au-Ag/Ag2S异质结纳米析氢催化剂的X射线光电子能谱图如图4所示,由图4可看到有明显的硫的峰,进一步证明我们制备的催化剂中确实存在Ag2S。
实施例1所制得的Au-Ag/Ag2S异质结纳米析氢催化剂和Ag-Au-Ag异质结纳米棒的吸收光谱图如图5所示,由图5可以看到,Ag-Au-Ag异质结纳米棒表面硫化之后制备的Au-Ag/Ag2S异质结纳米析氢催化剂大大增强了从紫外到近红外区的太阳光吸收。
实施例1制得的Au-Ag/Ag2S异质结纳米析氢催化剂的线性扫描伏安测试(扫速为50mV/s)如图6所示,由图6可以看出,Au-Ag/Ag2S异质结纳米析氢催化剂具有优越的光电催化析氢活性,暗场时的电流密度约为260mA/mg,参照图5所示,用吸收最强的波长光(700nm)照射,电流密度能达到近400mA/mg,用相同光照强度(10mW/cm2)的氙灯模拟太阳光(白光)照射时,电流密度能达到近360mA/mg,其催化活性并没有显著差异;分别用530nm和800nm波长的光照射,其电流密度均和白光照射时相差不大,以上分析充分说明Au-Ag/Ag2S异质结纳米催化剂对全光谱的太阳光有很好的利用。
由以上结果所示,实施例1所述Au-Ag/Ag2S异质结纳米析氢催化剂是通过Ag-Au-Ag异质结纳米棒表面硫化得到,Ag2S的存在,一方面可以为催化反应提供更多的活性位点;另一方面,由于Ag2S具有较窄的带隙以及较高的折射指数,可以拓宽催化剂的光学范围,增强对太阳光的吸收利用能力。
实施例2
(1)在聚四氟乙烯内衬中加入100mg聚乙烯吡咯烷酮、610mg十六烷基三甲基氯化铵、450μL浓度为48.56mM的氯金酸、800μL浓度为102mM的硝酸银和8.8mL水,搅拌4min使其混合均匀得到混合溶液;
(2)将步骤(1)得到的混合溶液置于水热釜中,把水热釜和内衬密封后,充入气体将初始压力设定为1.0Mpa,将水热釜的反应温度控制在210℃,水热反应时间控制在20h,得到分散度较好的Ag-Au-Ag异质结纳米棒;
(3)待步骤(2)反应结束后冷却至室温,取出Ag-Au-Ag异质结纳米棒,经离心洗涤3次后分散于6mL水中得到Ag-Au-Ag异质结纳米棒分散液;
(4)取16μL浓度为0.02M的Na2S水溶液加入到步骤(3)所述的Ag-Au-Ag异质结纳米棒分散液,陈化反应4h,用去离子水离心洗涤三次,得到Au-Ag/Ag2S异质结纳米催化剂。
实施例2制得的Au-Ag/Ag2S异质结纳米析氢催化剂的线性扫描伏安测试(扫速为50mV/s)如图7所示。由图7可以看出,Au-Ag/Ag2S异质结纳米析氢催化剂具有优越的光响应,用氙灯模拟太阳光照射时(100mW/cm2),电流密度随着光照时间的增长而增加,光照30min后基本稳定,能达到近450mA/mg,Au-Ag/Ag2S异质结纳米催化剂呈现出很好的光吸收稳定性。
实施例3
(1)在聚四氟乙烯内衬中加入110mg聚乙烯吡咯烷酮、600mg十六烷基三甲基氯化铵、450μL浓度为48.56mM的氯金酸、800μL浓度为102mM的硝酸银和8.8mL水,搅拌4min使其混合均匀得到混合溶液;
(2)将步骤(1)得到的混合溶液置于水热釜中,把水热釜和内衬密封后,充入气体将初始压力设定为1.0Mpa,将水热釜的反应温度控制在210℃,水热反应时间控制在20h,得到分散度较好的Ag-Au-Ag异质结纳米棒;
(3)待步骤(2)反应结束后冷却至室温,取出Ag-Au-Ag异质结纳米棒,经离心洗涤3次后分散于6mL水中得到Ag-Au-Ag异质结纳米棒分散液;
(4)取16μL浓度为0.02M的K2S水溶液加入到步骤(3)所述的Ag-Au-Ag异质结纳米棒分散液,陈化反应4h,用去离子水离心洗涤三次,得到Au-Ag/Ag2S异质结纳米催化剂。
实施例3制得的Au-Ag/Ag2S异质结纳米析氢催化剂的电流-时间曲线(电压为-0.6V,扫速为100mV/s)如图8所示。使用氙灯模拟太阳光作光源,在50s处开光,电流密度瞬时增大,随着光照时间的延长,电流密度持续增大;150s处关光,电流密度瞬时减小。由图8可以看出,Au-Ag/Ag2S异质结纳米析氢催化剂对光具有快速的响应,呈现出很好的光吸收能力,在100s的光照时间内,电流密度就能够增加15%左右,进一步证明了该材料是一种很好的光催化剂。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法,其特征在于,包括如下步骤:
(1)将金源、银源、包裹剂和还原剂溶于水中得到混合溶液;
(2)将步骤(1)得到的混合溶液置于水热釜中进行水热反应,初始压力控制在0.6~1.2MPa,反应温度控制在180~230℃,反应时间控制在16~24h;
(3)待步骤(2)反应结束后冷却至室温,取出产物,经离心洗涤后分散于水中得到Ag-Au-Ag异质结纳米棒分散液;
(4)在步骤(3)制得的Ag-Au-Ag异质结纳米棒分散液中加入硫源,陈化后经洗涤得到Au-Ag/Ag2S异质结纳米析氢催化剂。
2.根据权利要求1所述Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法,其特征在于,步骤(1)所述金源与银源的摩尔比为1:1~10;所述包裹剂、还原剂和金源的摩尔比为1800~2000:1.8~2.8:19.424~24.28;所述水与金源的摩尔比为400000~560000:19.424~24.28。
3.根据权利要求2所述Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法,其特征在于,步骤(4)所述硫源的加入量与步骤(1)所述金源的摩尔比为0.2~0.4:19.424~24.28。
4.根据权利要求1~3任一项所述Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法,其特征在于,步骤(1)中所述金源为氯金酸、氯化金和金的络合物中的一种或两种以上;所述银源为硝酸银、氯化银和银的络合物中的一种或两种以上。
5.根据权利要求1~3任一项所述Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法,其特征在于,步骤(1)中所述还原剂为抗坏血酸、柠檬酸钠、聚乙烯吡咯烷酮和葡萄糖中的一种或两种以上。
6.根据权利要求1~3任一项所述Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法,其特征在于,步骤(1)中所述包裹剂为柠檬酸钠、十六烷基三甲基溴化铵、聚乙烯吡咯烷酮和十六烷基三甲基氯化铵中的一种或两种以上。
7.根据权利要求1~3任一项所述Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法,其特征在于,步骤(4)中所述硫源为硫化钾和硫化钠中的一种。
8.根据权利要求1~3任一项所述Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法,其特征在于,步骤(3)所述Ag-Au-Ag异质结纳米棒分散液的浓度为0.08~0.3mg/mL。
9.根据权利要求1~3任一项所述Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法,其特征在于,步骤(3)所述室温为20~30℃,所述离心洗涤的溶剂是去离子水;步骤(4)所述陈化的时间为2~4h。
10.权利要求1~9任一项所述Au-Ag/Ag2S异质结纳米析氢催化剂的制备方法制备得到的Au-Ag/Ag2S异质结纳米催化剂。
CN201811273711.0A 2018-10-30 2018-10-30 一种Au-Ag/Ag2S异质结纳米析氢催化剂及其制备方法 Active CN109355673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811273711.0A CN109355673B (zh) 2018-10-30 2018-10-30 一种Au-Ag/Ag2S异质结纳米析氢催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811273711.0A CN109355673B (zh) 2018-10-30 2018-10-30 一种Au-Ag/Ag2S异质结纳米析氢催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN109355673A true CN109355673A (zh) 2019-02-19
CN109355673B CN109355673B (zh) 2020-04-28

Family

ID=65347414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811273711.0A Active CN109355673B (zh) 2018-10-30 2018-10-30 一种Au-Ag/Ag2S异质结纳米析氢催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN109355673B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706475A (zh) * 2019-01-02 2019-05-03 中山大学 一种异质结纳米材料电催化剂及其co2还原应用
CN110176389A (zh) * 2019-05-23 2019-08-27 桂林理工大学 一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法
CN110560701A (zh) * 2019-04-04 2019-12-13 华南理工大学 一种一维金/银异质结纳米材料的水相一步制备方法
CN111888342A (zh) * 2020-07-02 2020-11-06 南方医科大学南方医院 一种载药纳米复合物及其制备方法和应用
CN116890119A (zh) * 2023-07-12 2023-10-17 山东第一医科大学(山东省医学科学院) 一步法合成Ag/Ag2S Janus异质结及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068448A (ja) * 2003-08-25 2005-03-17 Mitsubishi Materials Corp 銀含有金ナノロッドとその製造方法等
CN101927345A (zh) * 2010-09-23 2010-12-29 湖南科技大学 一种制备核壳型金纳米粒子及用于检测银离子浓度的方法
CN104759617A (zh) * 2015-04-02 2015-07-08 东华大学 载银纳米粒子的光/温度双响应性杂化微凝胶及其制备
CN105618730A (zh) * 2014-10-28 2016-06-01 深圳先进技术研究院 一种小尺寸金纳米棒及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068448A (ja) * 2003-08-25 2005-03-17 Mitsubishi Materials Corp 銀含有金ナノロッドとその製造方法等
CN101927345A (zh) * 2010-09-23 2010-12-29 湖南科技大学 一种制备核壳型金纳米粒子及用于检测银离子浓度的方法
CN105618730A (zh) * 2014-10-28 2016-06-01 深圳先进技术研究院 一种小尺寸金纳米棒及其制备方法和应用
CN104759617A (zh) * 2015-04-02 2015-07-08 东华大学 载银纳米粒子的光/温度双响应性杂化微凝胶及其制备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CUNCHENG LI等: "One-Pot Controllable Synthesis of Au@Ag Heterogeneous Nanorods with Highly Tunable Plasmonic Absorption", 《CHEMISTRY OF MATERIALS》 *
DAEHA SEO等: "Ag-Au-Ag Heterometallic Nanorods Formed through Directed Anisotropic Growth", 《JOURNAL OF AMERICAN CHEMICAL SOCIETY》 *
MICHAEL P. MALLIN等: "Solution-Phase Synthesis of Sub-10 nm Au-Ag Alloy Nanoparticles", 《NANO LETTERS》 *
RONGKAI YE等: "Controlling Shape and Plasmon Resonance of Pt-Etched Au@Ag Nanorods", 《LANGMUIR》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706475A (zh) * 2019-01-02 2019-05-03 中山大学 一种异质结纳米材料电催化剂及其co2还原应用
CN110560701A (zh) * 2019-04-04 2019-12-13 华南理工大学 一种一维金/银异质结纳米材料的水相一步制备方法
CN110176389A (zh) * 2019-05-23 2019-08-27 桂林理工大学 一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法
CN110176389B (zh) * 2019-05-23 2021-01-15 桂林理工大学 一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法
CN111888342A (zh) * 2020-07-02 2020-11-06 南方医科大学南方医院 一种载药纳米复合物及其制备方法和应用
CN111888342B (zh) * 2020-07-02 2022-03-15 南方医科大学南方医院 一种载药纳米复合物及其制备方法和应用
CN116890119A (zh) * 2023-07-12 2023-10-17 山东第一医科大学(山东省医学科学院) 一步法合成Ag/Ag2S Janus异质结及其应用
CN116890119B (zh) * 2023-07-12 2024-01-23 山东第一医科大学(山东省医学科学院) 一步法合成Ag/Ag2S Janus异质结及其应用

Also Published As

Publication number Publication date
CN109355673B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN109355673A (zh) 一种Au-Ag/Ag2S异质结纳米析氢催化剂及其制备方法
CN111389442B (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
CN103143377B (zh) 一种杂原子掺杂的水溶性碳量子点在光催化剂上的应用
CN108080016A (zh) 一种钾掺杂氮化碳光催化剂的制备方法和应用
CN107837817B (zh) 一种碳点/氮化碳/二氧化钛复合材料及其制备方法和应用
CN110560105B (zh) 磷化镍负载硫铟锌纳米微球复合材料的制备及在光催化产氢中的应用
CN109590005A (zh) 一种高电子传输型核壳ZnIn2S4纳米片/Ta3N5复合光催化剂的制备方法及应用
CN103881709B (zh) 一种多级孔TiO2/量子点复合材料的制备方法
Setyawati et al. Effect of metal ion Fe (III) on the performance of chlorophyll as photosensitizers on dye sensitized solar cell
CN110124690B (zh) 一种1D Sb2S3纳米棒/3D ZnIn2S4复合结构的制备方法
CN104874408A (zh) 一种二硫化锡超薄纳米片光催化剂的制备方法
CN107262115B (zh) 一种ZnO负载CdIn2S4纳米立方块的复合光催化剂的制备方法及其应用
CN108404960A (zh) 一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法
CN107833752B (zh) 一种用于染料敏化太阳能电池对电极的材料及其制备方法
CN108206094A (zh) 一种钴元素掺杂TiO2纳米管及其制备方法和应用
CN106268881B (zh) 一种方块状Ag2MoO4@Ag@AgBr三元复合物及其制备方法和应用
CN106693994A (zh) 一种核壳结构硫化铋@硫化铜复合物微球的制备与应用
CN104190449A (zh) 一种Ag/AgCl空心纳米结构光催化材料的制备方法
CN105126888A (zh) 一种用于光催化的金复载碳酸氧铋材料及制备方法
CN103646989A (zh) 一种p-n型Cu2O/TiO2纳米线阵列复合薄膜的制备方法
Wang et al. The feasible photoanode of graphene oxide/zinc aluminum mixed metal oxides for the dye-sensitized solar cell
CN111604052A (zh) 高暴露{001}晶面Fe-TiO2光催化材料及制备方法和用途
CN104857975A (zh) CdIn2S4-石墨烯复合光催化剂的制备方法与应用
CN106391061A (zh) 一种高性能BiOCl/BiOBr光催化材料的制备方法
CN110349753A (zh) 一种稀土掺杂上转换二氧化钛纳米结构复合光阳极及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant