CN110176389A - 一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法 - Google Patents

一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法 Download PDF

Info

Publication number
CN110176389A
CN110176389A CN201910431722.5A CN201910431722A CN110176389A CN 110176389 A CN110176389 A CN 110176389A CN 201910431722 A CN201910431722 A CN 201910431722A CN 110176389 A CN110176389 A CN 110176389A
Authority
CN
China
Prior art keywords
film
electrode
concentration
solution
secondary water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910431722.5A
Other languages
English (en)
Other versions
CN110176389B (zh
Inventor
潘宏程
李向葵
陈雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201910431722.5A priority Critical patent/CN110176389B/zh
Publication of CN110176389A publication Critical patent/CN110176389A/zh
Application granted granted Critical
Publication of CN110176389B publication Critical patent/CN110176389B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

本发明公开了一种制备金‑硫化银‑磷酸铅异质结纳米薄膜的方法。其方法步骤:先利用循环伏安法将PbS沉积在电极表面,然后将电极置于Ag2S的生长液中,于于60℃恒温水浴锅中反应24h后,电极表面即可同时生长出Ag2S‑Pb3(PO4)2异质结纳米薄膜。随后将Ag2S‑Pb3(PO4)2异质结纳米薄膜置于置于HAuCl4的溶液中,于60℃恒温水浴锅中反应6h,电极表面即可生成Au‑Ag2S‑Pb3(PO4)2异质结纳米薄膜。本发明方法成本制备过程简单,且制得的Au‑Ag2S‑Pb3(PO4)2异质结纳米薄膜附着力强,薄膜中金具有纳米尺寸,具有一定的生物分析应用价值。

Description

一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法
技术领域
本发明纳米薄膜材料领域及电化学领域,特别涉及一种制备Au-Ag2S-Pb3(PO4)2异质结纳米薄膜的方法。
背景技术
“异质结”是指两种或两种以上半导体相接触所形成的界面区域。随着科学技术的发展,半导体材料和纳米技术的结合越来越密切,纳米异质结具有纳米材料的表面效应、量子尺寸效应、宏观量子隧道效应和介电限域效应等性质,与传统固体材料相比具有很多优点。
Ag2S是一种n型质结禁带半导体材料,Ag2S具有良好的光电和热电效应,因而被广泛地应用于发光材料、红外光谱检测器和光纤维通讯等领域。Au纳米材料具有生物亲和性和相容性好的特点,被广泛应用于生物传感领域,然而传统的Au纳米材料制备条件较为苛刻,合成过程繁琐,因而寻找简便快捷的Au纳米材料合成方法有助于生物分析领域的研究进展。同时,将Ag2S和Au纳米材料相结合的复合材料,不仅能保留半导体的优异光电性能,还能提升材料的生物分析性能,扩大异质结材料的应用范围。
发明内容
本发明的目的是提供一种制备Au-Ag2S-Pb3(PO4)2异质结纳米薄膜的方法。
具体步骤为:
(1)将事先裁好的ITO导电玻璃电极,分别经由分析纯丙酮、分析纯乙醇和二次水超声清洗5min,干燥后用万能表测出导电面待用。
(2)依次量取1mL浓度为0.2mol/L Pb(NO3)2、1mL浓度为0.2mol/L EDTA、3.5mL浓度为0.3mol/L Na2S2O3和4mL浓度为1.25mol/L Na2SO4溶液置于20mL烧杯中均匀混合,制得电沉积PbS薄膜的底液。
(3)在步骤(2)中制得的电沉积PbS薄膜的底液中建立三电极体系,其中,工作电极为步骤(1)中制得的导电玻璃电极,对电极为Pt电极,参比电极为Ag/AgCl电极,用循环伏安法进行电沉积,电位扫描范围为-1.0V~0V,扫描速度为0.05V/s,扫描段数为40~120。电沉积结束后,将电极取出并用二次水冲洗干净,空气烘干后即可得到PbS薄膜。
(4)将步骤(3)制得的PbS薄膜置于250℃管式炉,氮气氛围中加热1h,待管式炉等却后将PbS薄膜取出。
(5)于20mL的玻璃瓶中依次加入700μL浓度为0.02mol/L的Na2HPO4溶液,80μL浓度为0.01mol/L的AgNO3溶液,100μL质量分数为1%的十二烷基苯磺酸钠溶液,7mL二次水,制得生长Ag2S-Pb3(PO4)2薄膜的生长液,将步骤(4)中制得的PbS薄膜正面朝上放入生长溶液中,于60℃恒温水浴中反应24h后取出PbS薄膜,以二次水冲洗干净,烘干即可得到Ag2S-Pb3(PO4)2薄膜。
(6)于20mL的玻璃瓶中依次加入300μL浓度为0.2mol/L、pH为6的HAc-NaAc缓冲溶液,15μL~100μL质量分数为1%的氯金酸溶液,80μL浓度为0.2mol/L的十六烷基三甲基氯化铵溶液,7mL二次水,制得生长Au-Ag2S-Pb3(PO4)2薄膜的生长液,将步骤(4)中制得的Ag2S-Pb3(PO4)2薄膜置正面朝上放入该生长液中,于60℃恒温水浴反应0.5h~24h后取出,以二次水冲洗干净,烘干即可得到Au-Ag2S-Pb3(PO4)2纳米异质结薄膜。
所述步骤(1)中的ITO导电玻璃为掺杂氧化铟锡的玻璃电极。
本发明方法的优点如下:
(1)本发明方法制得的Au-Ag2S-Pb3(PO4)2纳米异质结薄膜综合了无机材料、半导体材料和纳米材料的优良特性,在光电化学、生物分析以及环保等领域中展现出广阔的应用前景。
(2)本发明方法制备过程简单,试剂消耗量小,成本低,易于大规模生产。
附图说明
图1是本发明实施例1制备的Au-Ag2S-Pb3(PO4)2纳米异质结薄膜的扫描电子显微镜照片(SEM)。
图2是本发明实施例1制备的Au-Ag2S-Pb3(PO4)2纳米异质结薄膜的X射线衍射图谱。
具体实施方式
实施例1
本实施例用于说明本发明制备的Au-Ag2S-Pb3(PO4)2纳米异质结薄膜的合成方法及形貌、组成分析。
(1)将事先裁好的1cm×3cm的ITO导电玻璃电极,分别经由分析纯丙酮、分析纯乙醇和二次水超声清洗5min,干燥后用万能表测出导电面待用。
(2)依次量取1mL浓度为0.2mol/L Pb(NO3)2溶液、1mL浓度为0.2mol/L EDTA溶液、3.5mL浓度为0.3mol/L Na2S2O3溶液和4mL 1.25mol/L Na2SO4溶液置于20mL烧杯中均匀混合,制得电沉积PbS薄膜的底液。
(3)在步骤(2)中制得的电沉积PbS薄膜的底液中建立三电极体系,其中,工作电极为步骤(1)中制得的导电玻璃电极,对电极为Pt电极,参比电极为Ag/AgCl电极,用循环伏安法进行电沉积,电位扫描范围为-1.0V~0V,扫描速度为0.05V/s,扫描段数为100。电沉积结束后,将电极取出并用二次水冲洗干净,空气烘干后即可得到PbS薄膜。
(4)将步骤(3)制得的PbS薄膜置于250℃管式炉,氮气氛围中加热1h,待管式炉等却后将PbS薄膜取出。
(5)于20mL的玻璃瓶中依次加入700μL浓度为0.02mol/L的Na2HPO4溶液,80μL浓度为0.01mol/L的AgNO3溶液,100μL质量分数为1%的十二烷基苯磺酸钠溶液,7mL二次水,制得生长Ag2S-Pb3(PO4)2薄膜的生长液。将步骤(4)中制得的PbS薄膜正面朝上放入生长溶液中,于60℃恒温水浴中反应24h后取出PbS薄膜,以二次水冲洗干净,烘干即可得到Ag2S-Pb3(PO4)2薄膜。
(6)于20mL的玻璃瓶中依次加入300μL浓度为0.2mol/L、pH为6的HAc-NaAc缓冲溶液,25μL质量分数为1%的氯金酸溶液,80μL浓度为0.2mol/L的十六烷基三甲基氯化铵溶液,7mL二次水,制得生长Au-Ag2S-Pb3(PO4)2薄膜的生长液,将步骤(4)中制得的Ag2S-Pb3(PO4)2薄膜置正面朝上放入该生长液中,于60℃恒温水浴反应3h后取出,以二次水冲洗干净,烘干即可得到Au-Ag2S-Pb3(PO4)2纳米异质结薄膜。
图1为本实施例中所得Au-Ag2Se-Pb3(PO4)2纳米异质结薄膜的扫描电子纤维镜(SEM)照片,由图1可见Au-Ag2S-Pb3(PO4)2纳米异质结薄膜微观上呈现出由粗细均匀的棒状形成的网状结构。
图2为本实施例中所得Au-Ag2Se-Pb3(PO4)2纳米异质结薄膜的X射线衍射(XRD)图谱,由图2可见该薄膜中含有Au、Ag2S和Pb3(PO4)2
实施例2
(1)将事先裁好的1cm×3cm的ITO导电玻璃电极,分别经由分析纯丙酮、分析纯乙醇和二次水超声清洗5min,干燥后用万能表测出导电面待用。
(2)依次量取1mL浓度为0.2mol/L Pb(NO3)2溶液、1mL浓度为0.2mol/L EDTA溶液、3.5mL浓度为0.3mol/L Na2S2O3溶液和4mL浓度为1.25mol/L Na2SO4溶液置于20mL烧杯中均匀混合,制得电沉积PbS薄膜的底液。
(3)在步骤(2)中制得的电沉积PbS薄膜的底液中建立三电极体系,其中,工作电极为步骤(1)中制得的导电玻璃电极,对电极为Pt电极,参比电极为Ag/AgCl电极,用循环伏安法进行电沉积,电位扫描范围为-1.0V~0V,扫描速度为0.05V/s,扫描段数为40。电沉积结束后,将电极取出并用二次水冲洗干净,空气烘干后即可得到PbS薄膜。
(4)将步骤(3)制得的PbS薄膜置于250℃管式炉,氮气氛围中加热1h,待管式炉等却后将PbS薄膜取出。
(5)于20mL的玻璃瓶中依次加入700μL浓度为0.02mol/L的Na2HPO4溶液,80μL浓度为0.01mol/L的AgNO3溶液,100μL质量分数为1%的十二烷基苯磺酸钠溶液,7mL二次水,制得生长Ag2S-Pb3(PO4)2薄膜的生长液。将步骤(4)中制得的PbS薄膜正面朝上放入生长溶液中,于60℃恒温水浴中反应24h后取出PbS薄膜,以二次水冲洗干净,烘干即可得到Ag2S-Pb3(PO4)2薄膜。
(6)于20mL的玻璃瓶中依次加入300μL浓度为0.2mol/L、pH为6的HAc-NaAc缓冲溶液,25μL质量分数为1%的氯金酸溶液,80μL浓度为0.2mol/L的十六烷基三甲基氯化铵溶液,7mL二次水,制得生长Au-Ag2S-Pb3(PO4)2薄膜的生长液,将步骤(4)中制得的Ag2S-Pb3(PO4)2薄膜置正面朝上放入该生长液中,于60℃恒温水浴反应0.5h后取出,以二次水冲洗干净,烘干即可得到Au-Ag2S-Pb3(PO4)2纳米异质结薄膜。
实施例3
(1)将事先裁好的1cm×3cm的ITO导电玻璃电极,分别经由分析纯丙酮、分析纯乙醇和二次水超声清洗5min,干燥后用万能表测出导电面待用。
(2)依次量取1mL浓度为0.2mol/L Pb(NO3)2溶液、1mL浓度为0.2mol/L EDTA溶液、3.5mL浓度为0.3mol/L Na2S2O3溶液和4mL浓度为1.25mol/L Na2SO4溶液置于20mL烧杯中均匀混合,制得电沉积PbS薄膜的底液。
(3)在步骤(2)中制得的电沉积PbS薄膜的底液中建立三电极体系,其中,工作电极为步骤(1)中制得的导电玻璃电极,对电极为Pt电极,参比电极为Ag/AgCl电极,用循环伏安法进行电沉积,电位扫描范围为-1.0V~0V,扫描速度为0.05V/s,扫描段数为120,电沉积结束后,将电极取出并用二次水冲洗干净,空气烘干后即可得到PbS薄膜。
(4)将步骤(3)制得的PbS薄膜置于250℃管式炉,氮气氛围中加热1h,待管式炉等却后将PbS薄膜取出。
(5)于20mL的玻璃瓶中依次加入700μL浓度为0.02mol/L的Na2HPO4溶液,80μL浓度为0.01mol/L的AgNO3溶液,100μL质量分数为1%的十二烷基苯磺酸钠溶液,7mL二次水,制得生长Ag2S-Pb3(PO4)2薄膜的生长液。将步骤(4)中制得的PbS薄膜正面朝上放入生长溶液中,于60℃恒温水浴中反应24h后取出PbS薄膜,以二次水冲洗干净,烘干即可得到Ag2S-Pb3(PO4)2薄膜。
(6)于20mL的玻璃瓶中依次加入300μL浓度为0.2mol/L、pH为6的HAc-NaAc缓冲溶液,25μL质量分数为1%的氯金酸溶液,80μL浓度为0.2mol/L的十六烷基三甲基氯化铵溶液,7mL二次水,制得生长Au-Ag2S-Pb3(PO4)2薄膜的生长液,将步骤(4)中制得的Ag2S-Pb3(PO4)2薄膜置正面朝上放入该生长液中,于60℃恒温水浴反应24h后取出,以二次水冲洗干净,烘干即可得到Au-Ag2S-Pb3(PO4)2纳米异质结薄膜。
以上仅是本发明的优选实施例,本发明的保护范围并不仅局限于上述实施例。

Claims (2)

1.一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法,其特征在于具体步骤为:
(1)将事先裁好的ITO导电玻璃电极,分别经由分析纯丙酮、分析纯乙醇和二次水超声清洗5min,干燥后用万能表测出导电面待用;
(2)依次量取1mL浓度为0.2mol/L Pb(NO3)2、1mL浓度为0.2mol/L EDTA、3.5mL浓度为0.3mol/L Na2S2O3和4mL浓度为1.25mol/L Na2SO4溶液置于20mL烧杯中均匀混合,制得电沉积PbS薄膜的底液;
(3)在步骤(2)中制得的电沉积PbS薄膜的底液中建立三电极体系,其中,工作电极为步骤(1)中制得的导电玻璃电极,对电极为Pt电极,参比电极为Ag/AgCl电极,用循环伏安法进行电沉积,电位扫描范围为-1.0V~0V,扫描速度为0.05V/s,扫描段数为40~120,电沉积结束后,将电极取出并用二次水冲洗干净,空气烘干后即可得到PbS薄膜;
(4)将步骤(3)制得的PbS薄膜置于250℃管式炉,氮气氛围中加热1h,待管式炉等却后将PbS薄膜取出;
(5)于20mL的玻璃瓶中依次加入700μL浓度为0.02mol/L的Na2HPO4溶液,80μL浓度为0.01mol/L的AgNO3溶液,100μL质量分数为1%的十二烷基苯磺酸钠溶液,7mL二次水,制得生长Ag2S-Pb3(PO4)2薄膜的生长液,将步骤(4)中制得的PbS薄膜正面朝上放入生长溶液中,于60℃恒温水浴中反应24h后取出PbS薄膜,以二次水冲洗干净,烘干即可得到Ag2S-Pb3(PO4)2薄膜;
(6)于20mL的玻璃瓶中依次加入300μL浓度为0.2mol/L、pH为6的HAc-NaAc缓冲溶液,15μL~100μL质量分数为1%的氯金酸溶液,80μL浓度为0.2mol/L的十六烷基三甲基氯化铵溶液,7mL二次水,制得生长Au-Ag2S-Pb3(PO4)2薄膜的生长液,将步骤(4)中制得的Ag2S-Pb3(PO4)2薄膜置正面朝上放入该生长液中,于60℃恒温水浴反应0.5h~24h后取出,以二次水冲洗干净,烘干即可得到Au-Ag2S-Pb3(PO4)2纳米异质结薄膜。
2.根据权利要求1所述的制备方法,其特征在于所述步骤(1)中的ITO导电玻璃为掺杂氧化铟锡的玻璃电极。
CN201910431722.5A 2019-05-23 2019-05-23 一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法 Active CN110176389B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910431722.5A CN110176389B (zh) 2019-05-23 2019-05-23 一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910431722.5A CN110176389B (zh) 2019-05-23 2019-05-23 一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法

Publications (2)

Publication Number Publication Date
CN110176389A true CN110176389A (zh) 2019-08-27
CN110176389B CN110176389B (zh) 2021-01-15

Family

ID=67691898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910431722.5A Active CN110176389B (zh) 2019-05-23 2019-05-23 一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法

Country Status (1)

Country Link
CN (1) CN110176389B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056511A (ja) * 2006-08-30 2008-03-13 Nagoya Institute Of Technology 硫化金属ナノ粒子の製造方法及び光電変換素子
US20080305334A1 (en) * 2007-06-07 2008-12-11 Samsung Electronics Co., Ltd. Core/shell nanocrystals and method for producing the same
CN105499596A (zh) * 2015-12-06 2016-04-20 桂林理工大学 在电沉积CdSe薄膜上自发生长Au纳米微粒的方法
CN105861294A (zh) * 2016-04-07 2016-08-17 上海工程技术大学 一种半导体异质结dna生物传感器及其制备与应用
CN106501344A (zh) * 2016-10-26 2017-03-15 桂林理工大学 一种制备Ag2Se‑Pb3(PO4)2异质结纳米薄膜的方法
CN109355673A (zh) * 2018-10-30 2019-02-19 华南理工大学 一种Au-Ag/Ag2S异质结纳米析氢催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056511A (ja) * 2006-08-30 2008-03-13 Nagoya Institute Of Technology 硫化金属ナノ粒子の製造方法及び光電変換素子
US20080305334A1 (en) * 2007-06-07 2008-12-11 Samsung Electronics Co., Ltd. Core/shell nanocrystals and method for producing the same
CN105499596A (zh) * 2015-12-06 2016-04-20 桂林理工大学 在电沉积CdSe薄膜上自发生长Au纳米微粒的方法
CN105861294A (zh) * 2016-04-07 2016-08-17 上海工程技术大学 一种半导体异质结dna生物传感器及其制备与应用
CN106501344A (zh) * 2016-10-26 2017-03-15 桂林理工大学 一种制备Ag2Se‑Pb3(PO4)2异质结纳米薄膜的方法
CN109355673A (zh) * 2018-10-30 2019-02-19 华南理工大学 一种Au-Ag/Ag2S异质结纳米析氢催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
韩成等: "纳米异质结光催化材料制取太阳能燃料研究进展", 《无 机 材 料 学 报》 *

Also Published As

Publication number Publication date
CN110176389B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
Ge et al. Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis
Ansari et al. Effect of nanostructure on the urea sensing properties of sol–gel synthesized ZnO
Stiger et al. Investigations of electrochemical silver nanocrystal growth on hydrogen-terminated silicon (100)
GB2451596A (en) Semiconductor electrochemical sensors
CN105499596B (zh) 在电沉积CdSe薄膜上自发生长Au纳米微粒的方法
Miao et al. Glucose oxidase immobilization platform based on ZnO nanowires supported by silicon nanowires for glucose biosensing
Collinson et al. Electroactivity of redox probes encapsulated within sol-gel-derived silicate films
Liu et al. Construction of the direct Z-scheme CdTe/APTES-WO3 heterostructure by interface engineering for cathodic “signal-off” photoelectrochemical aptasensing of streptomycin at sub-nanomole level
CN101776639A (zh) ZnO纳米线生物传感器及其制备方法
Marie et al. Vertically grown zinc oxide nanorods functionalized with ferric oxide for in vivo and non-enzymatic glucose detection
Negahdary et al. A biosensor for determination of H2O2 by use of HRP enzyme and modified CPE with ZnO NPs
CN111103340A (zh) 纳米粒子修饰的玻碳电极的制备方法及其应用
CN103616418A (zh) 一种dna电化学生物传感器及其制备方法
Fatema et al. New design of active material based on YInWO4-G-SiO2 for a urea sensor and high performance for nonenzymatic electrical sensitivity
CN105004712B (zh) 一种用于啶虫脒检测的光电化学传感器的构建方法和检测方法
Slewa et al. Effect of Sn doping and annealing on the morphology, structural, optical, and electrical properties of 3D (micro/nano) V2O5 sphere for high sensitivity pH-EGFET sensor
Zhang et al. On-chip surface modified nanostructured ZnO as functional pH sensors
CN107138736B (zh) 一种聚集态磷光铜纳米簇的制备方法及其应用
Mazurków et al. Nonenzymatic glucose sensors based on copper sulfides: Effect of binder-particles interactions in drop-casted suspensions on electrodes electrochemical performance
CN105241938B (zh) 一种基于稀磁半导体的钾离子核酸适配体光电化学传感器的构建及检测方法
CN110176389A (zh) 一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法
Sung et al. Ion-Pair Ligand-Assisted Surface Stoichiometry Control of Ag2S Nanocrystals
CN106501344B (zh) 一种制备Ag2Se-Pb3(PO4)2异质结纳米薄膜的方法
Pruna et al. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces
Razmi et al. Preparation, electrochemistry, and electrocatalytic activity of lead pentacyanonitrosylferrate film immobilized on carbon ceramic electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190827

Assignee: URIT Medical Electronic Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980044242

Denomination of invention: A Method for Preparing Gold Silver Sulfide Lead Phosphate Heterojunction Nanofilms

Granted publication date: 20210115

License type: Common License

Record date: 20231024

EE01 Entry into force of recordation of patent licensing contract