CN105004712B - 一种用于啶虫脒检测的光电化学传感器的构建方法和检测方法 - Google Patents

一种用于啶虫脒检测的光电化学传感器的构建方法和检测方法 Download PDF

Info

Publication number
CN105004712B
CN105004712B CN201510422603.5A CN201510422603A CN105004712B CN 105004712 B CN105004712 B CN 105004712B CN 201510422603 A CN201510422603 A CN 201510422603A CN 105004712 B CN105004712 B CN 105004712B
Authority
CN
China
Prior art keywords
acetamiprid
aptamer
detection
optical electro
doped zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510422603.5A
Other languages
English (en)
Other versions
CN105004712A (zh
Inventor
方海林
李红波
李静
王伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangcheng Institute of Technology
Original Assignee
Yangcheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangcheng Institute of Technology filed Critical Yangcheng Institute of Technology
Priority to CN201510422603.5A priority Critical patent/CN105004712B/zh
Publication of CN105004712A publication Critical patent/CN105004712A/zh
Application granted granted Critical
Publication of CN105004712B publication Critical patent/CN105004712B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开一种用于啶虫脒检测的光电化学传感器的构建方法和检测方法,包括如下步骤:(1)在乙醇中调节Zn(Ac)2·2H2O和Co(Ac)2·4H2O的摩尔比,采用水热合成法制备钴掺杂氧化锌纳米粒子;(2)对ITO导电玻璃进行清洗、冲洗操作并在室温下晾干;(3)将钴掺杂氧化锌悬浮液滴至ITO电极表面,制成钴掺杂纳米氧化锌薄膜;(4)将啶虫脒核酸适配体覆盖在钴掺杂纳米氧化锌薄膜的表面,制备核酸适配体基钴掺杂氧化锌光电化学传感器。本发明基于啶虫脒与核酸适配体特异性地结合,导致光电流降低的原理进行定量测试。本发明具有设备简单、方法简便、稳定性好、灵敏度高、选择性好等特点。

Description

一种用于啶虫脒检测的光电化学传感器的构建方法和检测 方法
技术领域
本发明涉及一种用于啶虫脒检测的光电化学传感器的构建方法和检测方法,属于化学分析测试领域。
背景技术
目前农药残留问题引起了人们的广泛关注,因其已危及了人类健康和导致环境污染。啶虫脒作为一种新烟碱类杀虫剂已成为有机磷农药或其他常见农药的替代品,然而其广泛使用仍然成为人类健康的潜在危害物质之一。目前检测啶虫脒的方法有:气、液相色谱法、比色适体传感器、酶联免疫吸附测定法和电化学法等。然而,每种方法都会存在如下的一种或多种缺点:设备昂贵、方法复杂、稳定性差、耗时、灵敏度不高、选择性一般等。因此,寻求方便、简便、快速、超灵敏以及高特异性的啶虫脒分析法引起分析工作者的兴趣。
光电化学检测是一种新颖的测试方法,该方法是基于光激发光电信标导致电子-空穴对的分离,在合适的偏电位条件下,实现电子在分析物、半导体、及探针分子间快速传递,从而形成光电流,分析物的存在能够定量地影响光电流的变化,从而实现对分析物的光电化学检测。就光电信标而言,目前的设计体系主要基于单一的半导体,例如:纳米二氧化钛、硫化镉、硒化镉、碲化镉、吡啶钌、聚噻吩衍生物等。然而,单一的半导体由于光生电子对易复合,从而抑制光电信号的产生及进一步地影响光电化学检测灵敏度。最近,能够促进载流子有效分离的异质结半导体和局域表面等离子体技术陆续应用于光电化学传感,然而这些方法具有合成方法复杂,周期长,成本高等特点。因此,寻求一步合成掺杂半导体作为光电新标,且过渡金属离子的掺入能够有效地促进载流子对的有效分离,具有设备简单、易操作、成本低等特点。此技术是构建简便、快速、超灵敏、高特异性和环境友好光电化学传感器的努力方向。而现有技术中还未公开啶虫脒光电化学检测方法的报道,啶虫脒的光电化学检测方法仍是目前技术层面上的空白。
发明内容
发明目的:本发明的目的在于针对现有技术的不足,提供一种啶虫脒检测的光电化学传感器的构建方法。
本发明的另一目的在于提供一种使用上述啶虫脒检测的光电化学传感器进行啶虫脒定量检测的检测方法。
技术方案:本发明所述的一种用于啶虫脒检测的光电化学传感器的构建方法,包括如下步骤:
(1)在乙醇中调节Zn(Ac)2·2H2O和Co(Ac)2·4H2O的摩尔比,使得Co2+与Zn2+的摩尔比为0.5~4.0%,(下文中涉及的Co2+摩尔比均指Co2+与Zn2+的摩尔比例),采用水热合成法制备钴掺杂氧化锌纳米粒子;
(2)对ITO导电玻璃进行清洗、冲洗操作并在室温下晾干;
(3)将钴掺杂氧化锌纳米粒子分散到水中制备成悬浮液,滴至ITO电极表面,制成钴掺杂纳米氧化锌薄膜;
(4)将浓度为1~3nmol·L-1啶虫脒核酸适配体覆盖在钴掺杂纳米氧化锌薄膜的表面,制备核酸适配体基钴掺杂氧化锌光电化学传感器。
优选地,所述钴掺杂氧化锌纳米粒子的制备方法具体为:先将50ml 1mol·L-1的NaOH溶液逐滴加入100ml Co2+与Zn2+的摩尔比为0.5~4.0%的Zn(Ac)2·2H2O和Co(Ac)2·4H2O溶液中,在室温下磁力搅拌反应30~60分钟;然后将混合液转移至高压反应釜中继续在110~130℃条件下加热2小时,冷却至室温;最后离心收集沉淀物,用无水乙醇和纯水交叉洗涤沉淀物3~5次,洗涤后的沉淀物在110~130℃条件下干燥。
优选地,步骤(1)中所述Co2+摩尔比为1%,在该比例下产生的光电流最大。
优选地,步骤(2)中对ITO导电玻璃进行清洗使用的清洗剂为氨水、双氧水和水体积比为1~3:1~3:50的混合溶剂。
优选地,步骤(3)中所述钴掺杂氧化锌纳米粒子悬浮液的浓度为0.8~1.2mg·ml-1
优选地,步骤(3)中所述钴掺杂纳米氧化锌薄膜的制备方法为:将20μL的钴掺杂氧化锌悬浮液滴至ITO电极表面,形成直径为5mm的圆斑,在饱和气氛中晾干后得到均匀的薄膜,将薄膜在250~350℃条件下热处理1小时,冷却至室温,得到钴掺杂纳米氧化锌薄膜。
优选地,步骤(4)中所述核酸适配体基钴掺杂氧化锌光电化学传感器的制备方法为:将10μL浓度为1~3nmol·L-1的啶虫脒核酸适配体覆盖在钴掺杂纳米氧化锌薄膜的表面,在35~40℃条件下温育30分钟,然后用磷酸盐缓冲液洗去结合不牢的啶虫脒核酸适配体,得到核酸适配体基钴掺杂氧化锌光电化学传感器。
步骤(4)中所述核酸适配体的碱基序列为:
5'-TGTAATTTGTCTGCAGCGGTTCTTGATCGCTGACACCAT ATTATGAAGA-3'。
本发明中所述的用于啶虫脒检测的光电化学传感器的检测方法包括如下步骤:
(1)以啶虫脒核酸适配体修饰的钴掺杂氧化锌电极为光阳极,建立核酸适配体基光电化学法定量检测啶虫脒;
(2)将上述光阳极置于pH为7的磷酸盐缓冲液中,缓冲液中加入0.1mol·L-1槲皮素和啶虫脒进行测试,记录加入啶虫脒前后钴掺杂氧化锌基光阳极的电流变化;
(3)根据拟定的啶虫脒浓度-光电流定量关系方程,测算待测药物中啶虫脒的浓度。
优选地,步骤(3)中加入的槲皮素的体积范围为30μL~150μL。
检测结果显示,随着被测物啶虫脒浓度的增大,光电流呈减小趋势,并在一定浓度范围内有线性关系。啶虫脒存在条件下,核酸适配体特异性地结合啶虫脒,使得电极表面电阻增大,导致槲皮素很难到达电极表面,所以其光电流下降,根据光电流下降的程度可推算出啶虫脒的浓度。
有益效果:(1)本发明采用一步法合成超细粒径的Co2+掺杂纳米氧化锌作为光电信标,并通过调控掺杂剂Co2+的比例,使Co2+摩尔比为0.5~4.0%,制备出性能优异的光电信标,提高光电化学检测灵敏度,尤其是当Co2+的摩尔比为1%时,光电流最大,能够通过光电流的变化对啶虫脒浓度进行有效检测;(2)本发明中制备啶虫脒核酸适配体基钴掺杂氧化锌光电化学传感器所用的设备简单,也没有复杂的样品处理过程,具有成本低,易制作,效率高的优点。(3)本发明的检测机理是基于啶虫脒与其对应核酸适配体的特异性作用,且经过实验鉴定,排除了其他常见药物的干扰,提高其光电化学法检测的选择性。
附图说明
图1为啶虫脒核酸适配体基光电化学传感器的构建示意图;
图2为氧化锌纳米粒子(A)和1%摩尔比钴掺杂氧化锌纳米粒子(B)的透射电镜照片;
图3为氧化锌纳米粒子(a)和1%摩尔比钴掺杂氧化锌纳米粒子(b)的X-射线衍射图(A)和紫外-可见漫反射光谱图(B);图(B)中插图左侧为氧化锌纳米粒子,右侧为1%摩尔比钴掺杂氧化锌纳米粒子悬浮液;
图4为1%摩尔比钴掺杂氧化锌纳米粒子(A)的X-射线光电子能谱总图,(B、C、D、E)分别为锌、钴、炭、氧各自化学态的X-射线光电子能谱图;
图5为不同Co2+摩尔比(a,b,c,d,e,f,g分别代表(0%,0.5%,1.0%,1.5%,2.0%,3.0%,4.0%)掺杂纳米氧化锌的光电流曲线(A);不同体积(a,b,c,d,e分别代表30μL,50μL,70μL,100μL,150μL)0.1mol L-1槲皮素敏化1%摩尔比钴杂氧化锌光电流曲线;
图6为不同光电极(a,b为氧化锌光电极;c,d为钴杂氧化锌电极;e,f为啶虫脒核酸适配体修饰1.0%钴杂氧化锌电极;其中a,c电极是在pH 7磷酸盐缓冲液中检测;b,d,e电极是在pH 7磷酸盐缓冲液含有50μL 0.1mol·L-1槲皮素中检测;f电极是在pH 7磷酸盐缓冲液含有50μL 0.1mol·L-1槲皮素和40nmol·L-1啶虫脒中检测)的光电流曲线(A);常见农药对本方法检测啶虫脒的干扰(B);
图7为核酸适配体基光电化学法检测啶虫脒的定量关系:图A为随着被测物啶虫脒浓度的增大,光电流呈减小趋势;图B为其定量关系拟合方程图。
具体实施方式
下面通过附图对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。
实施例1:一种用于啶虫脒检测的光电化学传感器的构建方法,包括如下步骤:
(1)先将50ml 1mol·L-1的NaOH溶液逐滴加入100ml的Co2+摩尔比为1%的Zn(Ac)2·2H2O和Co(Ac)2·4H2O溶液中,在室温下磁力搅拌反应30分钟;然后将混合液转移至高压反应釜中继续在120℃条件下加热2小时,冷却至室温;最后离心收集沉淀物,用无水乙醇和纯水交叉洗涤沉淀物4次,洗涤后的沉淀物在120℃条件下干燥,制得钴掺杂氧化锌纳米粒子;
(2)将ITO导电玻璃切成1cm×4cm的尺寸,并使用氨水、双氧水和水体积比为1:1:50的混合溶液进行清洗,然后用水冲洗干净后置于空气中晾干待制备使用。
(3)将20μL 1mg·ml-1的钴掺杂氧化锌悬浮液滴至ITO电极表面,形成直径为5mm的圆斑,在饱和气氛中晾干后得到均匀的薄膜,将薄膜在300℃条件下热处理1小时,冷却至室温,得到钴掺杂纳米氧化锌薄膜。
(4)将10μL浓度为1nmol·L-1的啶虫脒核酸适配体覆盖在钴掺杂纳米氧化锌薄膜的表面,所述核酸适配体的碱基序列为
5'-TGTAATTTGTCTGCAGCGGTTCTTGATCGCTG ACACCATATTATGAAGA-3',在37℃条件下温育30分钟,然后用磷酸盐缓冲液洗去结合不牢的啶虫脒核酸适配体,得到核酸适配体基钴掺杂氧化锌光电化学传感器。
图2为本实施案例中氧化锌纳米粒子(A)和1%摩尔比钴掺杂氧化锌纳米粒子(B)的透射电镜照片,从(A)图中可以看出纳米氧化锌粒子的尺寸在15纳米左右,而右图中1%摩尔比钴掺杂氧化锌纳米粒子的尺寸在8纳米左右,这是由于钴的掺入阻碍了氧化锌纳米粒子的形成。
图3为本实施例中氧化锌纳米粒子(a)和1%摩尔比钴掺杂氧化锌纳米粒子(b)的X-射线衍射图(A)和紫外-可见漫反射光谱图(B);图(B)中插图左侧为氧化锌纳米粒子,右侧为1%摩尔比钴掺杂氧化锌纳米粒子悬浮液。从氧化锌纳米粒子的衍射图(A)上可以看出,其衍射峰的位置和其标准卡片数值一致,且没有其他杂质峰,说明已成功地合成了纳米氧化锌,1%摩尔比的钴掺杂没有改变纳米氧化锌的晶型,所以其衍射峰的位置和强度基本没变;但是从两者的紫外-可见漫反射光谱图(B)上可以看出1%摩尔比的钴掺杂导致其吸收边红移,且在200-800范围内有更强的吸收,说明钴成功地取代了锌的位置,导致了其带隙变窄。
图4中A为本实施例中氧化锌纳米粒子的X-射线光电子能谱总图,其中图B、C、D、E分别为锌、钴、炭、氧各自化学态的X-射线光电子能谱图。从图A中可以看出,所有的峰归咎于锌、钴、氧、炭,没发现其他的杂质峰;从图B、C、D、E可以看出,各元素的结合能对应于各自的化学态,和各元素的分峰标准图保持一致,再次证明已功地合成钴掺杂氧化锌,其中碳来自于空气中的二氧化碳。
本发明中所述的一种用于啶虫脒检测的光电化学传感器的检测方法,包括如下步骤:
(1)以啶虫脒核酸适配体修饰的钴掺杂氧化锌电极为光阳极,建立核酸适配体基光电化学法定量检测啶虫脒;
(2)将上述光阳极置于pH为7的磷酸盐缓冲液中,缓冲液中加入体积为50μL的0.1mol·L-1槲皮素和啶虫脒进行测试,记录加入啶虫脒前后钴掺杂氧化锌基光阳极的电流变化;
(3)根据拟定的啶虫脒浓度-光电流定量关系方程,推算出待测样品中啶虫脒的浓度。
检测结果显示,随着被测物啶虫脒浓度的增大,光电流呈减小趋势,并在一定浓度范围内有线性关系。
为了验证其他常用农药对本发明中的啶虫脒的检测方法是否存在干扰,在测试液中分别加入等浓度咪鲜胺、除线磷、苯磺隆、氟硅唑和吡虫啉,对照试验按照上述步骤进行。
图6为不同光电极(a,b为氧化锌光电极;c,d为钴杂氧化锌电极;e,f为啶虫脒核酸适配体修饰1.0mol%钴杂氧化锌电极;其中a,c电极是在pH 7磷酸盐缓冲液中检测;b,d,e电极是在pH 7磷酸盐缓冲液含有50μL 0.1mol·L-1槲皮素中检测;f电极是在pH 7磷酸盐缓冲液含有50μL 0.1mol·L-1槲皮素和40nmol·L-1啶虫脒中检测)的光电流曲线(A);常见农药对本方法检测啶虫脒的干扰(B),从上图A(a,b;c,d)曲线可以看出,50μL 0.1mol·L-1槲皮素作为电子供体可以有效地促进电子地转移,使光电流信号放大;啶虫脒核酸适配体的引入导致电子转移效率下降,导致光电流略有下降;在啶虫脒存在条件下,光电流继续下降可归咎于核酸适配体特异性地结合啶虫脒使得电极表面电阻增大,导致槲皮素很难到达电极表面,所以其光电流下降。基于这一原理,该传感器可用于啶虫脒地定量检测。从上图B可以看出,等倍的常见农药几乎不影响啶虫脒的定量检测,该方法具有极好的选择性。
图7为核酸适配体基光电化学法定量检测啶虫脒:图A为随着被测物啶虫脒浓度的增大,光电流呈减小趋势;图B为其定量关系拟合方程图。
实施例2:一种用于啶虫脒检测的光电化学传感器的构建方法,包括如下步骤:
(1)先将50ml 1mol·L-1的NaOH溶液逐滴加入100ml的Co2+摩尔比为0.5%的Zn(Ac)2·2H2O和Co(Ac)2·4H2O溶液中,在室温下磁力搅拌反应40分钟;然后将混合液转移至高压反应釜中继续在110℃条件下加热2小时,冷却至室温;最后离心收集沉淀物,用无水乙醇和纯水交叉洗涤沉淀物3次,洗涤后的沉淀物在110℃条件下,制得钴掺杂氧化锌纳米粒子;
(2)将ITO导电玻璃切成1cm×4cm的尺寸,并使用氨水、双氧水和水体积比为2:2:50的混合溶液进行清洗,然后用水冲洗干净后置于空气中晾干待制备使用。
(3)将20μL 1mg·ml-1的钴掺杂氧化锌悬浮液滴至ITO电极表面,形成直径为5mm的圆斑,在饱和气氛中晾干后得到均匀的薄膜,将薄膜在250℃条件下热处理1小时,冷却至室温,得到钴掺杂纳米氧化锌薄膜。
(4)将10μL浓度为2nmol·L-1的啶虫脒核酸适配体覆盖在钴掺杂纳米氧化锌薄膜的表面,所述核酸适配体的碱基序列为
5'-TGTAATTTGTCTGCAGCGGTTCTTGATCGCTGACACCATATTATGAAGA-3',在35℃条件下温育30分钟,然后用磷酸盐缓冲液洗去结合不牢的啶虫脒核酸适配体,得到核酸适配体基钴掺杂氧化锌光电化学传感器。
本发明中所述的一种用于啶虫脒检测的光电化学传感器的检测方法,包括如下步骤:
(1)以啶虫脒核酸适配体修饰的钴掺杂氧化锌电极为光阳极,建立核酸适配体基光电化学法定量检测啶虫脒;
(2)将上述光阳极置于pH为7的磷酸缓冲液中,缓冲液中加入体积为30μL的0.1mol·L-1槲皮素和啶虫脒进行测试,记录加入啶虫脒前后钴掺杂氧化锌基光阳极的光电流变化;
(3)根据拟定的啶虫脒浓度-光电流定量关系方程,推算出待测样品中啶虫脒的浓度。
检测结果显示,随着被测物啶虫脒浓度的增大,光电流呈减小趋势,并在一定浓度范围内有线性关系。为了验证其他常用农药对本发明中的啶虫脒的检测方法是否存在干扰,在测试液中分别加入等浓度咪鲜胺、除线磷、苯磺隆、氟硅唑和吡虫啉,对照试验按照上述步骤进行。
实施例3:一种用于啶虫脒检测的光电化学传感器的构建方法,包括如下步骤:
(1)先将50ml 1mol·L-1的NaOH溶液逐滴加入100ml的Co2+摩尔比4%的Zn(Ac)2·2H2O和Co(Ac)2·4H2O溶液中,在室温下磁力搅拌反应60分钟;然后将混合液转移高压反应釜中继续在130℃条件下加热2小时,冷却至室温;最后离心收集沉淀物,用无水乙醇和纯水交叉洗涤沉淀物5次,洗涤后的沉淀物在130℃条件下干燥,制得钴掺杂氧化锌纳米粒子;
(2)将ITO导电玻璃切成1cm×4cm的尺寸,并使用氨水、双氧水和水体积比为3:3:50的混合溶液进行清洗,然后用水冲洗干净后置于空气中晾干待制备使用。
(3)将20μL 1mg·ml-1的钴掺杂氧化锌悬浮液滴至ITO电极表面,形成直径为5mm的圆斑,在饱和气氛中晾干后得到均匀的薄膜,将薄膜在350℃条件下热处理1小时,冷却至室温,得到钴掺杂纳米氧化锌薄膜。
(4)将10μL浓度为3nmol·L-1的啶虫脒核酸适配体覆盖在钴掺杂纳米氧化锌薄膜的表面,所述核酸适配体的碱基序列为
5'-TGTAATTTGTCTGCAGCGGTTCTTGATCGCTGACACCATATTATGAAGA-3',在40℃条件下温育30分钟,然后用磷酸盐缓冲液洗去结合不牢的啶虫脒核酸适配体,得到核酸适配体基钴掺杂氧化锌光电化学传感器。
本发明中所述的一种用于啶虫脒检测的光电化学传感器的检测方法,包括如下步骤:
(1)以啶虫脒核酸适配体修饰的钴掺杂氧化锌电极为光阳电极,建立核酸适配体基光电化学法定量检测啶虫脒;
(2)将上述光阳极置于pH为7的磷酸盐缓冲液中,缓冲液中加入体积为150μL的0.1mol·L-1槲皮素和啶虫脒进行测试,记录加入啶虫脒前后钴掺杂氧化锌基光阳极的光电流变化;
(3)根据拟定的啶虫脒浓度-光电流定量关系方程,推算出待测样品中啶虫脒的浓度。
检测结果显示,随着被测物啶虫脒浓度的增大,光电流呈减小趋势,并在一定浓度范围内有线性关系。为了验证其他常用农药对本发明中的啶虫脒的检测方法是否存在干扰,在测试液中分别加入等浓度咪鲜胺、除线磷、苯磺隆、氟硅唑和吡虫啉,对照试验按照上述步骤进行。
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上作出各种变化。

Claims (7)

1.一种用于啶虫脒检测的光电化学传感器的构建方法,其特征在于包括如下步骤:
(1)在乙醇中调节Zn(Ac)2·2H2O和Co(Ac)2·4H2O的摩尔比,使得Co2+与Zn2+的摩尔比为0.5~4.0 %,采用水热合成法制备钴掺杂氧化锌纳米粒子;
(2)对ITO导电玻璃进行清洗、冲洗操作并在室温下晾干;
(3)将钴掺杂氧化锌纳米粒子分散到水中制备成悬浮液,滴至ITO电极表面,制成钴掺杂纳米氧化锌薄膜;所述钴掺杂纳米氧化锌薄膜的制备方法为:将20 µL钴掺杂氧化锌悬浮液滴至ITO电极表面,形成直径为5 mm的圆斑,在饱和气氛中晾干后得到均匀的薄膜,将薄膜在250~350℃条件下热处理1小时,冷却至室温,得到钴掺杂纳米氧化锌薄膜;
(4)将浓度为1~3 nmol•L-1啶虫脒核酸适配体覆盖在所述钴掺杂纳米氧化锌薄膜的表面,制备核酸适配体基钴掺杂氧化锌光电化学传感器;所述核酸适配体基钴掺杂氧化锌光电化学传感器的制备方法为:将10 µL的啶虫脒核酸适配体覆盖在钴掺杂纳米氧化锌薄膜的表面,在35~40℃条件下温育30分钟,然后用磷酸盐缓冲液洗去结合不牢的啶虫脒核酸适配体,得到核酸适配体基钴掺杂氧化锌光电化学传感器;所述核酸适配体的碱基序列为
5'-TGTAATTTGTCTGCAGCGGTTCTTGATCGCTGACACCATATTATGAAGA-3'。
2.根据权利要求1 所述的用于啶虫脒检测的光电化学传感器的构建方法,其特征在于,步骤(1)中所述钴掺杂氧化锌纳米粒子的制备方法为:先将 50 ml 1 mol•L-1的NaOH溶液逐滴加入100 ml Co2+与Zn2+的摩尔比为0.5~4.0%的Zn(Ac)2·2H2O和Co(Ac)2·4H2O溶液中,在室温下磁力搅拌反应30~60分钟;然后将混合液转移至高压反应釜中继续在110~130℃条件下加热2小时,冷却至室温;最后离心收集沉淀物,用无水乙醇和纯水交叉洗涤沉淀物3~5次,洗涤后的沉淀物在110~130℃条件下干燥得到。
3.根据权利要求1或2所述的用于啶虫脒检测的光电化学传感器的构建方法,其特征在于:所述Co2+与Zn2+的摩尔比为1%。
4.根据权利要求1所述的用于啶虫脒检测的光电化学传感器的构建方法,其特征在于,步骤(2)中对ITO导电玻璃进行清洗使用的清洗剂为氨水、双氧水和水体积比为1~3:1~3:50的混合溶剂。
5.根据权利要求 1 所述的用于啶虫脒检测的光电化学传感器的构建方法,其特征在于,步骤(3)中所述钴掺杂氧化锌纳米粒子悬浮液的浓度为0.8~1.2 mg•ml-1
6.根据权利要求1所述的用于啶虫脒检测的光电化学传感器的构建方法所制备的光电化学传感器的检测方法,其特征在于包括如下步骤:
(1)以啶虫脒核酸适配体修饰的钴掺杂氧化锌电极为光阳电极,建立核酸适配体基光电化学法定量检测啶虫脒;
(2)将上述光阳极置于pH为7的磷酸盐缓冲液中,缓冲液中加入0.1 mol•L-1槲皮素和啶虫脒进行测试,记录加入啶虫脒后钴掺杂氧化锌基光阳极的光电流变化;
(3)根据拟定的啶虫脒浓度-光电流定量关系方程,测算待测药物中啶虫脒的浓度。
7.根据权利要求6所述的用于啶虫脒检测的光电化学传感器的构建方法所制备的光电化学传感器的检测方法,其特征在于步骤(2)中加入的槲皮素的体积为30 µL~150 µL。
CN201510422603.5A 2015-07-17 2015-07-17 一种用于啶虫脒检测的光电化学传感器的构建方法和检测方法 Active CN105004712B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510422603.5A CN105004712B (zh) 2015-07-17 2015-07-17 一种用于啶虫脒检测的光电化学传感器的构建方法和检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510422603.5A CN105004712B (zh) 2015-07-17 2015-07-17 一种用于啶虫脒检测的光电化学传感器的构建方法和检测方法

Publications (2)

Publication Number Publication Date
CN105004712A CN105004712A (zh) 2015-10-28
CN105004712B true CN105004712B (zh) 2018-06-29

Family

ID=54377465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510422603.5A Active CN105004712B (zh) 2015-07-17 2015-07-17 一种用于啶虫脒检测的光电化学传感器的构建方法和检测方法

Country Status (1)

Country Link
CN (1) CN105004712B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490609B (zh) * 2017-07-18 2019-11-01 济南大学 基于介孔二氧化硅膜的啶虫脒适配体电化学传感器
CN107655958B (zh) * 2017-09-22 2019-09-24 山西大学 基于镍铁氰配合物纳米颗粒为指示探针的啶虫脒检测方法
CN112240898B (zh) * 2019-07-17 2021-08-27 湖南大学 一种光电化学适配体传感器及其制备方法和应用
CN110501401B (zh) * 2019-09-19 2021-04-13 济南大学 一种基于钼酸铋/锌掺杂硫化镉/金的光电化学免疫传感器的制备方法
CN112098485B (zh) * 2020-09-16 2022-11-01 山东科技大学 一种基于传感分离策略的光电化学适配体传感器及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364464A (zh) * 2013-07-31 2013-10-23 盐城工学院 一种用于还原型谷胱甘肽检测的光电化学传感器的构建方法
CN103630587A (zh) * 2013-11-07 2014-03-12 江苏大学 一种快速、灵敏检测有机磷农药毒死蜱的方法
CN103940861A (zh) * 2013-01-22 2014-07-23 同济大学 一种采用核酸适配体可见光电极检测内分泌干扰物的方法
CN104076015A (zh) * 2014-07-07 2014-10-01 吉林大学 基于核酸适配体的非标记型荧光传感器检测啶虫脒的方法
CN104569096A (zh) * 2015-02-05 2015-04-29 盐城工学院 一种氧化亚铜薄膜基无酶-氧灵敏的葡萄糖光电化学传感器的构建方法和检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558275A (zh) * 2013-11-19 2014-02-05 安徽理工大学 一种核酸适配体基光电化学检测汞离子的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940861A (zh) * 2013-01-22 2014-07-23 同济大学 一种采用核酸适配体可见光电极检测内分泌干扰物的方法
CN103364464A (zh) * 2013-07-31 2013-10-23 盐城工学院 一种用于还原型谷胱甘肽检测的光电化学传感器的构建方法
CN103630587A (zh) * 2013-11-07 2014-03-12 江苏大学 一种快速、灵敏检测有机磷农药毒死蜱的方法
CN104076015A (zh) * 2014-07-07 2014-10-01 吉林大学 基于核酸适配体的非标记型荧光传感器检测啶虫脒的方法
CN104569096A (zh) * 2015-02-05 2015-04-29 盐城工学院 一种氧化亚铜薄膜基无酶-氧灵敏的葡萄糖光电化学传感器的构建方法和检测方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid";Fan L.F. 等;《Biosensors and Bioelectronics》;20121203;第43卷;第12-18页 *
"Photoelectrochemical studies of cobalt-doped ZnO sprayed thin film semiconductor electrodes in acetonitrile medium";Lal Bahadur 等;《Solar Energy Materials and Solar Cells》;19921231;第27卷;第347-360页 *
"Photoelectrochemistry of Free-Base-Porphyrin-Functionalized Zinc Oxide Nanoparticles and Their Applications in Biosensing";Tu W.W. 等;《chemistry a european journal》;20111231;第17卷;第9440-9447页 *
"Structural, optical and magnetic properties of Co-doped ZnO nanorods prepared by hydrothermal method";Shi S.B. 等;《Journal of Alloys and Compounds》;20130420;第576卷;第59-65页 *
"光电化学传感器的构建与应用";薛延;《中国优秀硕士论文全文数据库工程科技I辑》;20150215;第3-17页,第32页 *

Also Published As

Publication number Publication date
CN105004712A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
CN105004712B (zh) 一种用于啶虫脒检测的光电化学传感器的构建方法和检测方法
KR101617941B1 (ko) 수은에 선택적인 감응성을 보이는 압타머가 도입된 그래핀을 채널로 사용하는 고감응성 전계 효과 트랜지스터 수은 센서의 제조방법
CN109596686B (zh) 一种同时检测鸟嘌呤和腺嘌呤的电化学传感器及其制备方法
Li et al. A versatile cathodic “signal-on” photoelectrochemical platform based on a dual-signal amplification strategy
CN104569096A (zh) 一种氧化亚铜薄膜基无酶-氧灵敏的葡萄糖光电化学传感器的构建方法和检测方法
CN103364464B (zh) 一种用于还原型谷胱甘肽检测的光电化学传感器的检测方法
CN110794017B (zh) 一种检测降钙素原的电化学免疫传感器的制备方法
CN107727717A (zh) 多氯联苯光电化学适配体传感器的制备方法及应用
CN111562296A (zh) 一种以纳米金/氧化锌-石墨烯复合材料为光电敏感元件的适配体传感器的构建及应用
CN108469461B (zh) 一种夹心型肺癌标志物电化学传感器的制备方法及应用
Yang et al. Target-induced photocurrent-polarity switching: a highly selective and sensitive photoelectrochemical sensing platform
CN109142486B (zh) 一种用于microRNA检测的光电化学生物传感器的制备方法
CN105241938B (zh) 一种基于稀磁半导体的钾离子核酸适配体光电化学传感器的构建及检测方法
CN105259231B (zh) 用于土霉素检测的电化学适体电极及其制备方法
Meng et al. A sensitive photoelectrochemical methyltransferase activity assay based on a novel “Z-scheme” CdSe QD/afGQD heterojunction and multiple signal amplification strategies
CN105758922A (zh) 基于光电化学dna生物传感器的铅离子测定方法
CN107328834B (zh) 一种用于畜禽饮用水中的铅离子检测的复合材料修饰电极及其制备方法
Zhong et al. Synergistic effect of photoelectrochemical aptasensor based on staggered gap ZnO/BiFeO3 heterojunction coupled with cDNA-CdS sensitizer enabling ultrasensitive assay of kanamycin
CN104076072A (zh) 氧化铱-铁卟啉-氧化钛的高灵敏度光电化学传感器及其制备方法
CN113588758A (zh) 一种基于AgBiS2的光电化学传感器检测金黄色葡萄球菌的方法
CN106053562A (zh) 一种检测亚硝酸钠的修饰电极及其制备方法和应用
CN109100400A (zh) 用于检测刀豆蛋白a的传感器及其制备方法和应用
CN112730559A (zh) 检测pcb72的光电适配体传感器的制备方法及应用
CN103454266A (zh) 硫化镉包覆的氧化锌纳米阵列复合材料的制备方法以及用于多种肿瘤细胞检测的方法
CN114636746A (zh) 一种检测Pb2+的羧基配体诱导的湮灭型比率电化学发光适配体传感方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant