CN105499596A - 在电沉积CdSe薄膜上自发生长Au纳米微粒的方法 - Google Patents

在电沉积CdSe薄膜上自发生长Au纳米微粒的方法 Download PDF

Info

Publication number
CN105499596A
CN105499596A CN201510880317.3A CN201510880317A CN105499596A CN 105499596 A CN105499596 A CN 105499596A CN 201510880317 A CN201510880317 A CN 201510880317A CN 105499596 A CN105499596 A CN 105499596A
Authority
CN
China
Prior art keywords
electrode
cdse
concentration
electrodeposited
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510880317.3A
Other languages
English (en)
Other versions
CN105499596B (zh
Inventor
潘宏程
汤红园
陈琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pingyi Economic Development Zone Investment Development Co.,Ltd.
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201510880317.3A priority Critical patent/CN105499596B/zh
Publication of CN105499596A publication Critical patent/CN105499596A/zh
Application granted granted Critical
Publication of CN105499596B publication Critical patent/CN105499596B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种在电沉积CdSe薄膜上自发生长Au纳米微粒的方法。利用二价镉盐和二氧化硒(SeO2)混合溶液,先利用电沉积的方法将CdSe沉积在电极表面,形成一种载体薄膜,把电极浸入Au纳米颗粒生长液中,再在恒温水浴锅中生长1~3h,最后取出电极,电极上就自发地生长上Au纳米微粒。本发明方法制备步骤简单,所沉积的复合膜附着力强,效率高,成本低廉,非常适宜大规模生产。

Description

在电沉积CdSe薄膜上自发生长Au纳米微粒的方法
技术领域
本发明属于纳米材料及电化学领域,特别涉及一种在电沉积CdSe薄膜上自发生长Au纳米微粒的方法。
背景技术
硒化镉(CdSe)是n型直接能隙的半导体材料,其禁带宽度为1.8eV左右,是一种化学性质较稳定的半导体材料,具有独特的光电转换特性,经常被用来改进宽带隙半导体以提高它们的可见光吸收的能力和光催化活性,在光催化氧化技术针对环境污染的治理和光电催化(PEC)分解水应用广泛而备受关注,但是它本身存在一个很明显的缺点,光生电子与空穴复合将会使得光电催化的活性并不高,所以必须提高催化剂的活性,其中最常用的是进行贵金属(Au,Ag,Pd等)沉积,贵金属的活性很高,经过贵金属沉淀修饰之后得催化剂可以改变其体系中的电子分布,从而提高光电催化性能。目前制备硒化镉(CdSe)薄膜的常用方法有电沉积法、分子束外延法、水热法、溶胶-凝胶法、化学浴沉积法等。其中电沉积法优点最突出,生产设备简单,反应条件要求低,膜的厚度可控,适合大规模生产。利用化学水域自发生长贵金属(Au,Ag,Pd等),方法简单,相比于其他生长方法,其最大优点就是无需另外添加还原剂,而其他方法制备步骤繁琐,使用溶剂多,效率较低,成本高,很难大规模工业化生产。
发明内容
本发明的目的是提供一种在电沉积CdSe薄膜上自发生长Au纳米微粒的方法。
本发明的原理和思路:利用电聚合的方法将CdSe沉积在电极表面,形成一种载体薄膜,把电极浸入Au纳米颗粒生长液中,再在恒温水浴锅中生长1~3h,最后取出电极,电极上就自发地生长上Au纳米微粒。
具体步骤为:
(1)将电极分别经分析纯丙酮、分析纯乙醇和二次水各超声清洗3min,在空气中干燥后用万能表测量出导电一面,备用,即为基体电极。
(2)量取6mL浓度为0.05~0.15mol/L的二价镉盐溶液置于洁净的小烧杯中,并在磁力搅拌下分六次分别加入1mL浓度为0.01~0.1mol/L的SeO2水溶液,制得电沉积CdSe薄膜底液。
(3)在步骤(2)制得的电沉积CdSe薄膜底液中构建三电极体系,其中,步骤(1)制得的基体电极作为工作电极,Ag/AgCl作为参比电极,Pt作为辅助电极,采用循环伏安法进行电沉积,扫描范围为-1.1~0V,扫描速度为0.05V/s,扫描段数为20~40段,扫描结束后,基体电极表面就沉积出CdSe薄膜,制得薄膜基片。
(4)量取9.52mL二次水,300μLPBS溶液,100μL质量浓度为1%的氯金酸水溶液和80μL浓度为0.2mol/L的十六烷基三甲基氯化铵水溶液,混合制得生长液,然后把步骤(3)制得的薄膜基片斜放入生长液中,置于45℃水浴锅中恒温条件下反应1~3h,薄膜基片上自发生长出Au纳米微粒。
所述电极为掺杂氟的二氧化锡透明导电玻璃电极或铟锡氧化物电极。
所述二价镉盐为CdCl2、Cd(NO3)2和CdSO4中的一种或多种。
所述PBS溶液是浓度为0.2mol/L,pH值为6.0的NaH2PO4-Na2HPO4缓冲溶液。
本发明方法制备过程简单,薄膜附着力强,生长效率高,成本低,易于大规模推广。
附图说明
图1为本发明实施例1制备的最终产物的X射线衍射图。
图2为本发明实施例1中电沉积制备的CdSe薄膜的扫描电镜图。
图3为本发明实施例1中在电沉积CdSe薄膜上生长Au的产物的扫描电镜图。
具体实施方式
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。
实施例1:
(1)将电极分别经分析纯丙酮、分析纯乙醇和二次水各超声清洗3min,在空气中干燥后用万能表测量出导电一面,备用,即为基体电极。
(2)量取6mL浓度为0.05mol/L的二价镉盐溶液置于洁净的小烧杯中,并在磁力搅拌下分六次分别加入1mL浓度为0.01mol/L的SeO2水溶液,制得电沉积CdSe薄膜底液。
(3)在步骤(2)制得的电沉积CdSe薄膜底液中构建三电极体系,其中,步骤(1)制得的基体电极作为工作电极,Ag/AgCl作为参比电极,Pt作为辅助电极,采用循环伏安法进行电沉积,扫描范围为-1.1~0V,扫描速度为0.05V/s,扫描段数为20段,扫描结束后,基体电极表面就沉积出CdSe薄膜,制得薄膜基片。
(4)量取9.52mL二次水,300μLPBS溶液,100μL质量浓度为1%的氯金酸水溶液和80μL浓度为0.2mol/L的十六烷基三甲基氯化铵水溶液,混合制得生长液,然后把步骤(3)制得的薄膜基片斜放入生长液中,置于45℃水浴锅中恒温条件下反应1h,薄膜基片上自发生长出Au纳米微粒。
所述电极为掺杂氟的二氧化锡透明导电玻璃电极。
所述二价镉盐为CdCl2
所述PBS溶液是浓度为0.2mol/L,pH值为6.0的NaH2PO4-Na2HPO4缓冲溶液。
将本实施例制得的最终产物进行X射线衍射测试,结果见图1,基体电极上所获得的产物为Au,CdSe。将本实施例中电沉积出的CdSe进行扫描电镜测试,结果见图2,能够清晰看到CdSe沉积物的颗粒形貌。将本实施例中在电沉积CdSe薄膜上生长Au的产物进行扫描电镜测试,结果见图3,能够清晰辨析到Au纳米微粒附着在CdSe的颗粒上。
实施例2:
(1)将电极分别经分析纯丙酮、分析纯乙醇和二次水各超声清洗3min,在空气中干燥后用万能表测量出导电一面,备用,即为基体电极。
(2)量取6mL浓度为0.1mol/L的二价镉盐溶液置于洁净的小烧杯中,并在磁力搅拌下分六次分别加入1mL浓度为0.05mol/L的SeO2水溶液,制得电沉积CdSe薄膜底液。
(3)在步骤(2)制得的电沉积CdSe薄膜底液中构建三电极体系,其中,步骤(1)制得的基体电极作为工作电极,Ag/AgCl作为参比电极,Pt作为辅助电极,采用循环伏安法进行电沉积,扫描范围为-1.1~0V,扫描速度为0.05V/s,扫描段数为30段,扫描结束后,基体电极表面就沉积出CdSe薄膜,制得薄膜基片。
(4)量取9.52mL二次水,300μLPBS溶液,100μL质量浓度为1%的氯金酸水溶液和80μL浓度为0.2mol/L的十六烷基三甲基氯化铵水溶液,混合制得生长液,然后把步骤(3)制得的薄膜基片斜放入生长液中,置于45℃水浴锅中恒温条件下反应2h,薄膜基片上自发生长出Au纳米微粒。
所述电极为掺杂氟的二氧化锡透明导电玻璃电极。
所述二价镉盐为Cd(NO3)2
所述PBS溶液是浓度为0.2mol/L,pH值为6.0的NaH2PO4-Na2HPO4缓冲溶液。
实施例3:
(1)将电极分别经分析纯丙酮、分析纯乙醇和二次水各超声清洗3min,在空气中干燥后用万能表测量出导电一面,备用,即为基体电极。
(2)量取6mL浓度为0.15mol/L的二价镉盐溶液置于洁净的小烧杯中,并在磁力搅拌下分六次分别加入1mL浓度为0.1mol/L的SeO2水溶液,制得电沉积CdSe薄膜底液。
(3)在步骤(2)制得的电沉积CdSe薄膜底液中构建三电极体系,其中,步骤(1)制得的基体电极作为工作电极,Ag/AgCl作为参比电极,Pt作为辅助电极,采用循环伏安法进行电沉积,扫描范围为-1.1~0V,扫描速度为0.05V/s,扫描段数为40段,扫描结束后,基体电极表面就沉积出CdSe薄膜,制得薄膜基片。
(4)量取9.52mL二次水,300μLPBS溶液,100μL质量浓度为1%的氯金酸水溶液和80μL浓度为0.2mol/L的十六烷基三甲基氯化铵水溶液,混合制得生长液,然后把步骤(3)制得的薄膜基片斜放入生长液中,置于45℃水浴锅中恒温条件下反应3h,薄膜基片上自发生长出Au纳米微粒。
所述电极为掺杂氟的二氧化锡透明导电玻璃电极。
所述二价镉盐为CdSO4
所述PBS溶液是浓度为0.2mol/L,pH值为6.0的NaH2PO4-Na2HPO4缓冲溶液。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,与本发明构思无实质性差异的各种工艺方案均在本发明的保护范围内。

Claims (1)

1.一种在电沉积CdSe薄膜上自发生长Au纳米微粒的方法,其特征在于具体步骤为:
(1)将电极分别经分析纯丙酮、分析纯乙醇和二次水各超声清洗3min,在空气中干燥后用万能表测量出导电一面,备用,即为基体电极;
(2)量取6mL浓度为0.05~0.15mol/L的二价镉盐溶液置于洁净的小烧杯中,并在磁力搅拌下分六次分别加入1mL浓度为0.01~0.1mol/L的SeO2水溶液,制得电沉积CdSe薄膜底液;
(3)在步骤(2)制得的电沉积CdSe薄膜底液中构建三电极体系,其中,步骤(1)制得的基体电极作为工作电极,Ag/AgCl作为参比电极,Pt作为辅助电极,采用循环伏安法进行电沉积,扫描范围为-1.1~0V,扫描速度为0.05V/s,扫描段数为20~40段,扫描结束后,基体电极表面就沉积出CdSe薄膜,制得薄膜基片;
(4)量取9.52mL二次水,300μLPBS溶液,100μL质量浓度为1%的氯金酸水溶液和80μL浓度为0.2mol/L的十六烷基三甲基氯化铵水溶液,混合制得生长液,然后把步骤(3)制得的薄膜基片斜放入生长液中,置于45℃水浴锅中恒温条件下反应1~3h,薄膜基片上自发生长出Au纳米微粒;
所述电极为掺杂氟的二氧化锡透明导电玻璃电极或铟锡氧化物电极;
所述二价镉盐为CdCl2、Cd(NO3)2和CdSO4中的一种或多种;
所述PBS溶液是浓度为0.2mol/L,pH值为6.0的NaH2PO4-Na2HPO4缓冲溶液。
CN201510880317.3A 2015-12-06 2015-12-06 在电沉积CdSe薄膜上自发生长Au纳米微粒的方法 Active CN105499596B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510880317.3A CN105499596B (zh) 2015-12-06 2015-12-06 在电沉积CdSe薄膜上自发生长Au纳米微粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510880317.3A CN105499596B (zh) 2015-12-06 2015-12-06 在电沉积CdSe薄膜上自发生长Au纳米微粒的方法

Publications (2)

Publication Number Publication Date
CN105499596A true CN105499596A (zh) 2016-04-20
CN105499596B CN105499596B (zh) 2017-12-12

Family

ID=55708108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510880317.3A Active CN105499596B (zh) 2015-12-06 2015-12-06 在电沉积CdSe薄膜上自发生长Au纳米微粒的方法

Country Status (1)

Country Link
CN (1) CN105499596B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106335873A (zh) * 2016-10-26 2017-01-18 桂林理工大学 一种制备Pb3(PO4)2纳米线薄膜的方法
CN106501344A (zh) * 2016-10-26 2017-03-15 桂林理工大学 一种制备Ag2Se‑Pb3(PO4)2异质结纳米薄膜的方法
CN106757120A (zh) * 2017-02-05 2017-05-31 桂林理工大学 一种CdSe量子点的制备方法
CN110176389A (zh) * 2019-05-23 2019-08-27 桂林理工大学 一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法
CN110211868A (zh) * 2019-05-23 2019-09-06 桂林理工大学 一种制备金-硒化银-磷酸铅异质结纳米薄膜的方法
CN110231378A (zh) * 2019-05-23 2019-09-13 桂林理工大学 一种超疏水金电极的制备方法
CN110231385A (zh) * 2019-05-23 2019-09-13 桂林理工大学 一种制备聚结晶紫-金复合纳米微粒修饰电极的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388483A (en) * 1981-09-08 1983-06-14 Monosolar, Inc. Thin film heterojunction photovoltaic cells and methods of making the same
CN101700872A (zh) * 2009-10-26 2010-05-05 中国科学技术大学 铜铟镓硒纳米线阵列及其制备方法与应用
CN102121130A (zh) * 2011-02-17 2011-07-13 东南大学 具有光催化特性的ZnO纳米片/纳米线复合结构及制法
CN102331448A (zh) * 2011-10-14 2012-01-25 北京工业大学 直接电沉积CdS修饰玻碳电化学发光电极的制备方法
CN103904166A (zh) * 2014-04-23 2014-07-02 桂林理工大学 一种CdSexTey量子点光电薄膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388483A (en) * 1981-09-08 1983-06-14 Monosolar, Inc. Thin film heterojunction photovoltaic cells and methods of making the same
CN101700872A (zh) * 2009-10-26 2010-05-05 中国科学技术大学 铜铟镓硒纳米线阵列及其制备方法与应用
CN102121130A (zh) * 2011-02-17 2011-07-13 东南大学 具有光催化特性的ZnO纳米片/纳米线复合结构及制法
CN102331448A (zh) * 2011-10-14 2012-01-25 北京工业大学 直接电沉积CdS修饰玻碳电化学发光电极的制备方法
CN103904166A (zh) * 2014-04-23 2014-07-02 桂林理工大学 一种CdSexTey量子点光电薄膜的制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106335873A (zh) * 2016-10-26 2017-01-18 桂林理工大学 一种制备Pb3(PO4)2纳米线薄膜的方法
CN106501344A (zh) * 2016-10-26 2017-03-15 桂林理工大学 一种制备Ag2Se‑Pb3(PO4)2异质结纳米薄膜的方法
CN106335873B (zh) * 2016-10-26 2018-04-13 桂林理工大学 一种制备Pb3(PO4)2纳米线薄膜的方法
CN106501344B (zh) * 2016-10-26 2019-02-26 桂林理工大学 一种制备Ag2Se-Pb3(PO4)2异质结纳米薄膜的方法
CN106757120A (zh) * 2017-02-05 2017-05-31 桂林理工大学 一种CdSe量子点的制备方法
CN110176389A (zh) * 2019-05-23 2019-08-27 桂林理工大学 一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法
CN110211868A (zh) * 2019-05-23 2019-09-06 桂林理工大学 一种制备金-硒化银-磷酸铅异质结纳米薄膜的方法
CN110231378A (zh) * 2019-05-23 2019-09-13 桂林理工大学 一种超疏水金电极的制备方法
CN110231385A (zh) * 2019-05-23 2019-09-13 桂林理工大学 一种制备聚结晶紫-金复合纳米微粒修饰电极的方法
CN110176389B (zh) * 2019-05-23 2021-01-15 桂林理工大学 一种制备金-硫化银-磷酸铅异质结纳米薄膜的方法

Also Published As

Publication number Publication date
CN105499596B (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
CN105499596A (zh) 在电沉积CdSe薄膜上自发生长Au纳米微粒的方法
Sulciute et al. ZnO nanostructures application in electrochemistry: influence of morphology
Liu et al. Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold
Yang et al. Controllable morphology and conductivity of electrodeposited Cu2O thin film: effect of surfactants
Tena-Zaera et al. Role of chloride ions on electrochemical deposition of ZnO nanowire arrays from O2 reduction
Li et al. Electrochemical growth and control of ZnO dendritic structures
Elias et al. Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays
Gu et al. Preparation of flower-like Cu2O nanoparticles by pulse electrodeposition and their electrocatalytic application
Sounart et al. Secondary nucleation and growth of ZnO
Gao et al. Morphology evolution of ZnO thin films from aqueous solutions and their application to solar cells
Yu et al. ZnS/ZnO heteronanostructure as photoanode to enhance the conversion efficiency of dye-sensitized solar cells
Zhong et al. Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application
Chen et al. One-step fabrication of CdS nanorod arrays via solution chemistry
Desai et al. Facile soft solution route to engineer hierarchical morphologies of ZnO nanostructures
Fang et al. Cadmium sulfide with tunable morphologies: preparation and visible-light driven photocatalytic performance
CN102674463B (zh) 一种钨基三氧化钨纳米薄膜及其制备方法和应用
Lu et al. Controllable electrochemical synthesis of hierarchical ZnO nanostructures on FTO glass
CN109569630A (zh) 一种负载镍钴水滑石纳米粒子的钒酸铋复合材料制备及在光电水氧化中的应用
Izaki et al. Electrodeposited ZnO Nanowire/Cu2O Photovoltaic Device with Highly Resistive ZnO Intermediate Layer
Pauporte et al. Electrochemical growth of epitaxial eosin/ZnO hybrid films
CN103974769A (zh) 电催化材料及其制造方法
Córdova et al. Electrosynthesis and electrochemical characterization of a thin phase of Cu x S (x→ 2) on ITO electrode
CN105780087A (zh) 电氧化合成一维纳米氧化物结构的制备方法
Bhan et al. Bio-based hierarchical vertically aligned 2D ZnO nanostructures for ultra selective electrochemical sensing of p-Chloroaniline
CN103320828B (zh) 一种六次甲基四胺掺杂纳米氧化锌薄膜的电化学制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201229

Address after: No.2720 Economic Development Zone, Pingyi County, Shandong Province

Patentee after: Pingyi Economic Development Zone Investment Development Co.,Ltd.

Address before: 541004 the Guangxi Zhuang Autonomous Region Guilin Construction Road No. 12

Patentee before: GUILIN University OF TECHNOLOGY

TR01 Transfer of patent right