CN109320247A - 一种基于三聚氰胺的bn/c微纳米复合吸波材料的制备方法 - Google Patents
一种基于三聚氰胺的bn/c微纳米复合吸波材料的制备方法 Download PDFInfo
- Publication number
- CN109320247A CN109320247A CN201811425888.8A CN201811425888A CN109320247A CN 109320247 A CN109320247 A CN 109320247A CN 201811425888 A CN201811425888 A CN 201811425888A CN 109320247 A CN109320247 A CN 109320247A
- Authority
- CN
- China
- Prior art keywords
- melamine
- micro
- composite wave
- nano composite
- suction material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/522—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明提出一种基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法,包括步骤1、将干燥的三聚氰胺、硼酸、GNFs/CNTs和分散剂加入去离子水中制成混合液;三聚氰胺的摩尔百分数为10%~20%,硼酸的摩尔百分数为20%~40%,GNFs/CNTs的摩尔百分数为40%~70%,三聚氰胺和硼酸的摩尔比为1:2;步骤2、将盛有混合液的容器在85℃~95℃下水浴搅拌4h~6h,搅拌停止后,将上述容器从水浴锅中拿出静置至室温并放置15h以上;步骤3、将混合液进行抽滤,之后在85℃~95℃下干燥得到先驱体;步骤4、将先驱体置于刚玉舟中,在保护气体环境下进行烧结,烧结温度为950℃~1050℃,在保护气体环境下保持该温度4h~6h,即可得到BN/C微纳米复合吸波材料。通过该方法制备的复合吸波材料具有良好的吸波性能。
Description
技术领域
本发明涉及复合吸波材料领域,尤其涉及一种基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法。
背景技术
随着电磁波的应用场景和领域的拓宽,电磁波吸收材料的研制和使用随之受到了普遍的关注。制备具有“薄、轻、宽、强”特性的微波吸收材料不仅有利于减少电磁波对于日常生活中人群的危害,更重要的是作为一种特殊的军事防御材料可增强武器装备的隐身特性。
碳材料由于其较低的密度和较好的导电性能被视为一种良好的微波吸收材料。但是单纯的碳吸波材料往往通过较强的极化作用形成较大的电损耗而导致阻抗匹配特性失衡,使得电磁波反射比例增加。如何调节阻抗匹配从而充分利用碳材料高损耗衰减电磁波成为国内外学者研究热点之一。
发明内容
为了解决现有技术中存在的问题,本发明提出了一种基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法,以便调节碳材料的阻抗匹配特性,使制备的BN/C微纳米复合吸波材料具有良好的吸波性能。
为了实现上述目的,本发明提出了一种基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法,包括以下步骤:
步骤1、将已经干燥的三聚氰胺、硼酸、GNFs和分散剂加入去离子水中进行混合,用去离子水作溶剂制成混合液;或者将已经干燥的三聚氰胺、硼酸、CNTs和分散剂加入去离子水中进行混合,用去离子水作溶剂制成混合液;其中,三聚氰胺的摩尔百分数为10%~20%,硼酸的摩尔百分数为20%~40%,GNFs或者CNTs的摩尔百分数为40%~70%,并且三聚氰胺和硼酸的摩尔比要维持在1:2;
步骤2、将盛有上述混合液的容器在85℃~95℃的温度条件下水浴搅拌4h~6h,搅拌停止后,将上述容器从水浴锅中拿出静置至室温并放置15h以上;
步骤3、将步骤2所得混合液进行抽滤,之后在85℃~95℃的温度下干燥,即可得到先驱体;
步骤4、将步骤3所得先驱体置于刚玉舟中,在保护气体环境下利用管式炉进行烧结,烧结温度为950℃~1050℃,在保护气体环境下保持该温度4h~6h,即保温时间为4h~6h,即可得到BN/C微纳米复合吸波材料。
优选的是,所述分散剂采用SDS。
优选的是,将步骤1中制成的混合液放入超声清洗仪中并在85℃~95℃的温度下超声10min~20min。
优选的是,在所述步骤4中,将先驱体在氮气环境下利用高温管式炉进行烧结,烧结温度为1000℃,保温时间为5h。
本发明的该方案的有益效果在于通过上述基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法能成功的合成BN/C微纳米复合吸波材料,且上述方法具有简便稳定、操作简单、对设备要求低等优点,并且制备的吸波材料还具有良好的吸波性能,可作为应用广泛的吸波材料来使用。BN/C微纳米复合吸波材料在阻抗匹配与衰减特性之间达到了一定程度的平衡,证明BN这种透波材料的混入有利于提高材料的吸波性能,此外BN/C微纳米复合吸波材料的吸波特性说明该材料可以作为良好的中高频吸波材料来使用。
附图说明
图1至图4为BN/GNFs复合材料体系制备的BN/C微纳米复合吸波材料的图示,图5至图8为BN/CNTs复合材料体系制备的BN/C微纳米复合吸波材料的图示。
图1为BN/C微纳米复合吸波材料的XRD图谱。
图2示出了BN/C微纳米复合吸波材料的扫描电镜图谱,其中(a)是低倍图,(b)是高倍图。
图3示出了BN/C微纳米复合吸波材料的透射电镜图谱,其中(a)是低倍图,(b)是选区电子衍射花样图。
图4为BN/C微纳米复合吸波材料的吸波性能与频率的关系图。
图5为BN/C微纳米复合吸波材料的XRD图谱。
图6示出了BN/C微纳米复合吸波材料的扫描电镜图谱,其中(a)是低倍图,(b)是高倍图。
图7示出了BN/C微纳米复合吸波材料的透射电镜图谱,其中(a)是低倍图,(b)是选区电子衍射花样图。
图8为BN/C微纳米复合吸波材料的吸波性能与频率的关系图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的说明。
本发明所涉及的基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法包括以下步骤:
步骤1、将已经干燥的三聚氰胺、硼酸、GNFs(石墨烯微片)和分散剂加入去离子水中进行混合,用去离子水作溶剂制成混合液;或者将已经干燥的三聚氰胺、硼酸、CNTs(碳纳米管)和分散剂加入去离子水中进行混合,用去离子水作溶剂制成混合液;其中,三聚氰胺的摩尔百分数为10%~20%,硼酸的摩尔百分数为20%~40%,GNFs或者CNTs的摩尔百分数为40%~70%,并且三聚氰胺和硼酸的摩尔比要维持在1:2。
由于GNFs或者CNTs与去离子水溶剂不互溶,GNFs或者CNTs会漂在水溶剂表面,为使得到的产物均匀混合,因此才会加入分散剂,在本实施例中,所述分散剂可采用SDS。
为使GNFs或者CNTs均匀分散在溶剂中,可将步骤1中制成的混合液放入超声清洗仪中并在85℃~95℃的温度下超声10min~20min。
步骤2、将盛有上述混合液的容器(例如烧杯)在85℃~95℃,优选90℃的温度条件下水浴搅拌4h~6h,优选5h,搅拌停止后,将上述容器从水浴锅中拿出静置至室温并放置15h以上。
步骤3、将步骤2所得混合液进行抽滤,之后在85℃~95℃,优选90℃的温度下干燥,即可得到先驱体。
步骤4、将步骤3所得先驱体置于刚玉舟中,在保护气体环境下利用管式炉进行烧结,烧结温度为950℃~1050℃,在保护气体环境下保持该温度4h~6h,即保温时间为4h~6h,即可得到BN/C微纳米复合吸波材料。
在所述步骤4中,可将先驱体在氮气环境下利用高温管式炉进行烧结,烧结温度为1000℃,保温时间为5h。
通过本发明所涉及的基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法所获得的BN/GNFs微纳米复合吸波材料,其形貌为BN(氮化硼)与GNFs交错相叠,并且GNFs与BN杆均匀交错,BN杆直径约为4~5μm,长度数百微米到数毫米不等。其吸波性能在厚度为5.00mm时,我们可以得到其反射衰减值为-37.89dB,吸收频带最宽达到4GHz,这表明该吸波材料是一种比较优异的吸波材料。
通过本发明所涉及的基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法所获得的BN/CNTs微纳米复合吸波材料,其形貌为BN与CNTs交错叠加,其中CNTs均匀包覆在BN杆上,BN杆直径约为4~5μm,长度数百微米到数毫米不等。其吸波性能只有在厚度为1.4mm时,反射衰减值达到了最大为-48.45dB,此样品的吸收频带最宽达到4GHz以上,其吸波性能优良。
通过本发明所涉及的基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法能成功的合成BN/C微纳米复合吸波材料,且上述方法具有简便稳定、操作简单、对设备要求低等优点,并且制备的吸波材料还具有良好的吸波性能,可作为应用广泛的吸波材料来使用。BN/C微纳米复合吸波材料在阻抗匹配与衰减特性之间达到了一定程度的平衡,证明BN这种透波材料的混入有利于提高材料的吸波性能,此外BN/C微纳米复合吸波材料的吸波特性说明该材料可以作为良好的中高频吸波材料来使用。
Claims (4)
1.一种基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法,其特征在于:包括以下步骤:
步骤1、将已经干燥的三聚氰胺、硼酸、GNFs和分散剂加入去离子水中进行混合,用去离子水作溶剂制成混合液;或者将已经干燥的三聚氰胺、硼酸、CNTs和分散剂加入去离子水中进行混合,用去离子水作溶剂制成混合液;其中,三聚氰胺的摩尔百分数为10%~20%,硼酸的摩尔百分数为20%~40%,GNFs或者CNTs的摩尔百分数为40%~70%,并且三聚氰胺和硼酸的摩尔比要维持在1:2;
步骤2、将盛有上述混合液的容器在85℃~95℃的温度条件下水浴搅拌4h~6h,搅拌停止后,将上述容器从水浴锅中拿出静置至室温并放置15h以上;
步骤3、将步骤2所得混合液进行抽滤,之后在85℃~95℃的温度下干燥,即可得到先驱体;
步骤4、将步骤3所得先驱体置于刚玉舟中,在保护气体环境下利用管式炉进行烧结,烧结温度为950℃~1050℃,在保护气体环境下保持该温度4h~6h,即保温时间为4h~6h,即可得到BN/C微纳米复合吸波材料。
2.根据权利要求1所述的基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法,其特征在于:所述分散剂采用SDS。
3.根据权利要求1或2所述的基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法,其特征在于:将步骤1中制成的混合液放入超声清洗仪中并在85℃~95℃的温度下超声10min~20min。
4.根据权利要求3所述的基于三聚氰胺的BN/C微纳米复合吸波材料的制备方法,其特征在于:在所述步骤4中,将先驱体在氮气环境下利用高温管式炉进行烧结,烧结温度为1000℃,保温时间为5h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811425888.8A CN109320247B (zh) | 2018-11-27 | 2018-11-27 | 一种基于三聚氰胺的bn/c微纳米复合吸波材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811425888.8A CN109320247B (zh) | 2018-11-27 | 2018-11-27 | 一种基于三聚氰胺的bn/c微纳米复合吸波材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109320247A true CN109320247A (zh) | 2019-02-12 |
CN109320247B CN109320247B (zh) | 2022-02-25 |
Family
ID=65257913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811425888.8A Active CN109320247B (zh) | 2018-11-27 | 2018-11-27 | 一种基于三聚氰胺的bn/c微纳米复合吸波材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109320247B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111786129A (zh) * | 2020-07-27 | 2020-10-16 | 山东理工大学 | 一种bn辅助超强吸收超带宽吸波材料的制备方法 |
CN118638416A (zh) * | 2024-08-14 | 2024-09-13 | 黄山天之都环境科技发展有限公司 | 具有蜂窝结构的雷达吸波材料及其加工方法 |
CN118638416B (zh) * | 2024-08-14 | 2024-11-05 | 黄山天之都环境科技发展有限公司 | 具有蜂窝结构的雷达吸波材料及其加工方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6291409A (ja) * | 1985-10-17 | 1987-04-25 | Kawasaki Steel Corp | 易焼結性窒化硼素粉末の製造方法 |
CN1173479A (zh) * | 1996-01-24 | 1998-02-18 | 电气化学工业株式会社 | 硼酸蜜胺颗粒、其制法和用途,以及生产六方晶系氮化硼粉末的方法 |
WO2005014475A2 (en) * | 2003-07-08 | 2005-02-17 | Seldon Technologies, Inc. | Carbon nanotube containing materials and articles containing such materials for altering electromagnetic radiation |
US20130032765A1 (en) * | 2011-08-04 | 2013-02-07 | Nokia Corporation | Composite for Providing Electromagnetic Shielding |
CN103172050A (zh) * | 2013-04-16 | 2013-06-26 | 中山大学 | 一种氮化硼包覆碳纳米管的制备方法 |
CN103910345A (zh) * | 2014-03-24 | 2014-07-09 | 中国科学院深圳先进技术研究院 | 氮化硼复合材料的制备方法 |
CN104876611A (zh) * | 2015-04-09 | 2015-09-02 | 浙江泰索科技有限公司 | 一种石墨烯增强陶瓷及其制备方法 |
CN107793174A (zh) * | 2017-11-14 | 2018-03-13 | 中国人民解放军国防科技大学 | 一种氮化硼纤维三维结构材料制备方法及其制品 |
CN107879710A (zh) * | 2017-11-17 | 2018-04-06 | 定远县明友墙体材料有限责任公司 | 一种防霉高耐紫外线压结砖 |
CN107902640A (zh) * | 2017-11-22 | 2018-04-13 | 河北工业大学 | 一种氮化硼包覆多壁碳纳米管的制备方法 |
KR101861064B1 (ko) * | 2017-11-17 | 2018-05-28 | 주식회사 한국리페어기술 | 염해 및 동결융해 방지용 모르타르 조성물과 이를 이용한 염해로 인한 도로측구, 중성화, 화학적 등으로 피해를 입은 콘크리트 구조물 단면보수공법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6291409B2 (ja) * | 2014-12-04 | 2018-03-14 | 東京エレクトロン株式会社 | 現像処理装置、現像処理方法、プログラム及びコンピュータ記憶媒体 |
-
2018
- 2018-11-27 CN CN201811425888.8A patent/CN109320247B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6291409A (ja) * | 1985-10-17 | 1987-04-25 | Kawasaki Steel Corp | 易焼結性窒化硼素粉末の製造方法 |
CN1173479A (zh) * | 1996-01-24 | 1998-02-18 | 电气化学工业株式会社 | 硼酸蜜胺颗粒、其制法和用途,以及生产六方晶系氮化硼粉末的方法 |
WO2005014475A2 (en) * | 2003-07-08 | 2005-02-17 | Seldon Technologies, Inc. | Carbon nanotube containing materials and articles containing such materials for altering electromagnetic radiation |
US20130032765A1 (en) * | 2011-08-04 | 2013-02-07 | Nokia Corporation | Composite for Providing Electromagnetic Shielding |
CN103172050A (zh) * | 2013-04-16 | 2013-06-26 | 中山大学 | 一种氮化硼包覆碳纳米管的制备方法 |
CN103910345A (zh) * | 2014-03-24 | 2014-07-09 | 中国科学院深圳先进技术研究院 | 氮化硼复合材料的制备方法 |
CN104876611A (zh) * | 2015-04-09 | 2015-09-02 | 浙江泰索科技有限公司 | 一种石墨烯增强陶瓷及其制备方法 |
CN107793174A (zh) * | 2017-11-14 | 2018-03-13 | 中国人民解放军国防科技大学 | 一种氮化硼纤维三维结构材料制备方法及其制品 |
CN107879710A (zh) * | 2017-11-17 | 2018-04-06 | 定远县明友墙体材料有限责任公司 | 一种防霉高耐紫外线压结砖 |
KR101861064B1 (ko) * | 2017-11-17 | 2018-05-28 | 주식회사 한국리페어기술 | 염해 및 동결융해 방지용 모르타르 조성물과 이를 이용한 염해로 인한 도로측구, 중성화, 화학적 등으로 피해를 입은 콘크리트 구조물 단면보수공법 |
CN107902640A (zh) * | 2017-11-22 | 2018-04-13 | 河北工业大学 | 一种氮化硼包覆多壁碳纳米管的制备方法 |
Non-Patent Citations (2)
Title |
---|
BO ZHONG ET AL.: "Three dimensional hexagonal boron nitride nanosheet/carbon nanotube composites with light weight and enhanced microwave absorption performance", 《COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING 》 * |
冯艳春等: "前驱物法低温合成六方氮化硼", 《硅酸盐通报》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111786129A (zh) * | 2020-07-27 | 2020-10-16 | 山东理工大学 | 一种bn辅助超强吸收超带宽吸波材料的制备方法 |
CN111786129B (zh) * | 2020-07-27 | 2021-07-02 | 山东理工大学 | 一种bn辅助超强吸收超带宽吸波材料的制备方法 |
CN118638416A (zh) * | 2024-08-14 | 2024-09-13 | 黄山天之都环境科技发展有限公司 | 具有蜂窝结构的雷达吸波材料及其加工方法 |
CN118638416B (zh) * | 2024-08-14 | 2024-11-05 | 黄山天之都环境科技发展有限公司 | 具有蜂窝结构的雷达吸波材料及其加工方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109320247B (zh) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108441166B (zh) | 一种锂铝硅微晶玻璃/碳化硅/碳纤维三元复合吸波材料及其制备方法 | |
CN109005660B (zh) | 钴纳米颗粒与还原氧化石墨烯电磁波吸收材料制备方法 | |
CN110342531B (zh) | 一种铁粉包覆二氧化硅材料及其制备方法 | |
US11866335B2 (en) | Method for preparing graphene based composite wave-absorbing composite material | |
CN103243417B (zh) | 一种铁氧体纳米纤维的制备方法 | |
CN109095919B (zh) | 一种具有多级微结构分布的钛酸钡/四氧化三钴复相毫米波吸波粉体及制备方法 | |
CN103102867B (zh) | 一种金属离子掺杂的钡铁氧体吸波粉体及其制备方法 | |
CN105295832A (zh) | 一种还原氧化石墨烯/Ni-Co三元复合吸波材料的制备方法 | |
CN102167821A (zh) | 一种镧掺杂钡铁氧体-聚苯胺复合材料微波吸收剂的制备方法 | |
CN112047386A (zh) | 一种加热改性MXene/四氧化三铁复合吸波材料及制备方法 | |
CN104628372B (zh) | 一种铌镍共掺杂钡铁氧体吸波粉体材料及其制备方法 | |
CN109265728A (zh) | 一种具有电磁屏蔽、吸波性能和吸声性能的多孔海绵制备方法 | |
CN109943018A (zh) | 吸波剂、吸波材料及各自的制备方法 | |
CN103848989A (zh) | 一种镍锌铁氧体/聚苯胺复合材料的制备方法 | |
CN101329921A (zh) | 用于电磁吸波的铁氧体-镍复合粉体及制备方法 | |
CN108752905B (zh) | 一种基于银@聚吡咯核壳纳米纤维的复合吸波材料的制备方法 | |
CN104962232A (zh) | 一种Fe3O4@BaTiO3/RGO三元复合吸波材料及其制备方法 | |
CN111286252A (zh) | 一种抗辐射防腐涂料及其制备方法 | |
CN109320247A (zh) | 一种基于三聚氰胺的bn/c微纳米复合吸波材料的制备方法 | |
CN102153338A (zh) | 一种渗流型钛酸钡-镍锌铁氧体复合陶瓷吸波材料及其制备方法 | |
CN113277490B (zh) | 一种基于生物质的碳基复合材料及其制备方法和用途 | |
CN106145919A (zh) | 一种三维网状铁氧体微波吸收材料的制备方法 | |
CN109179490A (zh) | 一种镧掺杂二氧化锡空心多孔微纳米球及其制备方法和应用 | |
CN104671764A (zh) | 一种铌掺杂钡铁氧体吸波粉体材料及制备方法 | |
CN109851995B (zh) | 一种吸波复合材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |