CN109312449B - 溅射靶及其制造方法 - Google Patents

溅射靶及其制造方法 Download PDF

Info

Publication number
CN109312449B
CN109312449B CN201780035628.7A CN201780035628A CN109312449B CN 109312449 B CN109312449 B CN 109312449B CN 201780035628 A CN201780035628 A CN 201780035628A CN 109312449 B CN109312449 B CN 109312449B
Authority
CN
China
Prior art keywords
sputtering target
less
target
sputtering
vickers hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780035628.7A
Other languages
English (en)
Other versions
CN109312449A (zh
Inventor
守井泰士
小井土由将
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60579039&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN109312449(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of CN109312449A publication Critical patent/CN109312449A/zh
Application granted granted Critical
Publication of CN109312449B publication Critical patent/CN109312449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明的溅射靶包含Al和Sc的合金、且以25原子%~50原子%含有Sc,其中氧含量为2000质量ppm以下、维氏硬度Hv的偏差为20%以下。

Description

溅射靶及其制造方法
技术领域
本发明涉及一种包含Al和Sc的合金、且适合用于形成压电性材料等的薄膜的溅射靶及其制造方法,特别是提出了可有助于提高通过溅射形成的压电性材料的压电特性的技术。
背景技术
在便携式电话等无线通信设备中,使用被称作SAW器件的压电性材料的滤波器。SAW器件是利用沿压电性材料表面传播的弹性表面波(SAW:Surface Acoustic Wave(表面声波)),通过必需的频率,滤除不需要的频率,由于损失低、具有优异的特性、同时能够实现小型化、薄型化而广泛普及。
另一方面,SAW器件在频率变高时配线宽度会变窄,加工工艺变得困难,因此为了应对近年来的电波的高频率带化,使用被称作FBAR器件的压电薄膜谐振器(FBAR:FilmBulk Acoustic Resonator(薄膜体声波谐振器))来代替SAW器件。在该谐振器中,除了使用氮化铝压电薄膜以外,有时会使用钪铝氮化物压电薄膜。该压电薄膜可以通过溅射铝合金来形成。
作为形成这样的压电薄膜的溅射中所使用的溅射靶,有包含铝合金的靶,所述铝合金为在铝中添加了铜、钛、铪和钯等中的至少一种的铝合金、或者如专利文献1等所记载的添加了钪、钇和镧系元素中的至少一种的铝合金。
其中,根据非专利文献1,含有钪的铝合金特别是在钪含量处于规定范围内时具有高压电常数,能够发挥优异的压电特性(特别是参照Fig.3),由此认为:含有钪的铝合金的溅射靶对上述压电薄膜的形成有效。
这里,在专利文献2中,关于通过使用这样的钪铝合金对基板进行溅射的溅射制造钪铝氮化物的方法进行了记载。而且,还记载着:作为该溅射中使用的靶,以金属铝和金属钪为原料,利用真空熔解法制作Sc0.42Al0.58合金靶。
现有技术文献
专利文献
专利文献1:日本特开2015-96647号公报;
专利文献2:日本特开2012-12673号公报;
非专利文献
非专利文献1:加藤等7人,Enhancement of Piezoelectric Response inScandium Aluminum Nitride Alloy Thin Films prepared by Dual Reactive Co-Sputtering”,Denso technical review,Denso株式会社,2012年,第17卷,第202-207页。
发明内容
技术问题
然而,在利用如上所述的压电薄膜获得良好的压电特性时,需要减少用于形成该压电薄膜的溅射靶中所含的氧或碳。
然而,由于钪等稀土类金属和氧非常活跃,因此特别是在利用雾化法制造包含铝和钪的合金的溅射靶时,氧含量会变得极高而达到1.0质量%左右。因此,利用现有的溅射靶,无法提高压电薄膜的压电特性。
针对这种情况,认为不利用专利文献1中提出的雾化法、而是利用熔解法来制造溅射靶,从而可以降低溅射靶的氧含量。
然而,在熔解法中,由于无法选定像粉末法那样的起始原料(微粒、雾化粉等),因此利用熔解法制造的含有较多量的钪的溅射靶存在着以下问题:靶整体在硬度上产生偏差,在溅射时等会发生开裂。
在专利文献2中,记载着利用真空熔解法制作钪铝合金的溅射靶,但在真空熔解法中,由于难以均匀控制钪的组成,因此若不是小径靶,则无法获得所期望的特性。
本发明以解决现有溅射靶中的上述问题为课题,其目的在于:提供一种可以确保所需的靶硬度、同时可有助于提高通过溅射形成的压电性材料的压电特性的溅射靶及其制造方法。
解决问题的方案
发明人着眼于:通过利用熔解法进行制造,可以减少溅射靶的氧含量,并进行了深入研究,结果获得了如下的新见解:在惰性气体环境下实施规定的熔解法,对通过该熔解法得到的作为靶原材料的铸锭进行锻造,从而能够显著降低所制造的溅射靶的硬度的偏差。由此发现:通过采用熔解法,可以降低氧含量,同时还能够制造在用于溅射时等开裂的可能性足够低的溅射靶。
在该见解下,本发明的溅射靶包含Al和Sc的合金,且以25原子%~50原子%含有Sc,其中氧含量为2000质量ppm以下、维氏硬度(Hv)的偏差为20%以下。
在本发明的溅射靶中,氧含量优选为1000质量ppm以下。
另外,在本发明的溅射靶中,维氏硬度(Hv)的偏差优选为5%以下。
本发明的溅射靶优选碳含量为1000质量ppm以下、进一步为500质量ppm以下。
在本发明的溅射靶中,可以包含选自Al-Sc相、Al2-Sc相和Al3-Sc相中的至少1相。
本发明的溅射靶可以进一步以总计0.1质量%以下含有选自Li、Na、K、Fe、Co和Ni中的至少一种元素。
另外,本发明的溅射靶的制造方法包括以下工序:熔解工序,在惰性气体或真空环境下,将Al原料和氧含量为3000质量ppm以下的Sc原料一同熔解,得到含有25原子%~50原子%的Sc的Al和Sc的合金铸锭;以及锻造工序,对上述铸锭施加压力进行塑性加工。
在该制造方法中,优选在熔解工序中使用氧含量为100质量ppm~3000质量ppm的Sc原料。
另外,在该制造方法中,优选将锻造工序中的塑性加工的加工率设为50%~95%。
而且,在锻造工序中,优选在将上述铸锭加热至500℃~1200℃的状态下进行塑性加工。
发明效果
根据本发明,可以获得硬度的偏差小、并且氧含量低的溅射靶。由此,溅射时开裂的可能性小,可以有效使用,同时在进行形成压电性材料的薄膜的溅射的情况下,可有助于提高该压电性材料的压电特性。
附图说明
图1(a)是实施例1的铸锭的组织的电子显微镜SEM图像,图1(b)是实施例1的靶的组织的电子显微镜SEM图像。
图2(a)和(b)分别是图1(a)和(b)的放大图像。
图3(a)是实施例2的铸锭的组织的电子显微镜SEM图像,图3(b)是实施例2的靶的组织的电子显微镜SEM图像。
图4(a)和(b)分别是图3(a)和(b)的放大图像。
图5(a)是实施例3的铸锭的组织的电子显微镜SEM图像,图5(b)是实施例3的靶的组织的电子显微镜SEM图像。
图6(a)和(b)分别是图5(a)和(b)的放大图像。
具体实施方式
下面,对本发明的实施方式进行详细说明。
本发明的一实施方式的溅射靶包含Al和Sc的合金,其中以25原子%~50原子%含有Sc,氧含量为2000质量ppm以下,维氏硬度的偏差为20%以下。溅射靶通常是形成圆板状等平板状,除此以外,也可以形成圆筒状等筒状等各种形状。
(合金元素)
上述溅射靶由铝(Al)和钪(Sc)的合金构成。
在本发明中,以25原子%以上且50原子%以下包含Sc。由状态图可知:在该范围内时,AlSc合金形成Al-Sc相、Al2-Sc相和Al3-Sc相中的至少1相、通常是其中的两相。当Sc的含量少时会出现Al相,另一方面,当Sc的含量多时会出现Al-Sc2相和/或Sc相。具体而言,Sc的含量例如可以设为25原子%以上且不足33原子%、或者33原子%以上且50原子%以下。由状态图可知:Sc的含量为25原子%以上且不足33原子%时,AlSc合金往往会形成Al-Sc相和Al2-Sc相,而当Sc的含量为33原子%以上且50原子%以下时,AlSc合金往往会形成Al2-Sc相和Al3-Sc相。
作为铝和钪的金属间化合物,优选存在Al-Sc相和/或Al2-Sc相。是否存在这样的相,可以通过X射线衍射(XRD)等进行确认。
溅射靶除了含有Al和Sc、以及氧、氮、碳这样的气体成分以外,有时还含有作为杂质的选自Li、Na、K、Fe、Co和Ni中的至少一种元素。这些元素的含量总计优选为0.1质量%以下。这是由于:若这样的元素的含量过多,则会对压电特性产生不良影响。因此,该元素的总计含量优选设为0.1质量%以下。
(氧含量)
溅射靶的氧含量设为2000质量ppm以下。该低氧含量可以通过利用后述的熔解法进行制造来实现。
使用这样的低氧的溅射靶,通过溅射形成压电材料时,由于氧缺陷的减少,因此能够有效提高该压电性材料的压电特性。
为了进一步提高压电特性,氧含量优选设为1500质量ppm,更优选设为1000质量ppm以下,进一步优选600质量ppm以下,其中特别优选设为300质量ppm以下。
(碳含量)
从提高压电特性的角度考虑,优选溅射靶的碳含量也少。这是由于碳化物会导致生成缺陷。因此,碳含量例如设为1000质量ppm以下,优选500质量ppm以下,更优选100质量ppm以下,进一步优选设为100质量ppm以下,特别是更进一步优选设为50质量ppm以下。
(维氏硬度的偏差)
如上所述,为了降低氧含量而利用熔解法来制造溅射靶时,靶整体的维氏硬度的偏差变大,由此存在着溅射时溅射靶开裂的问题。
针对该问题,通过在制造时的熔解工序后进行后述的锻造工序,使得溅射靶的维氏硬度(Hv)的偏差达到20%以下。由此,能够有效防止溅射时的开裂。
维氏硬度的偏差如下计算:例如,当为圆板状溅射靶时,在靶表面的靶中心位置的1点和靶外周位置的4点共计5点的各测定点等测定维氏硬度,求出上述多个测定点的测定值的平均值和标准偏差,之后用标准偏差除以平均值,将其用百分率表示,从而算出偏差。此外,靶外周位置的测定点设为距溅射靶的外周端部(外周缘)约15mm的距离。当为形成矩形板状的扁平溅射靶时,在靶中心位置的1点和距各边的1/2(中央)的端部约15mm的位置的4点共计5点测定维氏硬度,由它们的标准偏差和平均值算出偏差。
此外,维氏硬度根据JIS Z2244(2009)中规定的维氏硬度试验来测定。
为了减小溅射时开裂的可能性,维氏硬度的偏差设为20%以下,优选10%以下,更优选为5%以下,进一步优选4%以下,特别是更进一步优选设为3%以下。
(制造方法)
以上所述的溅射靶例如可以如下操作来制造。
最初,混合Al原料和Sc原料,根据真空或者惰性气体中的熔解法使其在熔解炉内熔解,之后将其冷却,得到作为靶原材料的Al和Sc的合金铸锭。这里,添加Sc原料使Sc含量达到25原子%~50原子%(25原子%以上且不足33原子%、或者33原子%以上且50原子%以下)。此外,这里的冷却例如可以是在惰性气体中放置直至达到常温的自然冷却,但并不限于此。
根据这样的熔解法,通过在真空或者惰性气体环境下进行熔解法,可以充分降低所制造的溅射靶的氧浓度,能够将钪的组成调整至均匀。此外,在大气环境下氧浓度会上升,因此难以获得所期望的铸锭。结果可知:当为真空环境时,通过以高功率立即进行熔解、合金化,在防止Al的挥发、进行组成调整的同时,能够有效降低氧浓度。
这里使用的惰性气体只要是不与Al或Sc反应的惰性气体即可,可以是各种气体,例如可以是氮气或氩气。
特别是,这里添加的Sc原料为氧含量少的原料。由此,可以进一步降低溅射靶的氧含量。具体而言,Sc原料的氧含量设为氧含量在3000质量ppm以下。Sc原料的氧含量例如可以设为100质量ppm~3000质量ppm,优选设为100质量ppm~2000质量ppm,更优选设为100质量ppm~1000质量ppm。另外,Sc原料的碳含量优选设为10质量ppm~500质量ppm,特别优选设为10质量ppm~100质量ppm。
然后,进行锻造工序:即对上述铸锭施加压力以进行塑性加工,制造规定形状的溅射靶。只采用熔解法时,溅射靶的硬度会产生偏差,溅射时容易开裂,但通过经过该锻造工序,使组织控制成为可能,可以制作硬度偏差小、能够进行稳定溅射的溅射靶。研究通过该锻造使硬度偏差变小的理由时,例如,在后述的实施例1中,通过锻造,富含Sc的相(SEM照片中涂白的部位)被截断形成岛状,由此认为:无论在哪里测定,都会发生均匀地晶界钉扎(pinning),偏差减小。但是,并不限于这种理论。
具体而言,例如,将通过上述熔解得到的圆板状铸锭的下面固定,从上面施加压力,从而可以进行塑性加工。这里,为了抑制制造的溅射靶的硬度偏差,锻造工序中的塑性加工的加工率优选设为50%~95%,特别是更优选设为75%~90%。这是由于:当加工率过低时,无法获得维氏硬度在规定范围内的溅射靶,另一方面,若加工率过高,则由加工产生的缺陷会进入靶中,能够成为开裂的起点。加工率是指由(加工前高度-加工后高度)/加工前高度算出的值用百分率表示的值。此外,塑性加工的次数不限于一次。即,塑性加工可以进行一次或多次。例如,在制作较大型的溅射靶时等,有时会进行多次的塑性加工。
另外,由于Al-Sc铸锭的冷锻难以进行,因此可以在加热至500℃~1200℃的状态下进行加压锻造。
之后,可以根据需要进行加工,然后,在该溅射靶的一个面粘合支撑其的背板,再进行研削等精加工。与背板的接合例如可以采用通过规定元素进行的焊接或扩散接合等。此外,这些粘合或加工可以按照与已知方法相同的方式进行。
如此操作而制造的溅射靶的氧含量少,因此在通过使用该溅射靶的溅射形成压电性材料时,可以期待提高压电特性。另外,由于整体的维氏硬度的偏差小,因此在溅射时可以有效抑制开裂。
实施例
接下来,试制本发明的溅射靶,确认了其性能,因此以下进行说明。但是,这里的说明只要为了例示,并非意图限定于此。
(实施例1)
混合Al原料和Sc原料使Sc含量达到38原子%,在Ar环境下通过高频加热实施熔点为1150℃的熔解,关闭电源,在该惰性气体中放置2小时使其自然冷却,制作Al和Sc的合金铸锭。这里,Sc原料的碳含量为40质量ppm,氧含量为1400质量ppm。然后,进行锻造工序,在Ar环境下将铸锭加热至1000℃,在此状态下对该铸锭施行1次加工率为85%的冲压加工,之后进行所需的加工,制造溅射靶。
测定该溅射靶的Sc含量时,Sc含量如表1所示,Sc含量在各位置的偏差在±2原子%的范围内。另外,溅射靶中所含的杂质及其含量一并见表2。此外,表1和表2中,TOP是指靶上表面,BTM是指靶上表面的背面侧的靶下表面。
表1
Sc含量 at%
目标 38
top 38
BTM 36.9
表2
杂质 top(原子ppm) BTM(原子ppm)
Li <0.01 <0.01
Na 0.01 <0.01
K 0.03 <0.01
Fe 290 320
Co 10 10
Ni 160 150
测定上述溅射靶的碳含量和氧含量时,其测定值如表3所示。通过惰性气体熔融法进行分析,使用红外线检测器检测氧。这里使用的装置为LECO公司制造的TC600和TCH600。进行两次含量的测定,表3显示这些测定值的平均值。
如表3所示可知:所制造的溅射靶的氧含量有效降低。此外,溅射靶的碳含量和氧含量与表3所示的铸锭的碳含量和氧含量几乎等同。
表3
Figure BDA0001896464120000071
另外,对于铸锭和锻造其而得到的溅射靶,在铸锭或靶的中心位置的1处和铸锭或靶的外周位置的4处((0°、90°、180°、270°)的位置)的这5点测定维氏硬度,分别算出平均值和标准偏差。此外,这里,以距圆板状铸锭或靶外周端部10mm的位置作为铸锭或靶外周位置的测定点。其结果见表4。由表4确认到:在实施例1中,靶的维氏硬度的偏差为3.2%,在20%以下。可知:通过进行锻造,用标准偏差除以平均值,再将其用百分率表示而得到的值即维氏硬度的偏差得到有效抑制。
表4
Figure BDA0001896464120000072
Figure BDA0001896464120000081
此外,关于实施例1,图1(a)显示铸锭的组织的电子显微镜SEM图像,图1(b)显示靶的组织的电子显微镜SEM图像。图2(a)和(b)分别是图1(a)和(b)的放大图像。图中,白色带状部分为富含Sc(AlSc)的部分,黑色部分为富含Al(Al2Sc)的部分。
(实施例2)
对于除了混合Al原料和Sc原料使Sc含量达到30原子%以外、按照与实施例1实质上相同的方式制造的溅射靶,进行与实施例1相同的操作,测定Sc含量、杂质含量、碳含量和氧含量、以及维氏硬度。其结果分别见表5~8。
表5
Sc含量 at%
目标 30
top 29.8
BTM 31.4
表6
杂质 top(原子ppm) BTM(原子ppm)
Li <0.01 <0.01
Na 0.25 0.10
K 0.02 <0.01
Fe 120 96
Co <1 <1
Ni 30 23
表7
Figure BDA0001896464120000082
表8
维氏硬度Hv 铸锭
平均值 430.1 448.4
标准偏差 94.5 84.8
偏差(%) 22.0 18.9
由表8所示确认到:在实施例2中,靶的维氏硬度的偏差为18.9%,在20%以下。在该实施例2中还可知:通过熔解铸造后的锻造,维氏硬度的偏差得到有效抑制。
此外,关于实施例2也一样,图3(a)显示铸锭的组织的电子显微镜SEM图像,图3(b)显示靶的组织的电子显微镜SEM图像。图4(a)和(b)分别是图3(a)和(b)的放大图像。图中,白色带状部分为富含Sc(Al2Sc)的部分,黑色部分为富含Al(Al3Sc)的部分。
(实施例3)
对于除了使用氧浓度高的Sc原料以外、按照与实施例1实质上相同的方式制造的溅射靶,进行与实施例1相同的操作,测定Sc含量、杂质含量、碳含量和氧含量、以及维氏硬度。其结果分别见表9~12。
表9
Sc含量 at%
目标 38
top 39.9
BTM 38.7
表10
杂质 top(原子ppm) BTM(原子ppm)
Li <0.01 <0.01
Na <0.01 <0.01
K 1.1 1.4
Fe 360 370
Co <1 <1
Ni 18 17
表11
Figure BDA0001896464120000091
表12
Figure BDA0001896464120000092
Figure BDA0001896464120000101
由表12所示确认到:在实施例3中,靶的维氏硬度的偏差为6.8%,在20%以下。在实施例3中还可知:与铸锭的维氏硬度的偏差值相比,通过熔解铸造后的锻造,维氏硬度的偏差得到有效抑制。
关于实施例3也一样,图5(a)显示铸锭的组织的电子显微镜SEM图像,图5(b)显示靶的组织的电子显微镜SEM图像。图6(a)和(b)分别是图5(a)和(b)的放大图像。图中,白色带状部分是富含Sc(Al2Sc)的部分,黑色部分是富含Al(Al3Sc)的部分。
由以上可知:根据本发明,可以制作低氧且硬度偏差小的溅射靶,由此,可有助于提高通过溅射形成的压电性材料的压电特性,同时可以防止溅射时的开裂。

Claims (9)

1.一种溅射靶,其特征在于,
包含Al和Sc的合金,且包含25原子%~50原子%的Sc,氧含量为2000质量ppm以下,维氏硬度Hv的偏差为20%以下,
所述维氏硬度Hv的偏差通过以下计算得到:
在靶表面上的多个测定点测定维氏硬度,求出所述多个测定点的测定值的平均值和标准偏差,之后将标准偏差除以平均值,将其用百分率表示,
所述溅射靶包含Al-Sc相和/或Al2-Sc相。
2.根据权利要求1所述的溅射靶,其中,
氧含量为1000质量ppm以下。
3.根据权利要求1或2所述的溅射靶,其中,
维氏硬度Hv的偏差为5%以下。
4.根据权利要求1或2所述的溅射靶,其中,
碳含量为1000质量ppm以下。
5.根据权利要求1或2所述的溅射靶,其中,
所述溅射靶还包含以总计0.1质量%以下的选自Li、Na、K、Fe、Co和Ni中的至少一种元素。
6.一种溅射靶的制造方法,其特征在于,包括以下工序:
熔解工序,在惰性气体或真空环境下,将Al原料和氧含量为3000质量ppm以下的Sc原料一同熔解后,在惰性气体或真空环境下冷却,得到含有25原子%~50原子%的Sc的Al和Sc的合金铸锭;以及
锻造工序,对所述铸锭施加压力进行塑性加工,
所述溅射靶包含Al-Sc相和/或Al2-Sc相。
7.根据权利要求6所述的溅射靶的制造方法,其中,
在熔解工序中,使用氧含量为100质量ppm~3000质量ppm的Sc原料。
8.根据权利要求6或7所述的溅射靶的制造方法,其中,
锻造工序中的塑性加工的加工率设为50%~95%。
9.根据权利要求6或7所述的溅射靶的制造方法,其中,
在锻造工序中,在将所述铸锭加热至500℃~1200℃的状态下进行塑性加工。
CN201780035628.7A 2016-06-07 2017-06-07 溅射靶及其制造方法 Active CN109312449B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-113945 2016-06-07
JP2016113945 2016-06-07
PCT/JP2017/021180 WO2017213185A1 (ja) 2016-06-07 2017-06-07 スパッタリングターゲット及び、その製造方法

Publications (2)

Publication Number Publication Date
CN109312449A CN109312449A (zh) 2019-02-05
CN109312449B true CN109312449B (zh) 2022-04-12

Family

ID=60579039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780035628.7A Active CN109312449B (zh) 2016-06-07 2017-06-07 溅射靶及其制造方法

Country Status (6)

Country Link
US (1) US11236416B2 (zh)
EP (1) EP3467142B1 (zh)
JP (1) JP6869237B2 (zh)
CN (1) CN109312449B (zh)
SG (1) SG11201810964UA (zh)
WO (1) WO2017213185A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11638943B2 (en) * 2019-04-09 2023-05-02 Jin Yuncheng Enterprise Co., Ltd. Method for manufacturing cold-forged, extruded aluminum alloy tube
KR20220034894A (ko) * 2019-07-19 2022-03-18 에바텍 아크티엔게젤샤프트 압전 코팅 및 증착 공정
CN114127328A (zh) 2019-07-31 2022-03-01 株式会社古屋金属 溅镀靶材
CN111455223B (zh) * 2019-08-08 2021-10-01 湖南稀土金属材料研究院 铝钪合金靶材及其制备方法
US11872616B2 (en) * 2019-08-21 2024-01-16 Jin Yuncheng Enterprise Co., Ltd. Method for manufacturing cold-forged, extruded aluminum alloy tube
CN113373414B (zh) * 2020-02-25 2023-10-27 湖南东方钪业股份有限公司 一种铝钪合金溅射靶的制备方法及应用
CN118006957A (zh) * 2020-06-05 2024-05-10 万腾荣公司 铝-钪复合材料、铝-钪复合材料溅射靶及制备方法
CN111485207A (zh) * 2020-06-08 2020-08-04 福建阿石创新材料股份有限公司 一种细晶粒均相高钪含量的铝钪合金烧结靶材及其制备方法和应用
TWI744154B (zh) * 2020-12-29 2021-10-21 金允成企業股份有限公司 鋁合金棒材鍛抽成型方法
CN113584333B (zh) * 2021-07-14 2022-05-13 先导薄膜材料有限公司 一种提高铝钪合金靶材均匀性的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW318276B (zh) * 1995-10-12 1997-10-21 Toshiba Co Ltd
JP2004204284A (ja) * 2002-12-25 2004-07-22 Toshiba Corp スパッタリングターゲット、Al合金膜および電子部品

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115364A (ja) * 1988-10-22 1990-04-27 Dowa Mining Co Ltd テルルターゲット及びその製法
JP3560393B2 (ja) * 1995-07-06 2004-09-02 株式会社日鉱マテリアルズ アルミニウム合金スパッタリングターゲットの製造方法
JP3365954B2 (ja) 1997-04-14 2003-01-14 株式会社神戸製鋼所 半導体電極用Al−Ni−Y 合金薄膜および半導体電極用Al−Ni−Y 合金薄膜形成用スパッタリングターゲット
WO1999034028A1 (en) 1997-12-24 1999-07-08 Kabushiki Kaisha Toshiba SPUTTERING TARGET, Al INTERCONNECTION FILM, AND ELECTRONIC COMPONENT
US6250362B1 (en) * 1998-03-02 2001-06-26 Alcoa Inc. Method and apparatus for producing a porous metal via spray casting
US6135198A (en) * 1998-03-05 2000-10-24 Aluminum Company Of America Substrate system for spray forming
JP2001230116A (ja) * 1999-12-09 2001-08-24 Sumitomo Electric Ind Ltd 電磁アクチュエータ
JP5038553B2 (ja) * 2000-04-27 2012-10-03 株式会社東芝 スパッタリングターゲットの製造方法
TW541350B (en) 2000-12-29 2003-07-11 Solar Applied Material Technol Method for producing metal target for sputtering
JP2003046250A (ja) 2001-02-28 2003-02-14 Furukawa Electric Co Ltd:The ビア付きビルドアップ用多層基板及びその製造方法
EP1449935B1 (en) 2001-11-26 2009-03-11 Nippon Mining & Metals Co., Ltd. Sputtering target and production method therefor
JP3898043B2 (ja) * 2001-11-30 2007-03-28 株式会社東芝 スパッタリングターゲットとそれを用いた半導体デバイスおよびスパッタリング装置
US20080173543A1 (en) 2007-01-19 2008-07-24 Heraeus Inc. Low oxygen content, crack-free heusler and heusler-like alloys & deposition sources & methods of making same
JP4997448B2 (ja) 2007-12-21 2012-08-08 独立行政法人産業技術総合研究所 窒化物半導体の製造方法および窒化物半導体デバイス
US20110318607A1 (en) 2009-03-02 2011-12-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy reflective film, automobile light, illuminator, ornamentation, and aluminum alloy sputtering target
TW201040050A (en) * 2009-05-11 2010-11-16 Univ Nat Central Aluminum scandium alloy film for use in vehicle lamp and production method thereof
CN101924023A (zh) 2009-06-09 2010-12-22 日本派欧尼株式会社 Iii族氮化物半导体的气相生长装置
JP5598948B2 (ja) 2009-07-01 2014-10-01 独立行政法人産業技術総合研究所 圧電体薄膜の製造方法および当該製造方法により製造される圧電体薄膜
CN102171380B (zh) 2009-08-12 2014-12-31 株式会社爱发科 溅射靶的制造方法
JP5681368B2 (ja) 2010-02-26 2015-03-04 株式会社神戸製鋼所 Al基合金スパッタリングターゲット
JP5888689B2 (ja) * 2010-07-01 2016-03-22 国立研究開発法人産業技術総合研究所 スカンジウムアルミニウム窒化物膜の製造方法
US20140174908A1 (en) * 2011-03-29 2014-06-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Scandium-aluminum alloy sputtering targets
JP5817673B2 (ja) * 2011-11-18 2015-11-18 株式会社村田製作所 圧電薄膜共振子及び圧電薄膜の製造方法
CA2773197A1 (en) * 2012-03-27 2013-09-27 Yundong Li Electroplated super abrasive tools with the abrasive particles chemically bonded and deliberately placed, and methods for making the same
AU2013201572B2 (en) * 2013-03-15 2014-12-11 Commonwealth Scientific And Industrial Research Organisation Production of Aluminium-Scandium Alloys
JP5966199B2 (ja) 2013-05-31 2016-08-10 株式会社デンソー 圧電体薄膜及びその製造方法
JP6461543B2 (ja) * 2013-10-08 2019-01-30 株式会社フルヤ金属 アルミニウムと希土類元素との合金ターゲット及びその製造方法
CN104805406B (zh) 2015-04-17 2017-06-06 无锡舒玛天科新能源技术有限公司 铝钪旋转靶材及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW318276B (zh) * 1995-10-12 1997-10-21 Toshiba Co Ltd
JP2004204284A (ja) * 2002-12-25 2004-07-22 Toshiba Corp スパッタリングターゲット、Al合金膜および電子部品

Also Published As

Publication number Publication date
CN109312449A (zh) 2019-02-05
US11236416B2 (en) 2022-02-01
US20190161851A1 (en) 2019-05-30
WO2017213185A1 (ja) 2017-12-14
JPWO2017213185A1 (ja) 2019-04-04
EP3467142A4 (en) 2019-12-11
SG11201810964UA (en) 2019-01-30
JP6869237B2 (ja) 2021-05-12
EP3467142A1 (en) 2019-04-10
EP3467142B1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
CN109312449B (zh) 溅射靶及其制造方法
EP2169707A1 (en) Sintered silicon wafer
KR102519021B1 (ko) 텅스텐 실리사이드 타깃 및 그 제조 방법
US9689067B2 (en) Method for producing molybdenum target
TWI715466B (zh) 鉬合金靶材及其製造方法
EP4006196A1 (en) Sputtering target
JP5886473B2 (ja) Ti−Al合金スパッタリングターゲット
CN111448335A (zh) 金溅射靶及其制造方法
WO2017179278A1 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法
JP7096291B2 (ja) スパッタリングターゲット
JP7203065B2 (ja) スパッタリングターゲット
JP7203064B2 (ja) スパッタリングターゲット
TWI837398B (zh) 濺鍍靶材
JP2022044768A (ja) スパッタリングターゲット
TW202113096A (zh) 濺鍍靶材
JP2021152203A (ja) スパッタリングターゲット
KR20230133222A (ko) 크롬 소결체 및 그 제조 방법, 스퍼터링 타깃 및 크롬막 부착 기판의 제조 방법
JP2021025129A (ja) スパッタリングターゲット
JP2023119253A (ja) クロムスパッタリングターゲットおよびクロムスパッタリングターゲットの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant