CN109212971B - 多阶段间歇过程2d线性二次跟踪容错控制方法 - Google Patents

多阶段间歇过程2d线性二次跟踪容错控制方法 Download PDF

Info

Publication number
CN109212971B
CN109212971B CN201811181464.1A CN201811181464A CN109212971B CN 109212971 B CN109212971 B CN 109212971B CN 201811181464 A CN201811181464 A CN 201811181464A CN 109212971 B CN109212971 B CN 109212971B
Authority
CN
China
Prior art keywords
switching
stage
controller
model
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811181464.1A
Other languages
English (en)
Other versions
CN109212971A (zh
Inventor
罗卫平
王怡心
朱琳
曹可大
吴爽
王润泽
王立敏
王鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Normal University
Original Assignee
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Normal University filed Critical Hainan Normal University
Priority to CN201811181464.1A priority Critical patent/CN109212971B/zh
Publication of CN109212971A publication Critical patent/CN109212971A/zh
Application granted granted Critical
Publication of CN109212971B publication Critical patent/CN109212971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明属于工业过程的先进控制领域,涉及一种多阶段间歇过程2D线性二次跟踪容错控制方法。包括以下步骤:步骤1、针对间歇过程中不同阶段,建立被控对象以状态空间模型为基础的具有故障二维的切换系统模型;步骤2、考虑含自由终端状态的非最小实现不同阶段2D切换系统模型,针对正常系统,设计被控对象的无穷时域的间歇过程线性二次二维迭代学习控制器,即最优控制器;步骤3、针对新型二维切换系统模型,找出系统稳定条件和设计切换信号。此方法根据不同阶段和执行器故障设计相应简单实时灵活调节的控制器,控制器具有一定的鲁棒性,从而提高了控制品质,设计简单,运算量小,不仅保证系统的最优控制性能,而且缩短系统运行时间,实现高效生产。

Description

多阶段间歇过程2D线性二次跟踪容错控制方法
技术领域
本发明属于工业过程的先进控制领域,涉及一种多阶段间歇过程2D线性二次跟踪容错控制方法。
背景技术
在现代工业生产中,间歇过程被广泛应用,尤其是食品行业、药品行业、化工行业等。其控制理论的研究也取得了巨大的突破。但在现代工业加工的高精控制方面仍然是一个挑战。主要原因在于其高品质生产水平要求,以及复杂多变的工艺条件。因而,系统发生故障的概率也随之增加。在这些故障中,执行器故障时最常见的一种故障。由于存在摩擦、死区、饱和等特性,执行器在执行过程中不可避免地会出现一些故障,这导致它很难达到指定或理想的位置。如果故障没有被及时的检测并校正,生产性能必然变差,甚至导致设备和人员的安全问题。
为解决上述问题,间歇过程的容错控制技术得以应用,但现有技术里的大部分是一维的,一维方法只是考虑时间与生产过程的影响,由于实际工况存在执行器故障、漂移及系统外部干扰等因素,控制系统在运行一段时间后控制性能会下降。另一方面,间歇过程具有二维(2D)特性和重复性,如果不考虑批次带来的影响以及不能及时修复控制器以改善控制品质,将降低控制系统所获得的经济效益。目前,针对间歇过程的重复性和2D特性,反馈结合迭代学习容错控制方法得以重视,但在执行器故障变得严重或存在外界扰动时,现行的鲁棒迭代学习可靠控制方法无法解决系统状态偏离的问题,即至始至终采用同一控制律,随着时间的增加,系统的偏离就会愈发增大。这会对系统的持续稳定运行和控制性能产生不良的影响,甚至危及到产品的质量。
此外,间歇过程具有多阶段特性,两个不同阶段控制的变量不同,控制目标不同,何时从一个阶段切换至另一阶段,且每一阶段运行时间的长短,直接影响生产效率和产品质量。显然,针对这样的生产过程设计高精控制器及相邻阶段的切换条件以及求出每一阶段的运行时间,将至关重要。目前针对单一阶段的高精控制已经成熟,但单一过程不涉及切换条件,也不会涉及运行时间。针对多阶段尽管也有一定的研究成果,但是在整个过程中控制器增益不能调节。而在实际工业控制中,由于实际工况存在漂移、过程非线性及系统外部干扰等因素,控制系统在运行一段时间后其控制性能可能下降,在每一阶段的运行时间可能会延长。如果不及时设计切换信号及修复控制器以改善控制品质,将降低控制系统所获得的经济效益。针对上述的问题:执行器出现故障、间歇过程多阶段性,设计新的跟踪容错控制方法,保证间歇过程在故障影响下依然能够平稳运行势在必行。
发明内容
针对间歇过程出现的上述情况:执行器出现故障、间歇过程多阶段性,本发明设计一种稳定的混杂2D迭代学习控制器,使得系统在其执行器故障所引起的模型失配且在干扰最大的情况下,依然稳定运行,并实现更好的控制性能。
本发明的目的一是针对具有输入时滞的多阶段间歇过程提出了无穷时域线性二次控制方法,能实时的更新控制律,保证了系统的控制性能最优,实现了高品质的生产。二是寻求批次注塑过程不同阶段合适的切换条件、运行时间;三是为改善批次过程中控制方法的跟踪性能和抗干扰性,针对正常系统提出一种能抵制执行器部分失效故障的二维迭代学习稳定控制器设计方法。本文首先根据给定具有输入时滞的模型,通过引入新的变量变成一种新的无时滞的状态空间模型,接着基于间歇过程的重复性和二维特性,引入状态误差和输出跟踪误差,设计迭代学习控制律,将其扩展成包含状态误差和输出跟踪误差的等价2D模型,从而得到相应的2D切换系统模型,本文工作都是在此基础上完成。为研究其最优的控制性能,引入了二次性能函数,通过调节此函数中的变量,设计出一种能抵制执行器部分失效故障的控制器,同时满足控制性能最优。对于执行器故障,在此视为干扰,利用Lyapunov稳定理论求解出该控制器所允许干扰的一定范围及利用平均驻留时间的方法,设计出每个阶段的最小运行,给出结论依赖于系统沿时间和批次方向。此设计过程最大优点,设计简单,运算量小,系统运行时间短,跟踪性能好。
本发明的技术方案是通过给定模型、模型转化、预测机理、优化等手段,确立了一种多阶段间歇过程2D线性二次跟踪容错控制器设计方法,利用该方法有效解决了具有时滞,执行器故障的控制问题及每个阶段的切换问题,有效改善批次过程跟踪性能和抗干扰性,缩短了系统每一个阶段的运行时间,实现系统在执行器故障引起的模型失配和时滞条件下仍具有良好的控制效果及提高了生产效率。
本发明的技术方案如下:
多阶段间歇过程2D线性二次跟踪容错控制方法,包括以下步骤:
步骤1、针对间歇过程中不同阶段,建立被控对象以状态空间模型为基础的具有故障2D的切换系统模型,具体包括:
1.1构建新型多阶段间歇过程故障系统模型:
Figure GDA0001876867200000031
其中,uiF(t,k)=αiui(t,k),(i=1,2,...n);xi(t,k),yi(t,k),uiF(t,k)分别是第i阶段的状态空间,输出和实际输入,t为时刻,k为批次,
Figure GDA0001876867200000032
为适维矩阵,αi是不同阶段执行器故障;
选取新的状态空间变量
Figure GDA0001876867200000041
形式如下:
Figure GDA0001876867200000042
得到一个新型的第i个阶段状态空间模型为:
Figure GDA0001876867200000043
其中,
Figure GDA0001876867200000044
Figure GDA0001876867200000045
T为矩阵的转置符号,
Figure GDA0001876867200000046
0均为适当维数的零向量;
1.2构建新型2D切换系统模型:
在实际生产过程中,控制器的设计大都不是针对故障系统的,而是针对正常系统,且所设计出的控制器有一定抗故障的能力,因而以下控制器的设计是针对正常系统而言的,即αi=Ii的情况,则正常系统模型如下:
Figure GDA0001876867200000047
其中,
Figure GDA0001876867200000048
Figure GDA0001876867200000049
步骤2、考虑含自由终端状态的非最小实现不同阶段2D切换系统模型,针对正常系统,设计被控对象的无穷时域的间歇过程线性二次2D迭代学习控制器,即最优控制器;
步骤3、针对步骤1.2的新型2D切换系统模型,找出系统稳定条件和设计切换信号。
进一步地,所述步骤1.2具体包括:
1.2.1为了有较好的跟踪性能以及使系统保持平稳的运行状态,定义输出跟踪误差
Figure GDA0001876867200000051
可得:
Figure GDA0001876867200000052
其中,yi(t,k)、
Figure GDA0001876867200000053
分别为k时刻,i阶段的实际输出值和跟踪设定值,ei(t,k)为k时刻,i阶段的输出误差;
1.2.2引入2D迭代学习控制律:
Figure GDA0001876867200000054
则系统状态误差可得:
Figure GDA0001876867200000055
其中,
Figure GDA0001876867200000056
代表变量
Figure GDA0001876867200000057
沿t方向的误差,ri(t,k)∈Rm是待设计的迭代学习控制(ILC)的更新律,ILC设计的目标是在正常系统的情况下,确定k批次t时刻更新律ri(t,k),以实现系统输出yi(t,k)跟踪所给定的期望输出
Figure GDA0001876867200000058
1.2.3通过上述步骤可将空间模型转换为等价2D误差模型:
Figure GDA0001876867200000059
其中,
Figure GDA00018768672000000510
将上述得到的等价2D误差模型转换为包含状态变量和输出跟踪误差的扩展状态空间模型,形式如下:
Figure GDA00018768672000000511
其中,
Figure GDA00018768672000000512
将上述系统再现为2D切换系统模型为:
Figure GDA0001876867200000061
其中,
Figure GDA00018768672000000610
Z+N:={1,2,L,N}表示的是切换信号,它可能与时间或系统状态相关,N是子系统的阶段数,
Figure GDA0001876867200000062
对于不同阶段皆由上述切换系统模型表示;
1.2.4为了使得不同批次前一阶段切换至后一阶段时间相同,定义了最小切换时间:
Figure GDA0001876867200000063
上述过程具有n个阶段,
Figure GDA0001876867200000064
被称为i(i=1,2,...n)阶段的时间间隔,因此,整个间歇过程的切换序列可以描述为:
Figure GDA0001876867200000065
其中,
Figure GDA00018768672000000611
为连接前一个批次的结束和下一个批次开始的连接点;此外间歇过程在生产中,不同阶段需要控制的参数可能不同,从而不同阶段的维数可能不同,用如下公式表示在切换时刻两阶段之间状态关系:
Figure GDA0001876867200000066
其中,
Figure GDA0001876867200000067
被称为状态转移矩阵,如果系统状态在相邻阶段具有相同的物理意义,则Li=I。
进一步地,所述步骤2具体包括以下步骤:
2.1选取相应的性能指标形式如下:
Figure GDA0001876867200000068
Figure GDA0001876867200000069
其中,Qi>0,Ri>0分别为第i阶段状态的加权矩阵、输入加权矩阵,
Figure GDA0001876867200000071
为过程状态的权重系数,
Figure GDA0001876867200000072
为输出跟踪误差的权重系数,并且取
Figure GDA0001876867200000073
2.2首先考虑有限时域的性能指标,形式如下:
Figure GDA0001876867200000074
其中,
Figure GDA0001876867200000075
为优化时域;
利用康特里亚金最小值原理将步骤2.1的性能指标写成如下形式:
Figure GDA0001876867200000076
其中,
Figure GDA0001876867200000077
为第i阶段拉格朗日乘子;
2.3求
Figure GDA0001876867200000078
并令其等于零,可得:
Figure GDA0001876867200000079
假定
Figure GDA00018768672000000710
进一步可以得到:
Figure GDA00018768672000000711
Figure GDA00018768672000000712
Figure GDA00018768672000000713
2.4令
Figure GDA00018768672000000714
趋于无穷时,可以得到无穷时域线性二次控制律的形式为等式:
Figure GDA00018768672000000715
Figure GDA00018768672000000716
ui(t,k)=ui(t,k-1)+ri(t,k)
其中,
Figure GDA00018768672000000717
为趋于正无穷时
Figure GDA00018768672000000718
的值;
2.5将步骤2.4中得到的控制量ui(t,k)作用于被控对象;
2.6在下一时刻,依照步骤2.1到2.5继续求解新的控制量ui(t+1,k),依次循环;
2.7上述设计的控制器是在正常系统下的,执行器故障容易引起系统的不稳定,本发明将其视为干扰,设计的控制器具有鲁棒性,即系统具有一定的抗干扰能力,在保证系统稳定运行的情况下,求解允许的最大干扰。
进一步地,所述步骤2.7具体包括以下步骤:
2.7.1控制律的状态反馈形式如下:
Figure GDA0001876867200000081
其中,
Figure GDA0001876867200000082
对每一个阶段i,含有执行器部分失效故障的切换系统为:
Figure GDA0001876867200000083
其中,
Figure GDA0001876867200000084
Figure GDA0001876867200000085
则上述切换系统可变为:
Figure GDA0001876867200000086
2.7.2定义稳定性函数Vi,并获得其增量ΔVi,形式如下:
Figure GDA0001876867200000087
其中,
Figure GDA0001876867200000088
i∈N,N:={1,2,L,N};
2.7.3根据步骤2.7.1中有执行器故障的切换系统,结合步骤2.7.2中的李雅普诺夫函数,求取在满足系统稳定下,控制器所能抵抗的最大干扰;
定义
Figure GDA0001876867200000091
其中,
Figure GDA0001876867200000092
水平收敛指标不大于
Figure GDA0001876867200000093
垂直收敛指标不大于
Figure GDA0001876867200000094
常数ρi,μi,以及矩阵Wi
由步骤2.7.2得:
Figure GDA0001876867200000095
2.7.4再选取合适的矩阵,使其满足如下约束条件:
Figure GDA0001876867200000096
Figure GDA0001876867200000097
Figure GDA0001876867200000098
其中,σmaxi),λmini),λmaxi)分别是矩阵ξ的最大奇异值、最小特征值和最大特征值;则称这个系统有强干扰性且指数稳定;
2.7.5进一步将步骤2.7.3和2.7.4中约束条件带入增量ΔVi中,可以得到:
Figure GDA0001876867200000099
很明显如果满足以下条件:
Figure GDA00018768672000000910
因此:
Figure GDA00018768672000000911
即本发明提出的无穷时域优化线性二次控制器在干扰范围内满足上式的情况下,依然具有鲁棒稳定性。
进一步地,所述步骤3具体包括以下步骤:
3.1针对不同阶段设计切换信号为
Figure GDA0001876867200000101
3.2由步骤2.7.1知中无穷时域线性二次容错控制形式可再次表示为:
Figure GDA0001876867200000102
其中,
Figure GDA0001876867200000103
则对每一个阶段i,切换系统可再次表示为:
Figure GDA0001876867200000104
3.3对于第i个子系统,选择下面的李雅普诺夫函数Vi
Figure GDA0001876867200000105
其中,
Figure GDA0001876867200000106
代表了T方向的变量,
Figure GDA0001876867200000107
代表了K方向的变量;
并获得其增量ΔVi,形式如下:
Figure GDA0001876867200000108
若切换系统稳定,必有ΔVi(zi(t,k))<0,其等价于:
Figure GDA0001876867200000109
以及满足步骤2.7.5的约束条件下,可得:
Figure GDA00018768672000001010
3.4根据切换信号,设计切换点;
kl-f+1和kl表示初始批次和末尾批次,
Figure GDA00018768672000001011
表示在时间间隔为[w,G]的切换信号下的切换次数,切换点如下形式:
Figure GDA0001876867200000111
其中,
Figure GDA0001876867200000112
Figure GDA0001876867200000113
有相同的意义,都表示前一个阶段的末尾时刻和下一个阶段的初始时刻;
结合步骤2.4、2.7求解步骤3.3中的不等式,便可求出不同阶段的
Figure GDA0001876867200000114
本发明的有益效果为:此方法根据不同阶段和执行器故障设计相应简单实时灵活调节的控制器,其控制器具有一定的鲁棒性,从而提高了其控制品质,解决了已经存在方法中整个过程中控制器增益不可调节的弊端。并利用平均驻留时间方法设计出切换信号,从而求出最小运行时间。此方法的最大优点为:设计简单,运算量小,不仅能保证系统的最优控制性能,而且能缩短系统运行时间,实现高效生产。
附图说明
图1为传统一维理念的控制方法与本发明提出的二维方法系统切换时间比较图。
图2为传统一维理念的控制方法与本发明提出的二维方法系统输出比较图。
图3为传统一维理念的控制方法与本发明提出的二维方法系统输入比较图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的说明。
如图1-图3所示,多阶段间歇过程2D线性二次跟踪容错控制方法,包括以下步骤:
步骤1、针对间歇过程中不同阶段,建立被控对象以状态空间模型为基础的具有故障的2D切换系统模型,具体是:
1.1构建新型多阶段间歇过程故障系统模型:
Figure GDA0001876867200000115
其中,uiF(t,k)=αiui(t,k),(i=1,2,...n);xi(t,k),yi(t,k),uiF(t,k)分别是第i阶段的状态空间,输出和实际输入,t为时刻,k为批次,
Figure GDA0001876867200000121
为适维矩阵,αi是不同阶段执行器故障;
选取新的状态空间变量
Figure GDA0001876867200000122
形式如下:
Figure GDA0001876867200000123
得到一个新型的第i个阶段状态空间模型为:
Figure GDA0001876867200000124
其中,
Figure GDA0001876867200000125
Figure GDA0001876867200000126
T为矩阵的转置符号,
Figure GDA0001876867200000127
0均为适当维数的零向量;
1.2构建新型2D切换系统模型:
在实际生产过程中,控制器的设计大都不是针对故障系统的,而是针对正常系统,且所设计出的控制器有一定抗故障的能力;因而以下控制器的设计是针对正常系统而言的,即αi=Ii的情况;则正常系统模型如下:
Figure GDA0001876867200000128
其中,
Figure GDA0001876867200000129
Figure GDA00018768672000001210
1.2.1为了有较好的跟踪性能以及使系统保持平稳的运行状态,定义输出跟踪误差
Figure GDA0001876867200000131
可得:
Figure GDA0001876867200000132
其中,yi(t,k)、
Figure GDA0001876867200000133
分别为k时刻,i阶段的实际输出值和跟踪设定值,ei(t,k)为k时刻,i阶段的输出误差;
1.2.2引入2D迭代学习控制律:
Figure GDA0001876867200000134
则系统状态误差可得:
Figure GDA0001876867200000135
其中,
Figure GDA0001876867200000136
代表变量
Figure GDA0001876867200000137
沿t方向的误差,ri(t,k)∈Rm是待设计的迭代学习控制(ILC)的更新律,ILC设计的目标是在正常系统的情况下,确定k批次t时刻更新律ri(t,k),以实现系统输出yi(t,k)跟踪所给定的期望输出
Figure GDA0001876867200000138
1.2.3通过上述步骤可将空间模型转换为等价2D误差模型
Figure GDA0001876867200000139
其中,
Figure GDA00018768672000001310
将上述得到的等价2D误差模型转换为包含状态变量和输出跟踪误差的扩展状态空间模型,形式如下:
Figure GDA00018768672000001311
其中,
Figure GDA00018768672000001312
将上述系统再现为2D切换系统模型为:
Figure GDA00018768672000001313
其中,
Figure GDA00018768672000001315
Z+N:={1,2,L,N}表示的是切换信号,它可能与时间或系统状态相关,N是子系统的阶段数,
Figure GDA00018768672000001314
对于不同阶段皆由上述切换系统模型表示;
1.2.4为了使得不同批次前一阶段切换至后一阶段时间相同,定义了最小切换时间
Figure GDA0001876867200000141
上述过程具有n个阶段,
Figure GDA0001876867200000142
被称为i(i=1,2,...n)阶段的时间间隔。因此,整个间歇过程的切换序列可以描述为
Figure GDA0001876867200000143
其中,
Figure GDA00018768672000001411
连接前一个批次的结束和下一个批次开始的连接点;此外间歇过程在生产中,不同阶段需要控制的参数可能不同,从而不同阶段的维数可能不同,用如下公式表示在切换时刻两阶段之间状态关系
Figure GDA0001876867200000144
其中,
Figure GDA0001876867200000145
被称为状态转移矩阵。如果系统状态在相邻阶段具有相同的物理意义,则Li=I;
步骤2、考虑含自由终端状态的非最小实现不同阶段2D切换系统模型,针对正常系统,设计被控对象的无穷时域的间歇过程线性二次2D迭代学习控制器(最优控制器),具体是:
2.1选取相应的性能指标形式如下:
Figure GDA0001876867200000146
Figure GDA0001876867200000147
其中,Qi>0,Ri>0分别为第i阶段状态的加权矩阵、输入加权矩阵,
Figure GDA0001876867200000148
为过程状态的权重系数,
Figure GDA0001876867200000149
为输出跟踪误差的权重系数并且取
Figure GDA00018768672000001410
2.2首先考虑有限时域的性能指标,形式如下:
Figure GDA0001876867200000151
其中,
Figure GDA0001876867200000152
为优化时域;
利用康特里亚金最小值原理将步骤2.1的性能指标写成如下形式:
Figure GDA0001876867200000153
其中,
Figure GDA0001876867200000154
为第i阶段拉格朗日乘子;
2.3求
Figure GDA0001876867200000155
并令其等于零,可得
Figure GDA0001876867200000156
假定
Figure GDA0001876867200000157
进一步可以得到
Figure GDA0001876867200000158
Figure GDA0001876867200000159
Figure GDA00018768672000001510
2.4令
Figure GDA00018768672000001511
趋于无穷时,可以得到无穷时域线性二次控制律的形式为等式
Figure GDA00018768672000001512
Figure GDA00018768672000001513
ui(t,k)=ui(t,k-1)+ri(t,k)
其中,
Figure GDA00018768672000001514
为趋于正无穷时
Figure GDA00018768672000001515
的值;
2.5将2.4步骤中得到的控制量ui(t,k)作用于被控对象;
2.6在下一时刻,依照2.1到2.5的步骤继续求解新的控制量ui(t+1,k),依次循环;
2.7上述设计的控制器是在正常系统下的,执行器故障容易引起系统的不稳定,本发明将其视为干扰,设计的控制器具有鲁棒性,即系统具有一定的抗干扰能力,在保证系统稳定运行的情况下,求解允许的最大干扰;
2.7.1控制律的状态反馈形式如下:
Figure GDA0001876867200000161
其中,
Figure GDA0001876867200000162
对每一个阶段i,含有执行器部分失效故障的切换系统为:
Figure GDA0001876867200000163
Figure GDA0001876867200000164
则上述切换系统可变为:
Figure GDA0001876867200000165
2.7.2定义稳定性函数Vi,并获得其增量ΔVi,形式如下:
Figure GDA0001876867200000166
其中,
Figure GDA0001876867200000167
i∈N,N:={1,2,L,N};
2.7.3根据步骤2.7.1中有执行器故障的切换系统,结合步骤2.7.2中的李雅普诺夫函数,求取在满足系统稳定下,控制器所能抵抗的最大干扰;定义:
Figure GDA0001876867200000168
其中,
Figure GDA0001876867200000169
水平收敛指标不大于
Figure GDA00018768672000001610
垂直收敛指标不大于
Figure GDA00018768672000001611
常数ρi,μi,以及矩阵Wi
由上个步骤得:
Figure GDA0001876867200000171
2.7.4再选取合适的矩阵,使其满足如下约束条件:
Figure GDA0001876867200000172
Figure GDA0001876867200000173
Figure GDA0001876867200000174
其中,σmaxi),λmini),λmaxi)分别是矩阵ξ的最大奇异值、最小特征值和最大特征值;则我们称这个系统有强干扰性且指数稳定;
2.7.5进一步将步骤2.7.3-2.7.4中约束条件带入增量ΔVi中,可以得到:
Figure GDA0001876867200000175
很明显如果满足以下条件:
Figure GDA0001876867200000176
因此,
Figure GDA0001876867200000177
即本文提出的无穷时域优化线性二次控制器在干扰范围内满足上式的情况下,依然具有鲁棒稳定性;
步骤3、针对步骤1.2的新型2D切换系统模型,找出系统稳定条件和设计切换信号;
3.1针对不同阶段设计切换信号为
Figure GDA0001876867200000181
3.2由步骤2.7.1知中无穷时域线性二次容错控制形式可再次表示为:
Figure GDA0001876867200000182
其中,
Figure GDA0001876867200000183
则对每一个阶段i,切换系统可再次表示为:
Figure GDA0001876867200000184
3.3对于第i个子系统,选择下面的李雅普诺夫函数Vi
Figure GDA0001876867200000185
其中,
Figure GDA0001876867200000186
代表了T方向的变量;
Figure GDA0001876867200000187
代表了K方向的变量;
并获得其增量ΔVi,形式如下:
Figure GDA0001876867200000188
若切换系统稳定,必有ΔVi(zi(t,k))<0,其等价于:
Figure GDA0001876867200000189
以及满足步骤2.7.5的约束条件下,可得
Figure GDA00018768672000001810
3.4根据切换信号,设计切换点;kl-f+1和kl表示初始批次和末尾批次,
Figure GDA00018768672000001814
表示在时间间隔为[w,G]的切换信号下的切换次数,切换点如下形式:
Figure GDA00018768672000001811
其中,
Figure GDA00018768672000001812
Figure GDA00018768672000001813
有相同的意义,都表示前一个阶段的末尾时刻和下一个阶段的初始时刻;
结合步骤2.4,2.7,求解上述3.3不等式,便可求出不同阶段的τi a
实施例
本发明以注塑过程为代表进行多阶段有执行器故障下间歇过程的实验,注塑过程主要包含注射段、保压段、冷却段三个阶段。注射段、保压段的控制效果对产品最终质量具有直接影响,其中注射段注射速度、保压段模腔压力对相应阶段控制效果影响最大,需要控制跟踪给定值。这两个参数都是由相应的阀门进行控制,阀门开度影响参数。此外,在注射段,模腔压力达到一定值时,系统将会切换到保压段,因而在注射段模腔压力需要被检测但是不需要被直接控制。在冷却段只对高温制成品进行冷却,并不采取控制措施。因而需要建立注塑成型过程注射段与保压段的混杂状态空间模型。
本发明针对注塑过程的注射段和保压段,研究系统存在执行器故障的情况下,注射段到保压段之间的切换,结合2D模型理论,建立相应的混杂状态空间模型。通过不同批次一维模型和二维模型实验的图像比较,在执行器故障的情况下,二维模型不但能保证系统稳定运行,而且具有收敛更快、运行时间缩短、跟踪快等优点,从而实现高效生产。
现有的注塑成型过程注射段与保压段的频域数学模型如下:
注射段频域数学模型为:
Figure GDA0001876867200000191
即:IV(t+1,k)-0.9291IV(t,k)-0.0319IV(t-1,k)=8.687VO(t,k)-5.617VO(t-1,k);
注射段的模腔压力NP与注射速度IV的模型为:
Figure GDA0001876867200000192
即:NP(t+1,k)-NP(t,k)=0.1054IV(t,k);
其中,注射段的注射速度IV的设定值为40mm/s;保压段模腔压力NP设定值为300bar。
Figure GDA0001876867200000201
则有如下形式:
Figure GDA0001876867200000202
由上可得注射段的状态空间模型如下:
Figure GDA0001876867200000203
保压段的模腔压力NP与阀门开度VO的模型为:
Figure GDA0001876867200000204
即:NP(t+1,k)-1.317NP(t,k)+0.3259NP(t-1,k)=171.8VO(t,k)-156.8VO(t-1,k);
Figure GDA0001876867200000205
则有如下形式:
Figure GDA0001876867200000206
由上可得保压段的状态空间模型如下:
Figure GDA0001876867200000207
对于有执行器故障的多阶段注塑过程,设计切换条件为[100]x1(t,k)≥350,系统将从注射段切换到保压段。利用步骤2,根据不同阶段设计出相应可实时灵活调节的二维迭代学习容错控制器,具有鲁棒性和稳定性,从而提高其控制品质,解决了已存在方法中整个过程的控制器不能调节的弊端。最后针对不同阶段,设计依赖于Lyapunov函数的驻留时间方法,得出的系统稳定是指数稳定,加速了系统收敛速度。不仅保证了系统在执行器故障下依然能稳定运行且具有最优控制性能的同时,还使得系统运行时间缩短,即提高了生产效率。基于2D切换系统模型的间歇过程无穷时域线性二次跟踪容错控制器的设计解决了多阶段执行器部分失效故障和时滞问题。把执行器故障所引起系统模型失配视为干扰,对有时滞的间歇过程,通过引入新变量,从而得到一个无时滞的状态空间模型,通过调节二次性能函数中的变量,设计出一种能抵制执行器部分失效故障的二维迭代学习控制器,同时满足控制性能最优。
最后针对第29批次进行一维方法与二维方法的实验对比,从三个实验图可知,二维方法的切换时间明显比一维的短,提高了产品的生产效率,且输出,输入的曲线都比一维方法的平滑,跟踪效果好。验证了本文所提方法的可行性与优越性。

Claims (1)

1.多阶段间歇过程二维(2D)线性二次跟踪容错控制方法,其特征在于:包括以下步骤:
步骤1、针对间歇过程中不同阶段,建立被控对象以状态空间模型为基础的具有故障的2D切换系统模型,具体包括:
1.1构建新型多阶段间歇过程故障系统模型:
Figure FDA0003409403860000011
其中,uiF(t,k)=αiui(t,k),(i=1,2,...n);xi(t,k),yi(t,k),uiF(t,k)分别是第i阶段的状态空间,输出和实际输入,t为时刻,k为批次,
Figure FDA0003409403860000012
为适维矩阵,αi是不同阶段执行器故障;
选取新的状态空间变量
Figure FDA0003409403860000013
形式如下:
Figure FDA0003409403860000014
得到一个新型的第i个阶段状态空间模型为:
Figure FDA0003409403860000015
其中,
Figure FDA0003409403860000016
Figure FDA0003409403860000017
T为矩阵的转置符号,
Figure FDA0003409403860000018
0均为适当维数的零向量;
1.2构建新型2D切换系统模型:
在实际生产过程中,控制器的设计大都不是针对故障系统的,而是针对正常系统,且所设计出的控制器有一定抗故障的能力,因而以下控制器的设计是针对正常系统而言的,即αi=Ii的情况,则正常系统模型如下:
Figure FDA0003409403860000021
其中,
Figure FDA0003409403860000022
Figure FDA0003409403860000023
1.2.1为了有较好的跟踪性能以及使系统保持平稳的运行状态,定义输出跟踪误差
Figure FDA0003409403860000024
可得:
Figure FDA0003409403860000025
其中,yi(t,k)、
Figure FDA0003409403860000026
分别为k时刻,i阶段的实际输出值和跟踪设定值,ei(t,k)为k时刻,i阶段的输出误差;
1.2.2引入2D迭代学习控制律:
Figure FDA0003409403860000027
则系统状态误差可得:
Figure FDA0003409403860000028
其中,
Figure FDA0003409403860000029
代表变量
Figure FDA00034094038600000210
沿t方向的误差,ri(t,k)∈Rm是待设计的ILC的更新律,ILC设计的目标是在正常系统的情况下,确定k批次t时刻更新律ri(t,k),以实现系统输出yi(t,k)跟踪所给定的期望输出
Figure FDA00034094038600000211
1.2.3通过上述步骤可将空间模型转换为等价2D误差模型:
Figure FDA00034094038600000212
其中,
Figure FDA00034094038600000213
将上述得到的等价2D误差模型转换为包含状态变量和输出跟踪误差的扩展状态空间模型,形式如下:
Figure FDA0003409403860000031
其中,
Figure FDA0003409403860000032
将上述系统再现为2D切换系统模型为:
Figure FDA0003409403860000033
其中,
Figure FDA0003409403860000034
表示的是切换信号,它可能与时间或系统状态相关,N是子系统的阶段数,
Figure FDA0003409403860000035
对于不同阶段皆由上述切换系统模型表示;
1.2.4为了使得不同批次前一阶段切换至后一阶段时间相同,定义了最小切换时间:
Figure FDA0003409403860000036
上述过程具有n个阶段,
Figure FDA0003409403860000037
被称为i(i=1,2,...n)阶段的时间间隔,因此,整个间歇过程的切换序列可以描述为:
Figure FDA0003409403860000038
Figure FDA0003409403860000039
其中,
Figure FDA00034094038600000310
为连接前一个批次的结束和下一个批次开始的连接点;此外间歇过程在生产中,不同阶段需要控制的参数可能不同,从而不同阶段的维数可能不同,用如下公式表示在切换时刻两阶段之间状态关系:
Figure FDA00034094038600000311
其中,
Figure FDA00034094038600000312
被称为状态转移矩阵,如果系统状态在相邻阶段具有相同的物理意义,则Li=I;
步骤2、考虑含自由终端状态的非最小实现不同阶段2D切换系统模型,针对正常系统,设计被控对象的无穷时域的间歇过程线性二次2D迭代学习控制器,即最优控制器;
2.1选取相应的性能指标形式如下:
Figure FDA0003409403860000041
Figure FDA0003409403860000042
其中,Qi>0,Ri>0分别为第i阶段状态的加权矩阵、输入加权矩阵,
Figure FDA0003409403860000043
K,
Figure FDA0003409403860000044
为过程状态的权重系数,
Figure FDA0003409403860000045
为输出跟踪误差的权重系数,并且取
Figure FDA0003409403860000046
2.2首先考虑有限时域的性能指标,形式如下:
Figure FDA0003409403860000047
其中,
Figure FDA0003409403860000048
为优化时域;
利用康特里亚金最小值原理将步骤2.1的性能指标写成如下形式:
Figure FDA0003409403860000049
其中,
Figure FDA00034094038600000410
为第i阶段拉格朗日乘子;
2.3求
Figure FDA00034094038600000411
并令其等于零,可得:
Figure FDA00034094038600000412
假定
Figure FDA00034094038600000413
进一步可以得到:
Figure FDA00034094038600000414
Figure FDA00034094038600000415
Figure FDA00034094038600000416
2.4令
Figure FDA00034094038600000417
趋于无穷时,可以得到无穷时域线性二次控制律的形式为等式:
Figure FDA00034094038600000418
Figure FDA0003409403860000051
ui(t,k)=ui(t,k-1)+ri(t,k)
其中,
Figure FDA0003409403860000052
为趋于正无穷时
Figure FDA0003409403860000053
的值;
2.5将步骤2.4中得到的控制量ui(t,k)作用于被控对象;
2.6在下一时刻,依照步骤2.1到2.5继续求解新的控制量ui(t+1,k),依次循环;
2.7上述设计的控制器是在正常系统下的,执行器故障容易引起系统的不稳定,通过将其视为干扰,设计的控制器具有鲁棒性,即系统具有一定的抗干扰能力,在保证系统稳定运行的情况下,求解允许的最大干扰;
2.7.1控制律的状态反馈形式如下:
Figure FDA0003409403860000054
其中,
Figure FDA0003409403860000055
对每一个阶段i,含有执行器部分失效故障的切换系统为:
Figure FDA0003409403860000056
其中,
Figure FDA0003409403860000057
Figure FDA0003409403860000058
则上述切换系统可变为:
Figure FDA0003409403860000059
2.7.2定义李雅普诺夫函数Vi,并获得其增量△Vi,形式如下:
Figure FDA0003409403860000061
其中,
Figure FDA0003409403860000062
2.7.3根据步骤2.7.1中有执行器故障的切换系统,结合步骤2.7.2中的李雅普诺夫函数,求取在满足系统稳定下,控制器所能抵抗的最大干扰;
定义
Figure FDA0003409403860000063
其中,
Figure FDA0003409403860000064
水平收敛指标不大于
Figure FDA0003409403860000065
垂直收敛指标不大于
Figure FDA0003409403860000066
常数ρi,μi,以及矩阵Wi
由步骤2.7.2得:
Figure FDA0003409403860000067
2.7.4再选取合适的矩阵,使其满足如下约束条件:
Figure FDA0003409403860000068
其中,σmaxi),λmini),λmaxi)分别是矩阵ξ的最大奇异值、最小特征值和最大特征值;则称这个系统有强干扰性且指数稳定;
2.7.5进一步将步骤2.7.3和2.7.4中约束条件带入增量△Vi中,可以得到:
Figure FDA0003409403860000069
很明显如果满足以下条件:
Figure FDA0003409403860000071
因此:
Figure FDA0003409403860000072
步骤3、针对步骤1.2的新型2D切换系统模型,找出系统稳定条件和设计切换信号;
3.1针对不同阶段设计切换信号为
Figure FDA0003409403860000073
3.2由步骤2.7.1知中无穷时域线性二次容错控制形式可再次表示为:
Figure FDA0003409403860000074
其中,
Figure FDA0003409403860000075
则对每一个阶段i,切换系统可再次表示为:
Figure FDA0003409403860000076
3.3对于第i个子系统,选择下面的李雅普诺夫函数Vi
Figure FDA0003409403860000077
其中,
Figure FDA0003409403860000078
代表了T方向的变量,
Figure FDA0003409403860000079
代表了K方向的变量;
并获得其增量△Vi,形式如下:
Figure FDA00034094038600000710
若切换系统稳定,必有△Vi(zi(t,k))<0,其等价于:
Figure FDA0003409403860000081
以及满足步骤2.7.5的约束条件下,可得:
Figure FDA0003409403860000082
3.4根据切换信号,设计切换点;
kl-f+1和kl表示初始批次和末尾批次,
Figure FDA0003409403860000083
表示在时间间隔为[w,G]的切换信号下的切换次数,切换点如下形式:
Figure FDA0003409403860000084
其中,
Figure FDA0003409403860000085
Figure FDA0003409403860000086
有相同的意义,都表示前一个阶段的末尾时刻和下一个阶段的初始时刻;
结合步骤2.4、2.7求解步骤3.3中的不等式,便可求出不同阶段的
Figure FDA0003409403860000087
CN201811181464.1A 2018-10-11 2018-10-11 多阶段间歇过程2d线性二次跟踪容错控制方法 Active CN109212971B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811181464.1A CN109212971B (zh) 2018-10-11 2018-10-11 多阶段间歇过程2d线性二次跟踪容错控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811181464.1A CN109212971B (zh) 2018-10-11 2018-10-11 多阶段间歇过程2d线性二次跟踪容错控制方法

Publications (2)

Publication Number Publication Date
CN109212971A CN109212971A (zh) 2019-01-15
CN109212971B true CN109212971B (zh) 2022-02-18

Family

ID=64979549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811181464.1A Active CN109212971B (zh) 2018-10-11 2018-10-11 多阶段间歇过程2d线性二次跟踪容错控制方法

Country Status (1)

Country Link
CN (1) CN109212971B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991853B (zh) * 2019-04-23 2022-01-25 海南师范大学 多阶段间歇过程2d输入输出约束跟踪控制方法
CN110058527A (zh) * 2019-05-22 2019-07-26 杭州电子科技大学 一种工业过程无穷时域优化先进控制方法
CN110069016A (zh) * 2019-05-22 2019-07-30 杭州电子科技大学 一种工业过程预测线性二次先进控制方法
CN110412873A (zh) * 2019-07-25 2019-11-05 辽宁石油化工大学 基于终端约束的时滞间歇过程2d迭代学习预测控制方法
CN110597055B (zh) * 2019-08-05 2022-03-29 海南师范大学 抗不确定性的2d分段仿射间歇过程最小-最大优化的预测控制方法
CN110750049B (zh) * 2019-09-23 2022-03-29 海南师范大学 带有时滞和扰动的间歇过程2d预测容错控制方法
CN110568763B (zh) * 2019-10-11 2022-03-29 海南师范大学 一种抗间歇过程扰动及时滞的模型预测h∞容错控制方法
CN110579970B (zh) * 2019-10-24 2023-02-03 海南师范大学 一种2d滚动优化下间歇过程终端约束预测控制方法
CN111123871B (zh) * 2019-12-25 2023-06-23 海南师范大学 针对化工过程遗传算法优化的预测函数控制方法
CN111505937A (zh) * 2020-03-04 2020-08-07 海南师范大学 一种多模态下的工业过程改进模型预测容错控制方法
CN111506033B (zh) * 2020-05-08 2023-03-28 辽宁石油化工大学 基于喷嘴压力的注塑机保压容错切换控制方法
CN112180899B (zh) * 2020-09-30 2021-08-24 山东科技大学 一种间歇异常测量检测下系统的状态估计方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102431136A (zh) * 2011-09-16 2012-05-02 广州市香港科大霍英东研究院 一种基于多向主元分析法的多阶段批次过程阶段划分方法
CN104932263A (zh) * 2015-06-03 2015-09-23 辽宁石油化工大学 一种多阶段间歇过程的最小运行时间控制方法
CN106773679A (zh) * 2016-12-01 2017-05-31 北京航空航天大学 一种基于角速度观测器的航天器容错控制方法
CN107544255A (zh) * 2017-10-12 2018-01-05 杭州电子科技大学 一种批次过程的状态补偿模型控制方法
CN107918283A (zh) * 2017-12-12 2018-04-17 海南师范大学 一种批次注塑过程抗干扰的混杂稳定控制器设计方法
CN107942667A (zh) * 2017-11-29 2018-04-20 辽宁石油化工大学 基于时变时滞和干扰的注塑过程混杂2d跟踪控制方法
CN107976942A (zh) * 2017-11-22 2018-05-01 海南师范大学 无穷时域优化的间歇过程2d约束容错控制方法
CN108073077A (zh) * 2017-12-25 2018-05-25 海南师范大学 批次过程无穷时域优化的线性二次混杂容错控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8032235B2 (en) * 2007-06-28 2011-10-04 Rockwell Automation Technologies, Inc. Model predictive control system and method for reduction of steady state error

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102431136A (zh) * 2011-09-16 2012-05-02 广州市香港科大霍英东研究院 一种基于多向主元分析法的多阶段批次过程阶段划分方法
CN104932263A (zh) * 2015-06-03 2015-09-23 辽宁石油化工大学 一种多阶段间歇过程的最小运行时间控制方法
CN106773679A (zh) * 2016-12-01 2017-05-31 北京航空航天大学 一种基于角速度观测器的航天器容错控制方法
CN107544255A (zh) * 2017-10-12 2018-01-05 杭州电子科技大学 一种批次过程的状态补偿模型控制方法
CN107976942A (zh) * 2017-11-22 2018-05-01 海南师范大学 无穷时域优化的间歇过程2d约束容错控制方法
CN107942667A (zh) * 2017-11-29 2018-04-20 辽宁石油化工大学 基于时变时滞和干扰的注塑过程混杂2d跟踪控制方法
CN107918283A (zh) * 2017-12-12 2018-04-17 海南师范大学 一种批次注塑过程抗干扰的混杂稳定控制器设计方法
CN108073077A (zh) * 2017-12-25 2018-05-25 海南师范大学 批次过程无穷时域优化的线性二次混杂容错控制方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Delay-range-dependent robust 2D iterative learning control for batch processes with state delay and uncertainties;Limin Wang等;《Journal of Process Control》;20130409;第715-730页 *
Robust Iterative Learning Fault-Tolerant Control for Multiphase;Limin Wang等;《American Chemical Society》;20170712;第10099-10109页 *
基于T-S模糊模型的间歇过程的迭代学习容错控制;王立敏等;《化工学报》;20170331;第68卷(第3期);第1081-1089页 *
注塑过程中注射保压阶段最小运行时间控制方法;王立敏等;《工程塑料应用》;20160430;第44卷(第4期);第53-56页 *
间歇过程复合迭代学习容错保性能控制器设计;周东华等;《上海交通大学学报》;20150630;第49卷(第6期);第743-750页 *

Also Published As

Publication number Publication date
CN109212971A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN109212971B (zh) 多阶段间歇过程2d线性二次跟踪容错控制方法
CN109541940B (zh) 基于2d模型多阶段间歇过程受限预测混杂容错控制方法
CN107976942B (zh) 无穷时域优化的间歇过程2d约束容错控制方法
Li et al. Adaptive fuzzy control of uncertain stochastic nonlinear systems with unknown dead zone using small-gain approach
CN110568763B (zh) 一种抗间歇过程扰动及时滞的模型预测h∞容错控制方法
CN111123871B (zh) 针对化工过程遗传算法优化的预测函数控制方法
CN110579970B (zh) 一种2d滚动优化下间歇过程终端约束预测控制方法
CN110764414B (zh) 针对多种干扰的多阶段批次异步切换过程的鲁棒预测控制方法
CN104698842B (zh) 一种基于内点法的lpv模型非线性预测控制方法
CN107918283B (zh) 一种批次注塑过程抗干扰的混杂稳定控制器设计方法
CN107544255B (zh) 一种批次注塑过程的状态补偿模型控制方法
CN109407512B (zh) 依赖时滞的间歇过程2d输入输出约束控制方法
CN108073077B (zh) 批次过程无穷时域优化的线性二次混杂容错控制方法
CN109991853B (zh) 多阶段间歇过程2d输入输出约束跟踪控制方法
Wang et al. Terminal constrained robust hybrid iterative learning model predictive control for complex time-delayed batch processes
CN114200834B (zh) 丢包环境下批次过程无模型离轨策略最优跟踪控制方法
CN108614431B (zh) 一种基于夹角的Hammerstein-Wiener系统多模型分解及控制方法
CN110376893A (zh) 基于特征模型的前馈与离散二阶滑模复合控制系统及方法
CN112180738B (zh) 针对非线性注塑成型异步切换过程鲁棒模糊预测控制方法
CN110750049B (zh) 带有时滞和扰动的间歇过程2d预测容错控制方法
CN110597055B (zh) 抗不确定性的2d分段仿射间歇过程最小-最大优化的预测控制方法
CN111061155B (zh) 一种基于遗传算法优化的间歇过程2d模型预测控制方法
CN109212972B (zh) 间歇过程的受限滚动时域混杂2d跟踪控制方法
CN114911162A (zh) 具有时变时滞异步切换多阶段间歇过程的迭代学习鲁棒预测控制方法
CN110412873A (zh) 基于终端约束的时滞间歇过程2d迭代学习预测控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant