CN109126774A - 一种超高分散负载型单原子贵金属催化剂及其制备方法 - Google Patents

一种超高分散负载型单原子贵金属催化剂及其制备方法 Download PDF

Info

Publication number
CN109126774A
CN109126774A CN201710451712.9A CN201710451712A CN109126774A CN 109126774 A CN109126774 A CN 109126774A CN 201710451712 A CN201710451712 A CN 201710451712A CN 109126774 A CN109126774 A CN 109126774A
Authority
CN
China
Prior art keywords
catalyst
metal
preparation
specific surface
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710451712.9A
Other languages
English (en)
Other versions
CN109126774B (zh
Inventor
宋宪根
丁云杰
吕元
冯四全
任周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201710451712.9A priority Critical patent/CN109126774B/zh
Publication of CN109126774A publication Critical patent/CN109126774A/zh
Application granted granted Critical
Publication of CN109126774B publication Critical patent/CN109126774B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种超高分散负载型单原子贵金属催化剂及其制备方法。将金属前驱体在水或乙醇中溶解,得到的溶液浸渍于载体上,水浴蒸干溶剂,烘箱中烘干,N2保护下焙烧,或H2气氛还原。CO和泵入的卤代烷烃预热汽化混合后进入到装有焙烧或还原后的颗粒状或粉末状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至处理温度,然后切换成CO和卤代烷烃混合气处理,处理后在N2保护下降至室温,得到负载型单原子贵金属催化剂。催化剂由金属和载体两部分组成,金属为Ru、Rh、Pd、Ag、Ir、Pt、Au;金属占催化剂总质量的0.01~10.0wt%。载体为活性炭、石墨烯、氧化硅、氧化铝。

Description

一种超高分散负载型单原子贵金属催化剂及其制备方法
技术领域
本发明属于催化剂技术领域,具体涉及一种超高分散负载型单原子贵金属催化剂及其制备方法。
背景技术
在工业催化剂中,负载型催化剂由于其较高的金属利用率占催化剂总使用量的70%以上,其中贵金属由于其优异的催化性能在负载型催化剂中占了相当大的比例,广泛应用于各种催化剂反应,比如加氢异构,醋酸加氢、电化学、羰基合成、合成气转化、三效催化剂、航天催化等,消耗了大量贵金属。负载型金属普遍存在金属分散度低,结构稳定差等问题,采用不同的技术和手段提高催化剂分散度和稳定性成为现阶段研究的热点。负载型催化剂的催化性能与其金属活性组分在载体上的尺寸大小密切相关。负载型金属团簇催化剂的高活性归因于其金属活性组分在高比表面积的载体上以高度分散的纳米团簇形式存在,可以充分利用催化活性位点,进而提高了催化剂的反应活性和金属原子利用率。为了使负载型金属催化剂上每个金属原子的催化效果达到最佳,研究者不断减小活性金属的颗粒尺寸。最新的实验和理论研究发现,亚纳米团簇比纳米级粒子具有更好的催化活性或选择性。从理论上讲,负载型金属催化剂分散的极限是金属以单原子的形式均匀分布在载体上,这不仅是负载型金属催化剂的理想状态,而且也将催化科学带入到一个更小的研究尺度-单原子催化。对于高负载量的金属催化剂,在催化反应过程中只有极少数金属活性组分起催化作用,相比较而言每个金属原子都作为活性位的单原子催化在效率上“以一当十”,而传统负载型金属催化剂的金属利用效率远远低于理想水平。特别是对于贵金属来说,大剂量使用无疑增加了催化剂成本,不利于在工业生产中进行规模化应用。因此,为了最大限度地发挥贵金属的催化效率,降低制造成本,制备单原子金属催化剂成为研究者的首要选择。
单原子催化不同于纳米催化和亚纳米催化,因为当粒子分散度达到单原子尺寸时,引起很多新的特性,如急剧增大的表面自由能、量子尺寸效应、不饱和配位环境和金属-载体的相互作用等,正是这些与纳米或亚纳米级粒子显著不同的特性,赋予单原子催化剂优越的催化性能。纳米催化中,纳米团簇及亚纳米团簇包含多个催化活性中心。而对于单原子催化,金属以单原子的形式均匀单一地负载在金属、金属氧化物、二维材料和分子筛等载体上,以单原子作为催化活性中心进行催化反应。均一分散的单原子作为催化活性中心,与均相催化类似,为实现催化反应的高活性和高选择性提供了巨大潜能,且易于进行催化反应机理的研究。单原子催化剂兼具均相催化剂均匀单一的活性中心和多相催化剂结构稳定易分离的特点,将多相催化与均相催化联系在一起。因此,单原子催化剂有望成为沟通多相催化与均相催化的桥梁。单原子催化剂不仅金属负载量极低而且极大地提高了金属原子的利用效率;能够改变催化剂上活性组分对不同分子的吸附/脱附选择性,从而影响反应动力学。
单原子催化剂同样也存在不足,当金属粒子减小到单原子水平时,比表面积急剧增大,导致金属表面自由能急剧增加,在制备和反应时极易发生团聚耦合形成大的团簇,从而导致催化剂失活,这是制备单原子催化剂所面临的巨大挑战。在单原子催化剂的制备及反应过程中,由于单原子容易烧结团聚而导致催化剂失活,因此需要筛选出合适的载体用来负载单原子从而避免上述不利情况的发生和合适的再分散方法重新分散活化催化剂。目前已报道的制备方法有以下几种①通过高频激光蒸发源使金属气化,利用质谱仪精确调控,使不同尺寸金属粒子负载到载体表面。②共沉淀法是一种成熟且应用广泛的纳米级金属催化剂的制备方法。③浸渍法是将载体放入含有活性组分的溶液中,活性物质逐步吸附在载体表面,再将剩余液体除去,最后进行干燥、焙烧、活化等操作,其广泛应用于负载型金属催化剂的制备。④原子层沉积(ALD)是一种可以将物质以原子膜形式一层一层镀在载体表面的方法。⑤逐步还原法首先将第一种金属离子还原,接着第二种金属离子的还原,并且第二种金属沉积在第一种金属表面。上述方法有些步骤复杂、条件苛刻、所需仪器昂贵,金属负载量很低,或某一方法只对特定金属有效,这些缺陷要求需要发展一种操作简单,对多种金属都有作用的制备超高分散负载型单原子贵金属催化剂的方法。
发明内容
本发明的目的在于提供一种超高分散负载型单原子贵金属催化剂及其制备方法。
本发明的技术方案为:
一种超高分散负载型单原子贵金属催化剂及其制备方法,该催化剂由金属和载体两部分组成,金属为Ru、Rh、Pd、Ag、Ir、Pt、Au;载体为活性炭、石墨烯、氧化硅、氧化铝。金属占催化剂总质量的0.01~10.0wt%。活性炭的比表面积为500~1100m2/g,平均孔径为1~200nm;石墨烯的比表面积为200~800m2/g,平均孔径为1~100nm;氧化硅的比表面积为100~500m2/g,平均孔径为5~100nm;氧化铝的比表面积为50~400m2/g,平均孔径为5~100nm;活性炭的优选比表面积为550~900m2/g,优选平均孔径为5~100nm;石墨烯的优选比表面积为350~700m2/g,平均孔径为5~50nm;氧化硅的优选比表面积为150~400m2/g,优选平均孔径为10~50nm;氧化铝的优选比表面积为100~300m2/g,优选平均孔径为10~50nm。
将金属前驱体在水或乙醇中溶解,得到的溶液浸渍于载体上,60~80℃水浴蒸干溶剂,烘箱中100~120℃烘干8~24h,N2保护下250~400℃焙烧4~12h,H2气氛250~400℃还原4~12h。
CO和泵入的卤代烷烃预热汽化混合后进入到装有焙烧或还原后的颗粒状或粉末状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至处理温度,然后切换成CO和卤代烷烃混合气。处理的温度在50~280℃,压力在0.1~2.0MPa,体积空速在100~5000h-1,时间为0.1-10h-1,CO和卤代烷烃的摩尔比例在0.1~4。处理后,在N2保护下降至室温,得到负载型单原子贵金属催化剂。
本发明的有益效果为:
与现有的技术相比,本发明的超高分散负载型单原子贵金属催化剂及其制备方法操作方便,条件温和,普适性强,几乎可以制备所有负载型单原子催化剂贵金属(锇除外)。
附图说明
图1为实施例2单原子Ir催化剂高角环形暗场-扫描透射电子像(HADDF-STEM)照片;
图2为实施例3单原子Ru催化剂HADDF-STEM照片;
图3为实施例4单原子Rh催化剂HADDF-STEM照片;
图4为实施例5单原子Pd催化剂HADDF-STEM照片;
图5为实施例6单原子Pt催化剂HADDF-STEM照片;
图6为实施例7单原子Ag催化剂HADDF-STEM照片。
具体实施方式
下述实施例说明但不限制本发明要保护的内容。
实施例1
称取0.25克IrCl3溶解在10mL去离子水中,然后浸渍10.0克活性炭,80℃水浴蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,得到活性炭负载的Ir基催化剂。CO和泵入的CH3I经预热汽化混合后进入到装有焙烧后的颗粒状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至240℃,然后切换成CO和CH3I混合气。处理的温度为240℃,压力为0.1MPa,体积空速为1000h-1,CO和CH3I的摩尔比例4/1,处理后,在N2保护下降至室温。制备得到1wt%含量的活性炭负载的单原子Ir催化剂。
实施例2
称取2.5克IrCl3溶解在10mL去离子水中,然后浸渍10.0克活性炭,80℃水浴蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,得到活性炭负载的Ir基催化剂。CO和泵入的CH3I经预热汽化混合后进入到装有焙烧后的颗粒状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至240℃,然后切换成CO和CH3I混合气。处理的温度为240℃,压力为0.1MPa,体积空速为1000h-1,CO和CH3I的摩尔比例4/1,处理后,在N2保护下降至室温。制备得到10wt%含量的活性炭负载的单原子Ir催化剂。
实施例3
称取1.25克RuCl3溶解在10mL去离子水中,然后浸渍10.0克活性炭,80℃水浴蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,H2气氛300℃还原4h得到活性炭负载的Ru基催化剂。CO和泵入的CH3Br经预热汽化混合后进入到装有还原后的颗粒状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至240℃,然后切换成CO和CH3Br混合气。处理的温度为240℃,压力为0.1MPa,体积空速为1000h-1,CO和CH3Br的摩尔比例4/1,处理后,在N2保护下降至室温。制备得到活性炭负载的单原子Ru催化剂。
实施例4
称取1.25克RhCl3溶解在10mL去离子水中,然后浸渍10.0克活性炭,80℃水浴蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,H2气氛300℃还原4h得到活性炭负载的Rh基催化剂。CO和泵入的CH3Br经预热汽化混合后进入到装有还原后的颗粒状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至240℃,然后切换成CO和CH3Br混合气。处理的温度为240℃,压力为0.1MPa,体积空速为1000h-1,CO和CH3Br的摩尔比例4/1,处理后,在N2保护下降至室温。制备得到活性炭负载的单原子Rh催化剂。
实施例5
称取1.25克PdCl2溶解在10mL去离子水中,然后浸渍10.0克活性炭,80℃水浴蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,得到活性炭负载的Pd基催化剂。CO和泵入的CH3Br经预热汽化混合后进入到装有焙烧后的颗粒状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至240℃,然后切换成CO和CH3Br混合气。处理的温度为240℃,压力为0.1MPa,体积空速为1000h-1,CO和CH3Br的摩尔比例4/1,处理后,在N2保护下降至室温。制备得到活性炭负载的单原子Pd催化剂。
实施例6
称取2.0克HPtCl6溶解在10mL去离子水中,然后浸渍10.0克活性炭,80℃水浴蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,得到活性炭负载的Pt基催化剂。CO和泵入的CH3I经预热汽化混合后进入到装有焙烧后的颗粒状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至240℃,然后切换成CO和CH3I混合气。处理的温度为240℃,压力为0.1MPa,体积空速为1000h-1,CO和CH3I的摩尔比例4/1,处理后,在N2保护下降至室温。制备得到活性炭负载的单原子Pt催化剂。
实施例7
称取1.5克AgNO3溶解在10mL去离子水中,然后浸渍10.0克活性炭,80℃水浴蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,得到活性炭负载的Ag基催化剂。CO和泵入的CH3Br经预热汽化混合后进入到装有焙烧后的颗粒状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至240℃,然后切换成CO和CH3Br混合气。处理的温度为240℃,压力为0.1MPa,体积空速为1000h-1,CO和CH3Br的摩尔比例4/1,处理后,在N2保护下降至室温。制备得到活性炭负载的单原子Ag催化剂。
实施例8
称取2.0克HAuCl6溶解在10mL去离子水中,然后浸渍10.0克活性炭,80℃水浴蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,得到活性炭负载的Au基催化剂。CO和泵入的CH3I经预热汽化混合后进入到装有焙烧后的颗粒状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至240℃,然后切换成CO和CH3I混合气。处理的温度为240℃,压力为0.1MPa,体积空速为1000h-1,CO和CH3I的摩尔比例4/1,处理后,在N2保护下降至室温。制备得到活性炭负载的单原子Au催化剂。
实施例9
称取1.25克IrCl3溶解在10mL乙醇中,然后浸渍10.0克石墨烯,80℃水浴蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,得到石墨烯负载的Ir基催化剂。CO和泵入的CH3I经预热汽化混合后进入到装有焙烧后的粉末状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至240℃,然后切换成CO和CH3I混合气。处理的温度为240℃,压力为0.5MPa,体积空速为1000h-1,CO和CH3I的摩尔比例4/1,处理后,在N2保护下降至室温。制备得到石墨烯负载的单原子Ir催化剂。
实施例10
称取0.25克IrCl3溶解在10mL去离子水中,然后浸渍10.0克氧化铝,80℃水浴蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,得到氧化铝负载的Ir基催化剂。CO和泵入的CH3I经预热汽化混合后进入到装有焙烧后的颗粒状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至240℃,然后切换成CO和CH3I混合气。处理的温度为240℃,压力为1MPa,体积空速为1000h-1,CO和CH3I的摩尔比例4/1,处理后,在N2保护下降至室温。制备得到氧化铝负载的单原子Ir催化剂。
实施例11
称取0.25克RhCl3溶解在10mL去离子水中,然后浸渍10.0克氧化铝,80℃水浴蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,得到氧化铝负载的Rh基催化剂。CO和泵入的CH3I经预热汽化混合后进入到装有焙烧后的颗粒状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至240℃,然后切换成CO和CH3I混合气。处理的温度为240℃,压力为1MPa,体积空速为1000h-1,CO和CH3I的摩尔比例4/1,处理后,在N2保护下降至室温。制备得到氧化铝负载的单原子Rh催化剂。
实施例12
称取0.25克RhCl3溶解在10mL去离子水中,然后浸渍10.0克氧化硅,80℃水浴蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,得到氧化硅负载的Rh基催化剂。CO和泵入的CH3I经预热汽化混合后进入到装有焙烧后的颗粒状催化剂的管式反应器中,催化剂首先在N2气氛保护下升至240℃,然后切换成CO和CH3I混合气。处理的温度为240℃,压力为1MPa,体积空速为1000h-1,CO和CH3I的摩尔比例4/1,处理后,在N2保护下降至室温。制备得到氧化硅负载的单原子Rh催化剂。

Claims (7)

1.一种超高分散负载型单原子贵金属催化剂的制备方法,其特征在于:将可溶性金属前驱体在水和/或乙醇中溶解,得到的溶液浸渍于载体上,水浴蒸干溶剂,烘箱中烘干,N2保护下焙烧,H2气氛还原或不还原,得颗粒状和/或粉末状催化剂;
在N2保护下装有焙烧或还原后的颗粒状和/或粉末状催化剂的管式反应器升温至反应温度,然后切换成CO和卤代烷烃混合气处理,处理后在N2保护下降至室温,得到负载型单原子贵金属催化剂。
2.根据权利要求1所述的制备方法,其特征在于:水浴蒸干溶剂温度60~80℃,烘箱温度100~120℃,烘干8~24h,N2保护下250~400℃焙烧4~12h,H2气氛250~400℃还原4~12h。
3.根据权利要求1所述的制备方法,其特征在于:卤代烷烃为碘甲烷、碘乙烷、二碘甲烷、溴甲烷、溴乙烷、二溴甲烷中的一种或两种。
4.根据权利要求1所述的制备方法,其特征在于:CO和卤代烷烃混合气处理的温度在50~280℃,压力在0.1~2.0MPa,体积空速在100~5000h-1,时间为0.1-10h-1,CO和卤代烷烃的摩尔比例在0.1~4。
5.根据权利要求1所述的制备方法,其特征在于:该催化剂由金属和载体两部分组成,金属为Ru、Rh、Pd、Ag、Ir、Pt、Au中的一种;载体为活性炭、石墨烯、氧化硅、氧化铝中的一种;
金属占催化剂总质量的0.1~15.0wt%,金属优选占催化剂总质量的0.5~10.0wt%,金属最佳占催化剂总质量的0.5~5.0wt%。
6.根据权利要求1或5所述的制备方法,所述的载体为活性炭、石墨烯、氧化硅、氧化铝;
活性炭的比表面积为500~1100m2/g,活性炭的优选比表面积为550~900m2/g,活性炭的平均孔径为1~200nm,活性炭优选平均孔径为5~100nm;
石墨烯的比表面积为200~800m2/g,石墨烯的优选比表面积为350~700m2/g,石墨烯平均孔径为1~100nm,石墨烯的优选平均孔径为5~50nm;
氧化硅的比表面积为100~500m2/g,氧化硅的优选比表面积为150~400m2/g,氧化硅平均孔径为5~100nm,氧化硅的优选平均孔径为10~50nm;
氧化铝的比表面积为50~400m2/g,氧化铝的优选比表面积为100~300m2/g,氧化铝平均孔径为5~100nm,氧化铝的优选平均孔径为10~50nm。
7.一种权利要求1-6任一所述制备方法制备的催化剂。
CN201710451712.9A 2017-06-15 2017-06-15 一种超高分散负载型单原子贵金属催化剂及其制备方法 Active CN109126774B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710451712.9A CN109126774B (zh) 2017-06-15 2017-06-15 一种超高分散负载型单原子贵金属催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710451712.9A CN109126774B (zh) 2017-06-15 2017-06-15 一种超高分散负载型单原子贵金属催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN109126774A true CN109126774A (zh) 2019-01-04
CN109126774B CN109126774B (zh) 2021-02-09

Family

ID=64829814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710451712.9A Active CN109126774B (zh) 2017-06-15 2017-06-15 一种超高分散负载型单原子贵金属催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN109126774B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110252308A (zh) * 2019-06-21 2019-09-20 山东科技大学 一种活性金属在载体中呈原子级分散的负载型催化剂及其制备方法和用途
CN110465291A (zh) * 2019-08-09 2019-11-19 太原理工大学 一种单原子贵金属型催化剂Ru/Cr2O3及其制备方法和应用
CN111195515A (zh) * 2018-11-20 2020-05-26 中国科学院大连化学物理研究所 一种单原子分散贵金属催化剂、其制备方法及应用
CN112642424A (zh) * 2020-12-23 2021-04-13 甄崇礼 用于臭氧氧化的贵金属催化剂及其制备方法
CN112675849A (zh) * 2020-12-22 2021-04-20 安徽稞馨环境科技有限公司 一种催化氧化法室温脱除一氧化碳的单原子催化剂制备方法及其应用
CN112774709A (zh) * 2019-11-11 2021-05-11 中国科学院大连化学物理研究所 负载型催化剂及其制法和应用
CN112916038A (zh) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 一种燃油蒸气催化氧化脱氧Pt/M-Y催化剂及其制备和应用
CN113101969A (zh) * 2021-04-15 2021-07-13 中国石油化工股份有限公司 一种分子筛负载单原子催化剂及其制备方法
CN113262776A (zh) * 2021-04-20 2021-08-17 武汉理工大学 一种W-TiO2单原子负载光催化剂及其制备方法
CN114522683A (zh) * 2020-11-23 2022-05-24 中国科学院大连化学物理研究所 一种碳载Pd-M双金属单原子催化剂及其在C2H2双羰基化反应中应用
CN114524729A (zh) * 2020-11-23 2022-05-24 中国科学院大连化学物理研究所 一种碳载单原子Pd催化剂在炔烃羰基化反应中的应用
CN114534724A (zh) * 2020-11-24 2022-05-27 中国科学院大连化学物理研究所 一种甲醇无卤素气相羰基化制备醋酸及醋酸酯的方法
CN114618476A (zh) * 2022-02-16 2022-06-14 中国科学院大连化学物理研究所 一种单原子铂基催化剂及其制备方法和应用
CN114682283A (zh) * 2020-12-31 2022-07-01 北京单原子催化科技有限公司 碳氮包覆负载型金属单原子催化剂、制备方法及其应用
CN115445636A (zh) * 2021-06-08 2022-12-09 中国科学院大连化学物理研究所 一种单原子分散的钯基催化剂及其制备方法、应用
CN115466177A (zh) * 2021-06-11 2022-12-13 中国科学院大连化学物理研究所 一种制备1,4-二乙酰氧基-2-丁烯的方法
WO2022257025A1 (zh) * 2021-06-08 2022-12-15 中国科学院大连化学物理研究所 一种单原子分散的钯基催化剂及其制备方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230546A (en) * 1977-08-19 1980-10-28 Research Foundation Of The City University Of New York Method of molecular specie alteration by nonresonant laser induced dielectric breakdown
CN102784641A (zh) * 2012-08-31 2012-11-21 重庆大学 一种高活性钯铂核壳结构催化剂的制备方法
CN102806093A (zh) * 2012-08-31 2012-12-05 重庆大学 一种高效低铂直接甲醇燃料电池催化剂的制备方法
CN106824187A (zh) * 2017-01-24 2017-06-13 中国石油大学(北京) 一种铈锆复合氧化物担载铂的催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230546A (en) * 1977-08-19 1980-10-28 Research Foundation Of The City University Of New York Method of molecular specie alteration by nonresonant laser induced dielectric breakdown
CN102784641A (zh) * 2012-08-31 2012-11-21 重庆大学 一种高活性钯铂核壳结构催化剂的制备方法
CN102806093A (zh) * 2012-08-31 2012-12-05 重庆大学 一种高效低铂直接甲醇燃料电池催化剂的制备方法
CN106824187A (zh) * 2017-01-24 2017-06-13 中国石油大学(北京) 一种铈锆复合氧化物担载铂的催化剂及其制备方法和应用

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111195515A (zh) * 2018-11-20 2020-05-26 中国科学院大连化学物理研究所 一种单原子分散贵金属催化剂、其制备方法及应用
CN111195515B (zh) * 2018-11-20 2021-04-23 中国科学院大连化学物理研究所 一种单原子分散贵金属催化剂、其制备方法及应用
CN110252308B (zh) * 2019-06-21 2022-02-22 山东科技大学 一种活性金属在载体中呈原子级分散的负载型催化剂及其制备方法和用途
CN110252308A (zh) * 2019-06-21 2019-09-20 山东科技大学 一种活性金属在载体中呈原子级分散的负载型催化剂及其制备方法和用途
CN110465291A (zh) * 2019-08-09 2019-11-19 太原理工大学 一种单原子贵金属型催化剂Ru/Cr2O3及其制备方法和应用
CN112774709A (zh) * 2019-11-11 2021-05-11 中国科学院大连化学物理研究所 负载型催化剂及其制法和应用
CN112916038B (zh) * 2019-12-06 2022-03-08 中国科学院大连化学物理研究所 一种燃油蒸气催化氧化脱氧Pt/M-Y催化剂及其制备和应用
CN112916038A (zh) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 一种燃油蒸气催化氧化脱氧Pt/M-Y催化剂及其制备和应用
WO2022105199A1 (zh) * 2020-11-23 2022-05-27 中国科学院大连化学物理研究所 一种钯基催化剂及其制备方法、应用
CN114522683B (zh) * 2020-11-23 2024-04-26 中国科学院大连化学物理研究所 一种碳载Pd-M双金属单原子催化剂及其在C2H2双羰基化反应中应用
CN114524729B (zh) * 2020-11-23 2024-06-11 中国科学院大连化学物理研究所 一种碳载单原子Pd催化剂在炔烃羰基化反应中的应用
CN114522683A (zh) * 2020-11-23 2022-05-24 中国科学院大连化学物理研究所 一种碳载Pd-M双金属单原子催化剂及其在C2H2双羰基化反应中应用
CN114524729A (zh) * 2020-11-23 2022-05-24 中国科学院大连化学物理研究所 一种碳载单原子Pd催化剂在炔烃羰基化反应中的应用
CN114534724A (zh) * 2020-11-24 2022-05-27 中国科学院大连化学物理研究所 一种甲醇无卤素气相羰基化制备醋酸及醋酸酯的方法
CN112675849A (zh) * 2020-12-22 2021-04-20 安徽稞馨环境科技有限公司 一种催化氧化法室温脱除一氧化碳的单原子催化剂制备方法及其应用
CN112642424A (zh) * 2020-12-23 2021-04-13 甄崇礼 用于臭氧氧化的贵金属催化剂及其制备方法
CN114682283A (zh) * 2020-12-31 2022-07-01 北京单原子催化科技有限公司 碳氮包覆负载型金属单原子催化剂、制备方法及其应用
CN114682283B (zh) * 2020-12-31 2023-06-16 北京单原子催化科技有限公司 碳氮包覆负载型金属单原子催化剂、制备方法及其应用
CN113101969B (zh) * 2021-04-15 2023-08-25 中国石油化工股份有限公司 一种分子筛负载单原子催化剂及其制备方法
CN113101969A (zh) * 2021-04-15 2021-07-13 中国石油化工股份有限公司 一种分子筛负载单原子催化剂及其制备方法
CN113262776A (zh) * 2021-04-20 2021-08-17 武汉理工大学 一种W-TiO2单原子负载光催化剂及其制备方法
CN113262776B (zh) * 2021-04-20 2023-09-22 武汉理工大学 一种W-TiO2单原子负载光催化剂及其制备方法
CN115445636A (zh) * 2021-06-08 2022-12-09 中国科学院大连化学物理研究所 一种单原子分散的钯基催化剂及其制备方法、应用
WO2022257025A1 (zh) * 2021-06-08 2022-12-15 中国科学院大连化学物理研究所 一种单原子分散的钯基催化剂及其制备方法、应用
CN115445636B (zh) * 2021-06-08 2023-12-12 中国科学院大连化学物理研究所 一种单原子分散的钯基催化剂及其制备方法、应用
CN115466177A (zh) * 2021-06-11 2022-12-13 中国科学院大连化学物理研究所 一种制备1,4-二乙酰氧基-2-丁烯的方法
CN115466177B (zh) * 2021-06-11 2024-02-02 中国科学院大连化学物理研究所 一种制备1,4-二乙酰氧基-2-丁烯的方法
CN114618476A (zh) * 2022-02-16 2022-06-14 中国科学院大连化学物理研究所 一种单原子铂基催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN109126774B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN109126774A (zh) 一种超高分散负载型单原子贵金属催化剂及其制备方法
Qi et al. Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction
Wang et al. Preparation, characterization and catalytic performance of single-atom catalysts
Liu et al. Design of highly efficient Pt-SnO2 hydrogenation nanocatalysts using Pt@ Sn core–shell nanoparticles
CN106944119B (zh) 一种氮化碳负载单原子金属催化材料的制备方法
Zhang et al. Kinetically stabilized Pd@ Pt core–shell octahedral nanoparticles with thin Pt layers for enhanced catalytic hydrogenation performance
Jin et al. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes< 10 nm for application in CO oxidation
Sun et al. Ultrafine Pd particles embedded in nitrogen-enriched mesoporous carbon for efficient H2 production from formic acid decomposition
CN111215060A (zh) 一种负载型铂族金属单原子催化剂的制备及其在脱氧反应中的应用
CN111195515B (zh) 一种单原子分散贵金属催化剂、其制备方法及应用
Liu et al. Atomic dispersion and surface enrichment of palladium in nitrogen-doped porous carbon cages lead to high-performance electrocatalytic reduction of oxygen
CN105597739B (zh) 一种Pt@CNTs催化剂及其制备和应用
CN111185237B (zh) 一种选择性加氢催化剂及其制备方法和应用
Sarkar et al. Facile aqueous-phase synthesis of the PtAu/Bi2O3 hybrid catalyst for efficient electro-oxidation of ethanol
CN111215053A (zh) 负载型单原子分散贵金属催化剂及制备方法
CN105642311A (zh) 碳基非贵金属贵金属核壳纳米催化剂及其以MOFs为模板的制备方法
Sharma et al. PdO/CuO nanoparticles on zeolite-Y for nitroarene reduction and methanol oxidation
CN110639567B (zh) 一种碳负载磷化二钌纳米团簇双功能催化剂及其制备方法和应用
Long et al. Construction of trace silver modified core@ shell structured Pt-Ni nanoframe@ CeO 2 for semihydrogenation of phenylacetylene
CN111644210B (zh) 一种复合载体钌基催化剂在乙炔氢氯化反应中的应用
Wang et al. Trimetallic Au‐Cu‐K/AC for acetylene hydrochlorination
CN113398975B (zh) 用于富单烯烃气氛中乙炔或丁二烯选择性加氢的NiCu催化剂的制备方法及产品和应用
Zhu et al. Fully exposed cobalt nanoclusters anchored on nitrogen-doped carbon synthesized by a host-guest strategy for semi-hydrogenation of phenylacetylene
Saha et al. Surface enriched palladium on palladium-copper bimetallic nanoparticles as catalyst for polycyclic triazoles synthesis
CN107999081B (zh) 一种碳包覆结构纳米铁基费托合成催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant