CN109104388A - 用于正则化参数自适应的装置、系统和方法 - Google Patents

用于正则化参数自适应的装置、系统和方法 Download PDF

Info

Publication number
CN109104388A
CN109104388A CN201810616850.2A CN201810616850A CN109104388A CN 109104388 A CN109104388 A CN 109104388A CN 201810616850 A CN201810616850 A CN 201810616850A CN 109104388 A CN109104388 A CN 109104388A
Authority
CN
China
Prior art keywords
group
channel parameter
regularization
adaptive
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810616850.2A
Other languages
English (en)
Other versions
CN109104388B (zh
Inventor
M·马罗
J·贝洛拉多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Publication of CN109104388A publication Critical patent/CN109104388A/zh
Application granted granted Critical
Publication of CN109104388B publication Critical patent/CN109104388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3707Adaptive decoding and hybrid decoding, e.g. decoding methods or techniques providing more than one decoding algorithm for one code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/596Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
    • G11B5/59633Servo formatting
    • G11B5/59666Self servo writing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/08Clock generators with changeable or programmable clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/12Synchronisation of different clock signals provided by a plurality of clock generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/10Program control for peripheral devices
    • G06F13/102Program control for peripheral devices where the programme performs an interfacing function, e.g. device driver
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4204Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus
    • G06F13/4221Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus being an input/output bus, e.g. ISA bus, EISA bus, PCI bus, SCSI bus
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10037A/D conversion, D/A conversion, sampling, slicing and digital quantisation or adjusting parameters thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • G11B20/10055Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter using partial response filtering when writing the signal to the medium or reading it therefrom
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10222Improvement or modification of read or write signals clock-related aspects, e.g. phase or frequency adjustment or bit synchronisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10222Improvement or modification of read or write signals clock-related aspects, e.g. phase or frequency adjustment or bit synchronisation
    • G11B20/1024Improvement or modification of read or write signals clock-related aspects, e.g. phase or frequency adjustment or bit synchronisation wherein a phase-locked loop [PLL] is used
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/596Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
    • G11B5/59633Servo formatting
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/131Digitally controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/135Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals by the use of time reference signals, e.g. clock signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/07Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop using several loops, e.g. for redundant clock signal generation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0814Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/091Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector using a sampling device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/095Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using a lock detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/001Analogue/digital/analogue conversion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
    • H03M13/4138Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors soft-output Viterbi algorithm based decoding, i.e. Viterbi decoding with weighted decisions
    • H03M13/4146Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors soft-output Viterbi algorithm based decoding, i.e. Viterbi decoding with weighted decisions soft-output Viterbi decoding according to Battail and Hagenauer in which the soft-output is determined using path metric differences along the maximum-likelihood path, i.e. "SOVA" decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • H04J3/0617Systems characterised by the synchronising information used the synchronising signal being characterised by the frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00019Variable delay
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2948Iterative decoding
    • H03M13/2951Iterative decoding using iteration stopping criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7105Joint detection techniques, e.g. linear detectors
    • H04B1/71055Joint detection techniques, e.g. linear detectors using minimum mean squared error [MMSE] detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/002Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation
    • H04L7/0025Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation interpolation of clock signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/002Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation
    • H04L7/0029Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation interpolation of received data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0331Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop with a digital phase-locked loop [PLL] processing binary samples, e.g. add/subtract logic for correction of receiver clock

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Probability & Statistics with Applications (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Error Detection And Correction (AREA)
  • Moving Of The Head To Find And Align With The Track (AREA)
  • Digital Magnetic Recording (AREA)
  • Analogue/Digital Conversion (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Manipulation Of Pulses (AREA)
  • Lubricants (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本主题申请涉及用于正则化参数自适应的装置、系统和方法。本发明提供了一种装置,所述装置可包括被配置为使用一组信道参数处理至少一个输入信号的电路。所述电路可使用正则化自适应算法来自适应第一组信道参数,以便由所述电路用作处理所述至少一个输入信号的一组信道参数,所述正则化自适应算法对所述第一组信道参数与对应的预定第二组信道参数的偏差进行罚分。然后所述电路可使用所述第一组信道参数作为一组信道参数来执行对所述至少一个输入信号的所述处理。

Description

用于正则化参数自适应的装置、系统和方法
技术领域
本主题申请涉及用于正则化参数自适应的装置、系统和方法。
背景技术
本发明通常可涉及正则化参数自适应,并且在一些实施例中,本发明可涉及多读取头系统中的多输入单输出(MISO)均衡器的参数的正则化参数自适应。
发明内容
在某些实施例中,一种装置可包括被配置为使用一组信道参数处理至少一个输入信号的电路。该电路可使用正则化自适应算法来自适应第一组信道参数,以便由该电路用作处理所述至少一个输入信号的一组信道参数,所述正则化自适应算法对第一组信道参数与对应的预定第二组信道参数的偏差进行罚分。然后该电路可使用第一组信道参数作为所述一组信道参数来执行对所述至少一个输入信号的处理。
在某些实施例中,一种系统可包括被配置为使用一组信道参数来处理至少一个输入信号的信道电路,以及被配置为使用正则化自适应算法来自适应第一组信道参数以便由信道电路用作处理所述至少一个输入信号的一组信道参数的自适应电路,所述正则化自适应算法对第一组信道参数与预定的对应第二组信道参数的偏差进行罚分。
在某些实施例中,一种方法可包括通过被配置为使用一组信道参数并使用正则化自适应算法处理至少一个输入信号的电路来自适应第一组信道参数,以便由电路用作处理所述至少一个输入信号的一组信道参数,所述正则化自适应算法对第一组信道参数与对应的预定第二组信道参数的偏差进行罚分。另外,该方法还可包括使用第一组信道参数作为所述一组信道参数来执行对所述至少一个输入信号的处理。
附图说明
图1是根据本公开的某些实施例的包括正则化参数自适应的通信信道的框图;
图2是根据本公开的某些实施例的包括正则化参数自适应的通信信道的一部分的框图;
图3是根据本公开的某些实施例的正则化参数自适应方法的流程图;
图4是根据本公开的某些实施例的正则化参数自适应方法的流程图;
图5是根据本公开的某些实施例的包括正则化参数自适应的系统的框图。
具体实施方式
在以下对实施例的详细描述中,参考了构成本文的一部分的附图,所述附图以例示的方式示出。应当理解,所述的各种实施例的特征可以组合,可使用其他实施例,并且可在不脱离本公开的范围的情况下进行结构变化。还应当理解,在不脱离本公开的范围的情况下,本文的各种实施例和示例的特征可以组合、交换或移除。
根据各种实施例,本文所述的方法和功能可被实现为在计算机处理器或控制器上运行的一个或多个软件程序。根据另一个实施例,本文所述的方法和功能可被实现为在计算设备(例如,使用磁盘驱动器的个人计算机)上运行的一个或多个软件程序。包括但不限于专用集成电路、可编程逻辑阵列和其他硬件设备的专用硬件具体实施同样可被构造为实现本文所述的方法和功能。此外,本文所述的方法可被实现为包括指令的计算机可读存储介质或设备,所述指令在被执行时使得处理器执行所述方法。
本公开整体可涉及正则化参数自适应,并且在一些实施例中,本公开可涉及多读取头系统中的多输入单输出(MISO)均衡器的参数的正则化参数自适应。
一些系统如电气、电子、电机驱动、处理或其他系统可接收所关注的信号并基于参数处理该信号。例如,通信系统或磁记录存储系统的读取信道可以利用自适应参数来处理至少一个输入信号。在一些多读取器或多接收器系统中,检测器可基于由MISO均衡器产生的均衡样本序列来生成数据序列,该MISO均衡器接收对应于相应读取头的多个数字化样本序列。自适应组件可包括用于自适应MISO均衡器的参数的各种自适应功能或算法。例如,自适应参数可以是MISO均衡器内的多个有限脉冲响应滤波器(FIR)的系数或抽头。例如,在一些实施例中,MISO均衡器可基于使用正则化自适应算法而自适应的参数来产生均衡样本序列。在一些示例中,正则化自适应算法可以利用或可以基于成本函数,该成本函数可以对已知参数值(例如,预定抽头值)组的偏差进行罚分或抑制。
这种系统的一个示例将在下文参照图1进行论述。
参见图1,示出了包括正则化参数自适应的通信信道的框图,并且该通信信道通常被指定为100。更具体地讲,图1可以示出包括正则化参数自适应的多读取器磁存储系统的读取信道的示例性实施例。系统100可包括两个读取头,即读取头102和读取头104,所述读取头可从磁存储介质的表面108上的轨道106进行读取。读取头102和104可联接到相应的前端处理电路110和112(例如,被示出为110和112的输入)。前端处理电路110和112可联接到MISO均衡器114。MISO均衡器114可联接到检测器118。检测器118可联接到自适应组件116和输出(例如,来自通信信道100的输出或向解码器(未示出)的输出)。自适应组件116可连接到MISO均衡器114。自适应组件116还可包括用于存储正则化数据120的存储器,或者访问存储在单独存储器(未示出)中的正则化数据120。
读取头102和104、前端处理电路110和112、MISO均衡器114、检测器118和自适应组件116中的每一者可以是独立电路、片上系统(SOC)、固件、处理器或未列出的其他系统,或它们的任何组合。
如上所述,读取头102和104可从磁存储介质的表面108上的轨道106进行读取。读取头102和104可以各自产生连续时间输入信号x1(t)122和x2(t)124,并且可以分别将连续时间输入信号x1(t)122和x2(t)124提供到前端处理电路110和112。
前端处理电路110可以将增益、滤波、采样和延迟函数应用于连续时间输入信号x1(t)122,以产生数字化样本序列x1 126。在一些实施例中,前端处理电路可包括诸如模拟前端(AFE)和模数转换器(ADC)的各种组件。类似地,前端处理电路112可将增益、滤波、采样和延迟函数应用于连续时间输入信号x2(t)124,以提供数字化样本序列x2 128。例如,在将增益和滤波函数应用于连续时间输入信号(例如,通过可变增益放大器和基于模拟的滤波器)之后,前端处理电路110和112可以规律的间隔对各个连续时间信号进行采样,并且可量化各个信号以产生相应的样本数字化序列x1 126和x2 128。然后,前端处理电路110和112可以将延迟应用于x1 126和x2 128中的一者或两者,以使读取头102和读取头104的读取位置同步(例如,以补偿读取头102和104的下行轨道分离(在图1中示出为竖直分离))。然后,前端处理电路110和112可以将x1 126和x2 128输出到MISO均衡器114。
MISO均衡器114可以接收数字化样本序列x1 126和x2 128以及参数p 132,并且生成均衡样本序列y 130。
MISO均衡器114可以是滤波器。通常,MISO均衡器可组合多个输入信号以产生单个输出信号,该输出信号可被提供给处理器、信道、缓冲器、其他电路或它们的任何组合。例如,MISO均衡器可以是包括具有L抽头的N个有限脉冲响应滤波器的N输入(例如,其中N可以是读取头数量)自适应均衡器。在一些示例中,L抽头可以是可应用于不同输入的加权因子(例如,频谱加权)。但是,具体实施并不受限于此。在其他具体实施中,MISO均衡器可以执行简单平均或加权平均。如下文更详细地论述,MISO均衡器114的抽头或参数p 132可以由自适应组件116进行自适应以及从该自适应组件接收。
检测器118可以操作以基于均衡样本序列y 130来确定(或估计)对应于信号x1(t)122和x2(t)124的比特值的数据序列b 134。在一些实施例中,数据序列b 134可以表示每个比特为零或一的概率。值134可以表示为这些概率的比率的对数,并且可被称为对数似然比或LLR。检测器118可基于信道响应的信息(例如,针对每个可能的写入/传输的数据模式的预期信道输出)来生成LLR值。在一些示例中,检测器118可采用软输出维特比算法(SOVA)。另外,检测器118可以是迭代解码单元,并且除检测器(例如,SOVA检测器和低密度奇偶校验(LDPC)解码器)之外还包括解码器。另选地或除此之外,检测器118可以操作以确定(或估计)比特值的数据序列b 134作为关于每个比特是零还是一的判定。
自适应组件116可以操作以接收均衡样本序列y 130、数据序列b 134或已知的写入数据t 136,并且自适应MISO均衡器114的参数p 132。
MISO均衡器114的抽头或参数p 132可基于自适应算法的正则化版本诸如正则化最小均方(LMS)算法、正则化最小比特误码率(MBER)算法或正则化递归最小二乘(RLS)算法进行自适应。在一些示例中,多读取头硬盘驱动器读取信道的MISO均衡器可以利用正则化自适应算法,该正则化自适应算法可以对先前确定的可作为正则化数据120存储的在轨读取参数的偏差进行罚分或抑制。例如,自适应组件116可使用LMS或其他自适应算法来自适应MISO均衡器114的参数p 132,以最小化均方误差、比特误码率或其他自适应标准的正则化版本。
正则化数据120可以在制造期间或训练过程中在字段中生成。就硬盘驱动器或其参数在介质上变化的其他设备而言,可针对每个存储单元(例如,扇区、页面等)或针对可对应于轨道组的较大区域或区(这是下面讨论的示例中的情况)而生成正则化数据120。在生成正则化数据期间,可使用已知的写入数据以及例如来自在轨读取期间的读取信号的样本来生成(例如,自适应)参数集。然后所生成的参数集可被存储,以便在正常操作期间用作正则化参数。
示例性正则化自适应过程的其他细节在下文参照图2提供。
在本文论述的示例中,自适应的参数是MISO均衡器的参数。尽管本文的论述利用读取信道的MISO均衡器的参数作为示例,但本发明所公开的技术和系统也可应用于其他电路或参数。根据本公开,许多变型形式对于本领域的普通技术人员而言将是显而易见的。
参见图2,示出了包括正则化参数自适应的通信信道的一部分的框图,并且该通信信道通常被指定为200。更具体地讲,图2示出了图1所示的多读取器磁存储系统100的MISO均衡器114和自适应组件116的更详细的示例性实施例。
如上所述,系统200可包括MISO均衡器114和自适应组件116。MISO均衡器114可包括两个有限脉冲响应(FIR)滤波器,即FIR 1 202和FIR 2 204,所述FIR均可联接到加法器212。加法器212可联接到自适应组件116的加法器210,并且联接到输出端(例如,联接到未示出的检测器或解码器)。加法器210可联接到自适应器208,该自适应器可联接到MISO均衡器114的FIR 1 202和FIR 2 204以及自适应组件116的目标206。目标206可联接到加法器210。自适应器208还可包括用于存储正则化数据120的存储器,或者访问存储在单独存储器(未示出)中的正则化数据120。FIR 1 202、FIR 2 204、加法器210和212、目标206和自适应器208中的每一者可以是独立电路、片上系统(SOC)、固件、处理器或未列出的其他系统,或它们的任何组合。
在操作中,FIR 1 202和FIR 2 204可以接收来自各个ADC的相应数字化样本序列x1 214和x2 216(例如,可对应于数字化样本序列x1 126和x2 128),以及来自自适应器208的参数h1 218和h2 218。使用参数h1 218和h2 218(例如,作为抽头权重或系数),FIR 1 202和FIR 2 204可以对相应数字化样本序列x1 214和x2 216执行滤波函数,以产生相应的中间均衡样本序列y1 222和y2 224。加法器212可以接收并组合(例如,求和)中间均衡样本序列y1222和y2 224,以产生均衡样本序列y 226。
目标206可以接收来自自适应器208的参数t 228以及判定数据b 230(或已知的写入数据)。基于t 228和b 230,目标206可例如通过执行目标响应滤波函数来生成目标均衡样本序列yt 232。
加法器210可以接收均衡样本序列y 226和目标均衡样本序列yt 232。加法器210可以将误差e 234确定为y 226与yt 232之间的差值(例如,通过从y 226减去yt 232)。
自适应器208可以接收误差e 234。自适应器208可基于误差234和正则化数据120使用正则化自适应算法来自适应参数h1 218和h2 220。根据具体实施,自适应器208可使用正则化或标准自适应算法来自适应参数t 228。例如,在正常操作期间,可停止参数t 228的自适应。在这种情况下,参数t228的自适应正则化可能不会提供超过标准自适应的有益效果。下面提供了示例性正则化自适应算法和可用于对自适应算法进行正则化的示例性修改的详细信息。
在一些示例中,FIR滤波器FIR 1 202和FIR 2 204的参数可使用正则化最小均方误差(MMSE)成本函数进行自适应,并且在具体示例中,使用正则化最小均方(LMS)随机梯度下降自适应算法进行自适应。MISO均衡器中的标准LMS自适应可能在FIR输入相似的时段(例如,当读取的信号具有相似或相同的质量时)出现病态。这可能导致误差234的误差表面平坦或具有浅坡度。这可能继而导致
响应于相似输入的微小差异而随机游走的参数或系数。一旦MISO均衡器的参数或系数已经游走,当输入发生偏差时(例如,离轨读取),可能会出现性能损失。具体地讲,对于离轨读取,这种游走或病态调节可能对参数或系数提供随机初始化,这可能导致远离正确权重。因此,由于瞬态时间增加以返回到良好调节的参数或系数,性能可能会丢失。
在一些实施例中,使用正则化最小均方误差(MMSE)成本函数,并且具体地讲使用最小均方(LMS)随机梯度下降自适应算法,可以避免上面论述的游走。如上所述,自适应算法正则化可包括向成本函数或自适应算法添加对先前确定的在轨读取参数的偏差的罚分或抑制。
在标准MMSE自适应中,被最小化的成本函数可以是:
正则化MMSE成本函数可对预定值h1,reg和h2,reg的参数或权重偏差进行罚分。如上所述,预定值h1,reg和h2,reg可以从正则化数据120加载,并且例如可以是其自适应在与当前轨道或扇区相关联的区域或区的在轨读取期间汇聚的参数。
示例性正则化MMSE成本函数可以写为:
其中λ为可确定成本函数的正则化项的相对权重的正则化参数。换句话讲,设置的λ越大,对偏离预定值h1,reg和h2,reg应用的罚分就越多。
基于上述示例性正则化MMSE成本函数,标准LMS系数更新等式(其可使用相对于系数的近似梯度J):
h1,i→h1,i-μx1,j-i*ej
h2,i→h2,i-μx2,j-i*ej
可修改为:
h1,i→h1,i-μx1,j-i*ej-λ(h1,i-h1,reg,i
h2,i→h2,i-μx2,j-i*ej-λ(h2,i-h2reg,i)。
其中i可为系数指数,并且j可为时间指数。
如上所述,在多读取器HDD系统中,对MISO均衡器的正则化系数h1,reg和h2,reg的良好选择可以是在轨自适应参数。在这种情况下,正则化可能会阻止参数过于远离在轨最佳值游走。
在本文论述的示例中,自适应的参数可以是MISO均衡器的参数。尽管本文的论述利用读取信道的MISO均衡器的参数作为示例,但本发明所公开的技术和系统也可应用于其他电路或参数,并且可以使用来自上面讨论的那些的不同的经修改的成本函数或经修改的自适应算法。例如,在正常操作中包括目标自适应的系统中,正则化MMSE成本函数和正则化LMS算法均可包括用于t 228和b 230的项。
根据本公开,许多其他变型形式对于本领域的普通技术人员而言将是显而易见的。例如,正则化的另一个用途可以是实现软饱和。例如,在最小BER(MBER)自适应的一些具体实施中,可使用硬饱和约束来抑制MBER参数过于远离最小二乘(LS)参数移动。这种游走可能会导致定点饱和并降低性能。硬饱和可防止自适应将系数移动超过某个点。例如,如果系数将饱和到+7的值,则系统可防止系数自适应移动到+7以上(例如,使用固件或类似电路逻辑中的如果-则语句)。在本文所公开的主题的一些示例中,引入正则化可以向MBER成本函数添加附加项以对LS值的移动进行罚分。这优于硬饱和,因为如本文所公开的正则化可以允许系数在系数的变化产生成本函数的降低时移动,同时提供与由硬饱和所提供的相似的游走抑制。
参见图3,示出了正则化参数自适应的方法的流程图,该方法通常指定为300。更具体地讲,流程图300可以是制造或训练操作,以生成如上文相对于图1和图2详细描述的正则化数据120(例如,对于当前区)。
在302处,系统可于在轨读取期间接收第一读取头的第一连续时间输入信号的第一多个样本以及第二读取头的第二连续时间输入信号的第二多个样本。然后在304处,系统可以将延迟应用于第一多个样本或第二多个样本,以同步第一读取头和第二读取头的读取位置。在306处,系统可基于第一连续时间输入信号生成第一数字化样本序列,并基于第二连续时间输入信号生成第二数字化样本序列。
接下来,在308处,系统可基于第一数字化样本和一个或多个第一参数生成第一滤波样本序列,并基于第二数字化样本和一个或多个第二参数生成第二滤波样本序列。在310处,系统可组合第一滤波样本序列和第二滤波样本序列,以产生可为均衡样本序列的MISO输出。在312处,系统可基于检测器判定或已知数据和信道脉冲响应来生成目标样本序列。
然后,在314处,系统可使用例如LMS自适应,基于目标样本序列与均衡样本序列之间的误差来自适应第一参数和第二参数。尽管LMS自适应被用作示例性自适应算法,但其他自适应算法也可用于第一参数和第二参数的自适应。
然后在316处,系统可确定第一参数和第二参数是否已稳定。如果参数已稳定,则在318处,系统可存储当前区的第一参数和第二参数(例如,作为正则化数据120)。如果参数尚不稳定,则系统可返回到308以进行另外的自适应操作。虽然未示出,但在一些实施例中,当参数尚未稳定时,也可以重复另外的操作诸如操作302-306中的一个或多个操作,或者可以对新样本执行稳定性确定,直到参数对于该区的数据样本总体上已稳定。
参见图4,示出了正则化参数自适应的方法的流程图,该方法通常指定为400。更具体地讲,流程图400可以是在读取或接收操作期间执行的采样、均衡和正则化参数自适应操作,并且可以如上文相对于图1和图2所详述的那样执行。
在操作中,在402处,系统可以例如针对当前数据扇区接收第一读取头的第一连续时间输入信号的第一多个样本以及第二读取头的第二连续时间输入信号的第二多个样本。在404处,系统可以将延迟应用于第一多个样本或第二多个样本,以同步第一读取头和第二读取头的读取位置。接下来,在406处,系统可基于第一连续时间输入信号生成第一数字化样本序列,并基于第二连续时间输入信号生成第二数字化样本序列。
在408处,系统可基于第一数字化样本和第一参数生成第一滤波样本序列,并基于第二数字化样本和第二参数生成第二滤波样本序列。如上所述,参数可以是用作MISO均衡器的多个FIR滤波器的抽头值的权重、系数等。这些参数可以由自适应组件进行自适应并从自适应组件提供给MISO均衡器。接下来,在410处,系统可组合第一滤波样本序列和第二滤波样本序列,以产生可为均衡样本序列的MISO输出。
在412处,系统可基于检测器判定或已知数据和信道脉冲响应来生成目标样本序列。最后,在414处,系统可使用正则化LMS自适应,基于目标样本序列和组合均衡样本序列(例如,基于它们之间的差异)来自适应第一参数和第二参数。
针对方法300和400列出的所有步骤都可应用于具有自适应参数的系统。如上所述,其他自适应算法可代替MMSE,并且这些处理可用于其他电路例如解码器、均衡器、ADC等等的参数。另外,根据本公开,本领域的普通技术人员应当理解,读取头或输入信号的数量可以大于两个(例如,多个)。根据本公开,许多其他变型形式将是显而易见的。用于执行该方法中的操作的组件和电路可以是分立的,或者集成到片上系统(SOC)或其他电路中。此外,这些步骤可以在处理器(例如,数字信号处理器)中执行、在软件中实现、经由固件实现或通过其他手段来执行。
参见图5,示出了包括正则化参数自适应的系统的框图,并且该系统通常被指定为500。系统500可以是数据存储设备(DSD)的示例,并且可以是系统100和200的示例性具体实施。DSD 516可以任选地连接到主机设备514并且可从该主机设备移除,该主机设备可以是具有存储数据的设备或系统,诸如台式计算机、膝上型计算机、服务器、数字视频录像机、影印机、电话、音乐播放器、未列出的其他电子设备或系统,或者它们的任何组合。数据存储设备516可经由基于硬件/固件的主机接口电路512与主机设备514进行通信,该主机接口电路可包括允许DSD 516与主机514物理连接和断开连接的连接器(未示出)。
DSD 516可包括可以是可编程控制器的系统处理器502以及相关联的存储器504。系统处理器502可以是片上系统(SOC)的一部分。缓冲器506可以在读取和写入操作期间临时存储数据,并且可包括命令队列。读取/写入(R/W)信道510可以在对数据存储介质508进行写入操作期间对数据进行编码,并且在从数据存储介质进行读取操作期间对数据进行重构。数据存储介质508被示出和描述为硬盘驱动器,但也可以是其他类型的磁介质,诸如闪存介质、光学介质或其他介质,或者它们的任何组合。
R/W信道510可以一次接收来自多于一个数据存储介质的数据,并且在一些实施例中,还可以同时接收诸如来自读取头的多于一个输出的多个数据信号。例如,具有二维磁记录(TDMR)系统的存储系统可具有多个读取或记录元件,并且可以同时或几乎同时从两个轨道进行读取。多维录音(MDR)系统可以接收来自多个源的两个或更多个输入(例如,记录头、闪存、光学存储器等)。R/W信道510可组合多个输入并提供单个输出,如本文的示例所述。
框518可实现系统和方法100,200,300和400的全部或部分系统和功能。在一些实施例中,框518可以是集成到R/W信道510中的独立电路,被包括在片上系统、固件、软件或它们的任何组合中。
本文所述的说明、示例和实施例旨在提供对各种实施例的结构的全面理解。这些说明并非旨在用作采用本文所述结构或方法的装置和系统的所有元件和特征的完整描述。在查看本公开后,许多其他实施例对于本领域技术人员而言可以是显而易见的。可通过本公开利用并得到其他实施例,使得可在不脱离本公开的范围的情况下进行结构和逻辑替换和变化。例如,附图和以上描述提供了可改变的架构和电压的示例,诸如系统的设计要求。此外,虽然在本文中已说明和描述了具体实施例,但应当理解,被设计为实现相同或相似目的的任何后续布置可以替代所示的具体实施例。
本公开旨在覆盖各种实施例的任何和全部后续改型或变型。在查看说明书后,上述示例的组合以及本文中未具体描述的其他实施例对于本领域技术人员而言将是显而易见的。此外,图示仅仅是代表性的,可能未按比例绘制。图示中的某些比例可能被放大,而其他比例可能被缩小。因此,本公开和附图被认为是例示性的,而非限制性的。

Claims (20)

1.一种装置,包括:
电路,所述电路被配置为使用一组信道参数来处理至少一个输入信号,所述电路被进一步配置为:
使用正则化自适应算法来自适应第一组信道参数,以便由所述电路用作处理所述至少一个输入信号的所述一组信道参数,所述正则化自适应算法对所述第一组信道参数与对应的预定第二组信道参数的偏差进行罚分;以及
使用所述第一组信道参数作为所述一组信道参数来执行对所述至少一个输入信号的所述处理。
2.根据权利要求1所述的装置,还包括所述电路还包括MISO均衡器,所述MISO均衡器使用所述一组信道参数作为滤波器抽头来执行对所述至少一个输入信号的所述处理。
3.根据权利要求2所述的装置,还包括所述至少一个输入信号是对应于多个读取头的多个数字信号。
4.根据权利要求3所述的装置,还包括所述第二组信道参数是使用所述正则化自适应算法的未正则化版本在先前在轨读取期间生成的。
5.根据权利要求3所述的装置,还包括:
存储所述第二组信道参数的存储器;
所述至少一个输入信号基于由所述多个读取头从磁存储介质的扇区读取的回读信号;并且
所述第二组信道参数对应于包括所述扇区的所述磁存储介质的区域。
6.根据权利要求3所述的装置,所述电路还包括
多个模数转换器(ADC),所述多个数字信号中的每个由所述多个ADC中的对应ADC生成;
所述MISO均衡器包括:
多个有限脉冲响应(FIR)滤波器,所述一组信道参数包括所述多个有限脉冲响应滤波器的滤波器抽头,所述多个数字信号中的每个由所述多个有限脉冲响应滤波器中的对应FIR滤波器处理;以及
组合器电路,所述组合器电路组合所述多个FIR滤波器的所述输出。
7.根据权利要求6所述的装置,还包括所述电路还包括检测器,所述检测器对所述MISO均衡器的所述输出执行比特检测操作,所述电路被进一步配置为:
基于所述检测器的检测器判定和信道脉冲响应来确定目标;
基于所述MISO均衡器输出和所述目标的差值来确定误差;以及
基于所述误差执行所述自适应。
8.根据权利要求1所述的装置,还包括所述正则化自适应算法是正则化LMS自适应算法或正则化MMSE自适应算法。
9.根据权利要求1所述的装置,还包括所述正则化自适应算法还包括可调参数,所述可调参数对所述第一组信道参数与所述第二组信道参数的偏差的所述罚分进行缩放。
10.一种系统,包括:
信道电路,所述信道电路被配置为使用一组信道参数来处理至少一个输入信号;
自适应电路,所述自适应电路被配置为:
使用正则化自适应算法来自适应第一组信道参数,以便由所述信道电路用作处理所述至少一个输入信号的所述一组信道参数,所述正则化自适应算法对所述第一组信道参数与预定的对应第二组信道参数的偏差进行罚分。
11.根据权利要求10所述的系统,还包括所述信道电路是多输入单输出(MISO)均衡器,并且所述一组信道参数是所述MISO均衡器的滤波器抽头。
12.根据权利要求11所述的系统,还包括所述正则化自适应算法是正则化LMS自适应算法或正则化MMSE自适应算法。
13.根据权利要求12所述的系统,还包括所述正则化自适应算法还包括可调参数,所述可调参数对所述第一组信道参数与所述第二组信道参数的偏差的所述罚分进行缩放。
14.根据权利要求11所述的系统,还包括所述至少一个输入信号是对应于多个读取头的多个数字信号。
15.根据权利要求14所述的系统,还包括:
存储所述第二组信道参数的存储器,所述第二组信道参数是使用所述正则化自适应算法的未正则化版本在先前在轨读取期间生成的;
所述至少一个输入信号基于由所述多个读取头从磁存储介质的扇区读取的回读信号;并且
所述第二组信道参数对应于包括所述扇区的所述磁存储介质的区域。
16.根据权利要求11所述的系统,还包括:
多个模数转换器(ADC),所述多个数字信号中的每个由所述多个ADC中的对应ADC生成;
所述MISO均衡器包括:
多个有限脉冲响应(FIR)滤波器,所述一组信道参数包括所述多个有限脉冲响应滤波器的滤波器抽头,所述多个数字信号中的每个由所述多个FIR滤波器中的对应FIR滤波器处理;以及
组合器电路,所述组合器电路组合所述多个FIR滤波器的所述输出;
检测器,所述检测器对所述MISO均衡器的所述输出执行比特检测操作;
目标电路,所述目标电路被配置为:
基于所述检测器的检测器判定和信道脉冲响应来确定目标;
基于所述MISO均衡器输出和所述目标的差值来确定误差;并且所述自适应电路被进一步配置为基于所述误差来执行所述自适应。
17.一种方法,包括:
通过被配置为使用一组信道参数并使用正则化自适应算法处理至少一个输入信号的电路来自适应第一组信道参数,以便由所述电路用作处理所述至少一个输入信号的所述一组信道参数,所述正则化自适应算法对所述第一组信道参数与对应的预定第二组信道参数的偏差进行罚分;以及
使用所述第一组信道参数作为所述一组信道参数来执行对所述至少一个输入信号的所述处理。
18.根据权利要求17所述的方法,还包括所述电路包括MISO均衡器,所述MISO均衡器使用所述一组信道参数作为滤波器抽头来执行对所述至少一个输入信号的所述处理。
19.根据权利要求18所述的方法,还包括所述正则化自适应算法是正则化LMS自适应算法或正则化MMSE自适应算法。
20.根据权利要求17所述的方法,还包括:
所述至少一个输入信号是对应于磁存储介质的扇区的一个或多个数字化样本序列;
所述第二组信道参数对应于包括所述扇区的所述磁存储介质的区域,并且是使用所述正则化自适应算法的未正则化版本在数据的先前在轨读取期间生成的,所述数据被写入包括所述扇区的所述磁存储介质的所述区域。
CN201810616850.2A 2017-06-20 2018-06-15 用于正则化参数自适应的装置、系统和方法 Active CN109104388B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762522248P 2017-06-20 2017-06-20
US62/522,248 2017-06-20
US15/793,864 US10276197B2 (en) 2017-06-20 2017-10-25 Parallelized writing of servo RRO/ZAP fields
US15/793,864 2017-10-25

Publications (2)

Publication Number Publication Date
CN109104388A true CN109104388A (zh) 2018-12-28
CN109104388B CN109104388B (zh) 2021-06-11

Family

ID=62683652

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201810616850.2A Active CN109104388B (zh) 2017-06-20 2018-06-15 用于正则化参数自适应的装置、系统和方法
CN201810636877.8A Active CN109104200B (zh) 2017-06-20 2018-06-20 近似参数自适应
CN201810635583.3A Active CN109104204B (zh) 2017-06-20 2018-06-20 用于混合定时恢复的装置、系统和方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201810636877.8A Active CN109104200B (zh) 2017-06-20 2018-06-20 近似参数自适应
CN201810635583.3A Active CN109104204B (zh) 2017-06-20 2018-06-20 用于混合定时恢复的装置、系统和方法

Country Status (4)

Country Link
US (14) US10014026B1 (zh)
CN (3) CN109104388B (zh)
SG (3) SG10201804852XA (zh)
TW (3) TWI701591B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554838A (zh) * 2019-06-27 2019-12-10 中南大学 一种基于联合优化回声状态网络的热数据预测方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8595191B2 (en) 2009-12-31 2013-11-26 Commvault Systems, Inc. Systems and methods for performing data management operations using snapshots
US10152457B1 (en) 2016-10-25 2018-12-11 Seagate Technology Llc Target parameter adaptation
US10382166B1 (en) * 2017-02-22 2019-08-13 Seagate Technology Llc Constrained receiver parameter optimization
US10014026B1 (en) 2017-06-20 2018-07-03 Seagate Technology Llc Head delay calibration and tracking in MSMR systems
GB2566760B (en) * 2017-10-20 2019-10-23 Please Hold Uk Ltd Audio Signal
GB2566759B8 (en) 2017-10-20 2021-12-08 Please Hold Uk Ltd Encoding identifiers to produce audio identifiers from a plurality of audio bitstreams
JP6813474B2 (ja) * 2017-12-26 2021-01-13 株式会社東芝 磁気ディスク装置及びリード/ライトオフセット補正方法
US11022511B2 (en) 2018-04-18 2021-06-01 Aron Kain Sensor commonality platform using multi-discipline adaptable sensors for customizable applications
US11018842B1 (en) 2018-07-31 2021-05-25 Seagate Technology Llc Dynamic timing recovery bandwidth modulation for phase offset mitigation
US11016681B1 (en) 2018-07-31 2021-05-25 Seagate Technology Llc Multi-threshold parameter adaptation
US10522177B1 (en) 2018-07-31 2019-12-31 Seagate Technology Llc Disc locked clock-based servo timing
US10803902B1 (en) 2018-08-19 2020-10-13 Seagate Technology Llc Hardware-based read sample averaging
US10460762B1 (en) * 2018-09-04 2019-10-29 Seagate Technology Llc Cancelling adjacent track interference signal with different data rate
US10468060B1 (en) 2018-09-27 2019-11-05 Seagate Technology Llc Cancelling adjacent track interference
JP7439474B2 (ja) * 2019-11-25 2024-02-28 富士電機株式会社 プログラマブルコントローラシステムおよびモジュール
JP2022003598A (ja) * 2020-06-23 2022-01-11 株式会社東芝 磁気ディスク装置及びリード処理方法
US11366602B2 (en) 2020-06-23 2022-06-21 Western Digital Technologies, Inc. Data storage device with burn-after-read mode
US11495248B2 (en) * 2020-06-23 2022-11-08 Fujifilm Corporation Signal processing device, magnetic tape cartridge, magnetic tape reading apparatus, processing method of signal processing device, operation method of magnetic tape reading apparatus, and non-transitory computer-readable storage medium
US11595050B2 (en) * 2021-07-16 2023-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Circuits and methods for a cascade phase locked loop
US11456792B1 (en) * 2021-07-30 2022-09-27 Raytheon Company Intermodulation suppression in phased arrays using volterra filters
US11562767B1 (en) 2021-09-08 2023-01-24 Seagate Technology Llc Multi-sector read offset recovery
US11735220B2 (en) 2021-12-27 2023-08-22 Seagate Technology Llc Phase locking multiple clocks of different frequencies
US11694722B1 (en) 2022-02-15 2023-07-04 Western Digital Technologies, Inc. Data timestamp and read counter for magnetic recording devices
US20240022390A1 (en) * 2022-07-15 2024-01-18 Hughes Network Systems Method and Apparatus for Synchronizing Frequency in remote terminals
CN116055928B (zh) * 2023-04-03 2023-06-02 深圳市紫光同创电子有限公司 一种数据采样方法、装置、电子设备以及存储介质

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561013A (zh) * 2004-02-26 2005-01-05 上海交通大学 基于导频矩阵的时域自适应信道估计方法
CN1866945A (zh) * 2006-05-11 2006-11-22 上海交通大学 Ofdm系统中基于可变遗忘因子的rls信道估计方法
CN101091321A (zh) * 2004-12-29 2007-12-19 英特尔公司 用于低密度奇偶校验码的多门限解码的固定门限和信道估计
CN101478510A (zh) * 2009-02-17 2009-07-08 上海高清数字科技产业有限公司 一种自适应均衡器及使用该均衡器的接收机系统
US20090253898A1 (en) * 2006-04-11 2009-10-08 Engl Heinz W Mathematical Design of ION Channel Selectivity Via Inverse Problem Technology
US7773207B1 (en) * 2005-07-14 2010-08-10 At&T Corp. Estimating optical transmission system penalties induced by polarization mode dispersion (PMD)
CN101932001A (zh) * 2009-06-24 2010-12-29 中兴通讯股份有限公司 一种自适应调制编码方法
CN103476026A (zh) * 2013-09-06 2013-12-25 中国科学院软件研究所 基于卫星信道编码的自适应隐蔽通信方法
CN103560984A (zh) * 2013-10-31 2014-02-05 北京工业大学 基于多模型加权软切换的信道自适应估计方法
CN104052691A (zh) * 2014-07-02 2014-09-17 东南大学 基于压缩感知的mimo-ofdm系统信道估计方法
US20150180586A1 (en) * 2013-12-24 2015-06-25 Fujitsu Limited Optical receiving device
CN105050137A (zh) * 2015-06-18 2015-11-11 西安电子科技大学 一种基于信息物理系统模型的车联网拥塞控制方法
CN105191242A (zh) * 2013-05-15 2015-12-23 华为技术有限公司 使用非整数采样的低复杂度自适应分数间隔均衡器
CN105656819A (zh) * 2016-03-21 2016-06-08 电子科技大学 一种基于压缩感知和大规模mimo的自适应信道估计方法
CN105812299A (zh) * 2016-04-22 2016-07-27 中国地质大学(武汉) 基于联合块稀疏重构的无线传感网信道估计算法及系统

Family Cites Families (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508491B2 (ja) 1987-09-28 1996-06-19 ソニー株式会社 デ―タ再生装置
JP2653933B2 (ja) 1991-04-30 1997-09-17 富士通株式会社 磁気ディスク装置のオフセット検出方式
US5862192A (en) 1991-12-31 1999-01-19 Lucent Technologies Inc. Methods and apparatus for equalization and decoding of digital communications channels using antenna diversity
US5621769A (en) 1992-06-08 1997-04-15 Novatel Communications Ltd. Adaptive-sequence-estimation apparatus employing diversity combining/selection
MY108838A (en) 1992-07-03 1996-11-30 Koninklijke Philips Electronics Nv Adaptive viterbi detector
KR960012019B1 (ko) 1993-11-18 1996-09-09 엘지전자 주식회사 에이치디티브이(hdtv)의 채널등화기
KR100300954B1 (ko) 1994-09-27 2001-10-22 윤종용 고정각속도방식의디스크재생장치의적응형등화기
US6665308B1 (en) 1995-08-25 2003-12-16 Terayon Communication Systems, Inc. Apparatus and method for equalization in distributed digital data transmission systems
US5970093A (en) 1996-01-23 1999-10-19 Tiernan Communications, Inc. Fractionally-spaced adaptively-equalized self-recovering digital receiver for amplitude-Phase modulated signals
US5742532A (en) 1996-05-09 1998-04-21 The Board Of Trustees Of The Leland Stanford Junior University System and method for generating fractional length delay lines in a digital signal processing system
US6633894B1 (en) 1997-05-08 2003-10-14 Legerity Inc. Signal processing arrangement including variable length adaptive filter and method therefor
US6377552B1 (en) 1997-08-29 2002-04-23 Motorola, Inc. System, device, and method for evaluating dynamic range in a communication system
US6396887B1 (en) 1997-10-10 2002-05-28 Rambus Incorporated Apparatus and method for generating a distributed clock signal using gear ratio techniques
US6222592B1 (en) 1998-01-13 2001-04-24 Samsung Electronics Co., Ltd. TV receiver equalizer storing channel characterizations for each TV channel between times of reception therefrom
US6111712A (en) 1998-03-06 2000-08-29 Cirrus Logic, Inc. Method to improve the jitter of high frequency phase locked loops used in read channels
US6157510A (en) 1998-03-10 2000-12-05 Maxtor Corporation Magnetic storage device with multiple read elements which are offset laterally and longitudinally
FI104772B (fi) 1998-03-23 2000-03-31 Nokia Networks Oy Itseoptimoiva kanavakorjaus- ja ilmaisumenetelmä ja itseoptimoiva kanavakorjain/ilmaisin
JP2000048488A (ja) 1998-07-27 2000-02-18 Pioneer Electron Corp クロストーク除去回路を有する記録情報再生装置
AU766116B2 (en) * 1998-08-14 2003-10-09 Qualcomm Incorporated Memory architecture for map decoder
JP3226499B2 (ja) 1998-09-25 2001-11-05 富士通株式会社 記憶ディスク装置のヘッド位置決め制御方法及びその装置
US6320920B1 (en) 1998-10-08 2001-11-20 Gregory Lee Beyke Phase coherence filter
US6597745B1 (en) * 1999-04-06 2003-07-22 Eric M. Dowling Reduced complexity multicarrier precoder
US6549587B1 (en) 1999-09-20 2003-04-15 Broadcom Corporation Voice and data exchange over a packet based network with timing recovery
US6181213B1 (en) 1999-06-14 2001-01-30 Realtek Semiconductor Corp. Phase-locked loop having a multi-phase voltage controlled oscillator
FR2796487B1 (fr) * 1999-06-28 2001-10-12 St Microelectronics Sa Procede et dispositif pour l'asservissement d'un faisceau optique incident sur une piste d'un support mobile d'informations, en particulier un disque numerique a vitesse de rotation elevee
US6519107B1 (en) 1999-09-24 2003-02-11 Maxtor Corporation Hard disk drive having self-written servo burst patterns
US6505222B1 (en) 1999-10-29 2003-01-07 International Business Machines Corporation Systems methods and computer program products for controlling undesirable bias in an equalizer
US7324437B1 (en) 1999-11-27 2008-01-29 Deutsche Telekom Ag Method for co-channel interference cancellation in a multicarrier communication system
US6760371B1 (en) 2000-03-22 2004-07-06 The Boeing Company Method and apparatus implementation of a zero forcing equalizer
US7133239B1 (en) 2000-05-09 2006-11-07 Maxtor Corporation Methods and apparatuses for writing spiral servo patterns onto a disk surface
US6581182B1 (en) 2000-05-15 2003-06-17 Agere Systems Inc. Iterative decoding with post-processing of detected encoded data
US7245638B2 (en) * 2000-07-21 2007-07-17 Broadcom Corporation Methods and systems for DSP-based receivers
US20020181439A1 (en) 2000-08-30 2002-12-05 Masayuki Orihashi Data transmitting apparatus, radio communication system and radio communication method
US7133233B1 (en) 2000-10-24 2006-11-07 Maxtor Corporation Disk drive with read while write capability
US7046701B2 (en) 2000-11-03 2006-05-16 Qualcomm Inc. System, method, and apparatus for fractional delay
DE60131243T2 (de) * 2000-12-19 2008-08-21 Ntt Docomo Inc. Adaptives Entzerrungsverfahren sowie adaptiver Entzerrer
US6697891B2 (en) 2001-01-16 2004-02-24 Hitachi Global Storage Technologies Netherlands B.V. Parallel read/write circuit and method for efficient storing/retrieval of data to/from a recording medium
JP4487433B2 (ja) 2001-03-02 2010-06-23 ヤマハ株式会社 記録媒体記録装置
SG96277A1 (en) 2001-03-23 2003-05-23 Toshiba Kk Magnetic disk drive apparatus having a self-servo writing system and method for writing servo pattern therein
US6738205B1 (en) 2001-07-08 2004-05-18 Maxtor Corporation Self-writing of servo patterns in disk drives
US6670901B2 (en) 2001-07-31 2003-12-30 Motorola, Inc. Dynamic range on demand receiver and method of varying same
US6687073B1 (en) 2001-08-31 2004-02-03 Western Digital Technologies, Inc. Method of simultaneously writing servo tracks on a hard disk drive
US7440208B1 (en) 2001-09-21 2008-10-21 Maxtor Corporation Flexible partial response targets for data detectors
US6993291B2 (en) 2001-10-11 2006-01-31 Nokia Corporation Method and apparatus for continuously controlling the dynamic range from an analog-to-digital converter
US7085330B1 (en) 2002-02-15 2006-08-01 Marvell International Ltd. Method and apparatus for amplifier linearization using adaptive predistortion
TW591613B (en) 2002-03-26 2004-06-11 Via Tech Inc Method and related device for achieving stable writing state of compact disk driver by adjusting writing clock
JP3816050B2 (ja) 2002-04-23 2006-08-30 松下電器産業株式会社 信号処理装置
TW587882U (en) * 2002-05-01 2004-05-11 Interdigital Tech Corp Node-B capable of supporting point to multi-point services using high speed channels
TW200413907A (en) * 2002-08-29 2004-08-01 Motorola Inc Storage system with memory for storing data
CN100452669C (zh) * 2002-11-15 2009-01-14 意大利电信股份公司 用于对数字电信接收机进行精细同步的方法及数字通信接收机
US7180963B2 (en) 2002-11-25 2007-02-20 Ali Corporation Digital receiver capable of processing modulated signals at various data rates
US7324589B2 (en) * 2003-02-05 2008-01-29 Fujitsu Limited Method and system for providing error compensation to a signal using feedback control
US7830956B2 (en) * 2003-02-05 2010-11-09 Fujitsu Limited Method and system for processing a sampled signal
US7245448B2 (en) 2003-02-20 2007-07-17 Fujitsu Limited Information recording apparatus and data writing control device therefor
US7324561B1 (en) * 2003-06-13 2008-01-29 Silicon Clocks Inc. Systems and methods for generating an output oscillation signal with low jitter
JP2005135563A (ja) 2003-10-31 2005-05-26 Sanyo Electric Co Ltd 適応等化器
JP2007518991A (ja) 2004-01-14 2007-07-12 ルミネックス・コーポレーション ダイナミックレンジを拡大する方法及びシステム
US7184233B2 (en) 2004-06-04 2007-02-27 Quantum Corporation Dual source tracking servo systems and associated methods
US7333280B1 (en) * 2004-08-03 2008-02-19 Western Digital Technologies, Inc. Servo writing a disk drive by synchronizing a servo write clock to a reference pattern on the disk and compensating for repeatable phase error
US7271971B2 (en) * 2004-12-03 2007-09-18 International Business Machines Corporation Dynamically adapting a magnetic tape read channel equalizer
JP2006172586A (ja) 2004-12-15 2006-06-29 Hitachi Global Storage Technologies Netherlands Bv 磁気ディスク装置
US7333279B2 (en) 2005-03-22 2008-02-19 Seagate Technology Llc System and method for drive-side guarantee of quality of service and for extending the lifetime of storage devices
US7375562B2 (en) * 2005-03-25 2008-05-20 Faraday Technology Corp. Phase locked system for generating distributed clocks
US8160181B1 (en) 2005-10-24 2012-04-17 Marvell International Ltd. Nonlinear detectors for channels with signal-dependent noise
US7474487B2 (en) 2005-12-19 2009-01-06 Broadcom Corporation Read/write timing generator and methods for use therewith
US7529052B2 (en) 2005-12-19 2009-05-05 Broadcom Corporation Disk controller and methods for use therewith
US7813421B2 (en) * 2006-01-17 2010-10-12 Marvell World Trade Ltd. Order recursive computation for a MIMO equalizer
US7433142B2 (en) 2006-02-01 2008-10-07 International Business Machines Corporation Using at least one servo channel to provide timing recovery and timing information to data channels
US20080007855A1 (en) 2006-07-10 2008-01-10 Broadcom Corporation, A California Corporation Phase offset correction for timing recovery with use of ECC in a read channel for a disk drive
US8441751B1 (en) 2006-08-18 2013-05-14 Marvell International Ltd. Dibit pulse extraction methods and systems
US7940667B1 (en) 2006-09-13 2011-05-10 Pmc-Sierra Us, Inc. Delay measurements and calibration methods and apparatus for distributed wireless systems
KR100901787B1 (ko) 2006-12-15 2009-06-11 서강대학교기술지주 주식회사 후치필터링을 이용한 분수지연 필터 기반의 빔집속 장치 및 방법
US7715143B2 (en) 2006-12-31 2010-05-11 Broadcom Corporation Delta-sigma PLL using fractional divider from a multiphase ring oscillator
US7616685B2 (en) 2007-01-19 2009-11-10 Techwell, Inc. Method for channel tracking in an LMS adaptive equalizer for 8VSB
EP1976122A1 (en) * 2007-03-31 2008-10-01 Sony Deutschland Gmbh Adaptive filter device
US7787550B2 (en) 2007-07-24 2010-08-31 Texas Instruments Incorporated Combined frame alignment and timing recovery in digital subscriber line (DSL) communications systems
US7733592B2 (en) * 2007-10-11 2010-06-08 International Business Machines Corporation Methods for multi-channel data detection phase locked loop frequency error combination
JP2009134806A (ja) * 2007-11-30 2009-06-18 Fujitsu Ltd ヘッドic、リード回路及び媒体記憶装置
US7948703B1 (en) 2008-01-30 2011-05-24 Marvell International Ltd. Adaptive target optimization methods and systems for noise whitening based viterbi detectors
US8102938B2 (en) 2008-04-22 2012-01-24 Finisar Corporation Tuning system and method using a simulated bit error rate for use in an electronic dispersion compensator
US7929237B2 (en) 2008-06-27 2011-04-19 Agere Systems Inc. Modulated disk lock clock and methods for using such
US8027117B1 (en) 2008-08-25 2011-09-27 Marvell International Ltd. Zone servo writing using self servo writing
US8296637B1 (en) 2008-09-22 2012-10-23 Marvell International Ltd. Channel quality monitoring and method for qualifying a storage channel using an iterative decoder
US7929238B1 (en) 2008-10-14 2011-04-19 Western Digital Technologies, Inc. Disk drive seeking with a fixed rate clock when crossing servo zones to facilitate zoned servo sectors
US8040631B2 (en) 2009-05-18 2011-10-18 Seagate Technology Llc Servo processors that alternately control head positioning relative to sequential servo patterns
CN101577536B (zh) * 2009-06-17 2012-05-09 北京九方中实电子科技有限责任公司 一种改进的lms算法实现器
JP2011014196A (ja) 2009-07-02 2011-01-20 Renesas Electronics Corp 適応等化器、情報再生装置、及び適応等化方法
US8139301B1 (en) * 2009-07-22 2012-03-20 Western Digital (Fremont), Llc Disk drive comprising a dual read element and delay circuitry to improve read signal
EP2302811B1 (en) * 2009-08-18 2013-03-27 Telefonaktiebolaget L M Ericsson (Publ) Soft output viterbi algorithm method and decoder
US8312359B2 (en) 2009-09-18 2012-11-13 Lsi Corporation Branch-metric calibration using varying bandwidth values
US8331050B1 (en) 2009-09-25 2012-12-11 Marvell International Ltd. Patterned magnetic media synchronization systems
US20110090773A1 (en) 2009-10-16 2011-04-21 Chih-Ching Yu Apparatus for generating viterbi-processed data using an input signal obtained from reading an optical disc
TWI396089B (zh) * 2009-10-16 2013-05-11 Moxa Inc 以參數提供多通道傳輸串列資料之裝置及其方法
US20110176400A1 (en) 2010-01-19 2011-07-21 Gerasimov Anton L Method of servo spiral switching during self servo-write for a disk drive
US8508879B1 (en) * 2010-01-21 2013-08-13 Marvell International Ltd. Write clock rephase for magnetic recording device
US8400726B1 (en) 2010-01-28 2013-03-19 Link—A—Media Devices Corporation Controlling preamble target amplitude
US8713413B1 (en) 2010-02-09 2014-04-29 Sk Hynix Memory Solutions Inc. Generation of interpolated samples for decision based decoding
WO2011121948A1 (ja) 2010-03-29 2011-10-06 パナソニック株式会社 光ディスク記録装置及び記録信号生成装置
US8542766B2 (en) 2010-05-04 2013-09-24 Samsung Electronics Co., Ltd. Time alignment algorithm for transmitters with EER/ET amplifiers and others
JP4852166B1 (ja) * 2010-08-04 2012-01-11 シャープ株式会社 移動局装置、通信システム、通信方法および集積回路
US9362955B2 (en) * 2010-09-10 2016-06-07 Trellis Phase Communications, Lp Encoding and decoding using constrained interleaving
JP5582954B2 (ja) 2010-10-12 2014-09-03 ルネサスエレクトロニクス株式会社 デジタルpll回路、情報再生装置、ディスク再生装置および信号処理方法
US8665543B2 (en) 2010-10-29 2014-03-04 Sk Hynix Memory Solutions Inc. Inter-track interference cancelation for shingled magnetic recording
US8842750B2 (en) 2010-12-21 2014-09-23 Intel Corporation Channel estimation for DVB-T2 demodulation using an adaptive prediction technique
US20120166953A1 (en) * 2010-12-23 2012-06-28 Microsoft Corporation Techniques for electronic aggregation of information
WO2012127637A1 (ja) 2011-03-22 2012-09-27 富士通株式会社 クロック生成回路及びクロック生成回路制御方法
CN103493376B (zh) 2011-04-20 2016-11-16 飞思卡尔半导体公司 用于时钟信号生成的系统及方法
US8539328B2 (en) 2011-08-19 2013-09-17 Lsi Corporation Systems and methods for noise injection driven parameter selection
US8456230B2 (en) 2011-09-22 2013-06-04 Lsi Corporation Adaptive filter with coefficient determination based on output of real time clock
US8479086B2 (en) 2011-10-03 2013-07-02 Lsi Corporation Systems and methods for efficient parameter modification
JP2013149306A (ja) * 2012-01-18 2013-08-01 Toshiba Corp 信号処理回路、信号処理方法、及び磁気ディスク装置
US8923137B2 (en) 2012-02-06 2014-12-30 Qualcomm Incorporated System and method for information verification based on channel awareness
US9077349B2 (en) * 2012-02-21 2015-07-07 Qualcomm Incorporated Automatic detection and compensation of frequency offset in point-to-point communication
US9357517B2 (en) * 2012-06-12 2016-05-31 Marvell World Trade Ltd. Apparatus and method for wireless baseband processing
US8780477B1 (en) 2012-06-21 2014-07-15 Western Digital Technologies, Inc. Disk drive adjusting servo timing to compensate for transient when crossing a servo zone boundary
US8724245B1 (en) 2012-06-21 2014-05-13 Western Digital Technologies, Inc. Disk drive employing overlapping servo zones to facilitate servo zone crossing
US9082418B2 (en) * 2012-07-16 2015-07-14 Marvell International Ltd. Methods for reading data from a storage medium using a reader and storage devices
US9239754B2 (en) * 2012-08-04 2016-01-19 Seagate Technology Llc Single read based soft-decision decoding of non-volatile memory
EP2712136B1 (en) * 2012-09-20 2015-02-25 Nxp B.V. Channel frequency response estimation and tracking for time- and frequency varying communication channels
US9385757B1 (en) 2012-09-27 2016-07-05 Marvell International Ltd. Systems and methods for using a non-binary soft output viterbi algorithm
CN102916916B (zh) * 2012-10-23 2015-04-22 华南理工大学 基于最小误码率准则的自适应信道均衡器及其实现方法
US9189379B2 (en) 2013-02-06 2015-11-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Buffer for managing data samples in a read channel
US9246668B1 (en) * 2013-03-12 2016-01-26 Marvell International Ltd. Unified control for digital timing recovery and packet processing
US9093115B1 (en) 2013-03-15 2015-07-28 Seagate Technology Llc Track interference cancellation
US8767341B1 (en) 2013-05-16 2014-07-01 HGST Netherlands B.V. Servo systems with augmented servo bursts
US8760794B1 (en) 2013-05-16 2014-06-24 HGST Netherlands B.V. Servo systems with augmented servo bursts
WO2014196046A1 (ja) * 2013-06-06 2014-12-11 パイオニア株式会社 伝送路推定装置、受信装置、伝送路推定方法、伝送路推定プログラム及び記録媒体
US9165597B2 (en) 2013-06-28 2015-10-20 Seagate Technology Llc Time-multiplexed single input single output (SISO) data recovery channel
US9311937B2 (en) * 2013-07-16 2016-04-12 Marvell World Trade Ltd. Systems and methods for calibrating read and write operations in two dimensional magnetic recording
US9129650B2 (en) * 2013-07-25 2015-09-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Array-reader based magnetic recording systems with frequency division multiplexing
US9064537B1 (en) 2013-09-13 2015-06-23 Western Digital Technologies, Inc. Disk drive measuring radial offset between heads by detecting a difference between ramp contact
US9245578B1 (en) 2013-11-26 2016-01-26 Western Digital Technologies, Inc. Disk drive compensating for inter-track interference in analog read signal
US9257145B1 (en) * 2013-11-27 2016-02-09 Western Digital Technologies, Inc. Disk drive measuring down-track spacing of read sensors
US9245579B2 (en) * 2013-12-27 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Two-dimensional magnetic recording reader offset estimation
US9025269B1 (en) 2014-01-02 2015-05-05 Western Digital Technologies, Inc. Disk drive compensating for cycle slip of disk locked clock when reading mini-wedge
US9645763B2 (en) 2014-01-13 2017-05-09 Seagate Technology Llc Framework for balancing robustness and latency during collection of statistics from soft reads
US20160321138A1 (en) * 2014-01-20 2016-11-03 Hitachi, Ltd. Information replay device, information replay method, information storage device, and information storage method
CN103825852A (zh) * 2014-01-28 2014-05-28 华南理工大学 一种双模自适应判决反馈均衡模块及其实现方法
US9147416B2 (en) 2014-02-25 2015-09-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems and methods for multi-head servo data processing
US9280995B2 (en) 2014-03-28 2016-03-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Locking a disk-locked clock using timestamps of successive servo address marks in a spiral servo track
US8861111B1 (en) * 2014-04-01 2014-10-14 Lsi Corporation Two dimensional magnetic recording servo system phase alignment
US9019642B1 (en) 2014-04-02 2015-04-28 Lsi Corporation Synchronization mark detection for multi-dimensional magnetic recording
US8837068B1 (en) * 2014-04-14 2014-09-16 Lsi Corporation Two dimensional magnetic recording servo system adaptive combination
US8861112B1 (en) * 2014-04-23 2014-10-14 Lsi Corporation Two dimensional magnetic recording system head separation estimator
US20150341158A1 (en) * 2014-05-23 2015-11-26 Mediatek Inc. Loop gain calibration apparatus for controlling loop gain of timing recovery loop and related loop gain calibration method
US8953276B1 (en) 2014-06-05 2015-02-10 Seagate Technology Llc Correcting position error based on reading first and second user data signals
US9417797B2 (en) 2014-06-09 2016-08-16 Seagate Technology Llc Estimating read reference voltage based on disparity and derivative metrics
US9431052B2 (en) * 2014-06-26 2016-08-30 Marvell World Trade Ltd. Two dimensional magnetic recording systems, devices and methods
US9196298B1 (en) * 2014-06-30 2015-11-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Zero phase start for array reader magnetic recording system
US9117470B1 (en) 2014-07-17 2015-08-25 International Business Machines Corporation Write delay to de-skew data in read while write function for tape storage devices
US9007707B1 (en) * 2014-10-31 2015-04-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems and methods for accessing codewords in parallel using a three sensor reader
US9245580B1 (en) * 2014-10-31 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems and methods for three reader storage access
US9680484B2 (en) * 2014-12-05 2017-06-13 Texas Instruments Incorporated Clock conditioner circuitry with improved holdover exit transient performance
US9690361B2 (en) * 2014-12-24 2017-06-27 Intel Corporation Low-power context-aware control for analog frontend
US9424878B1 (en) * 2015-02-04 2016-08-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Two dimensional magnetic recording head separation calculator
US9401161B1 (en) 2015-03-11 2016-07-26 Seagate Technology Llc Magnetic read head with multiple read transducers each having different design characteristics
US9286915B1 (en) 2015-03-12 2016-03-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems and methods for format efficient sector fragment processing
US9508369B2 (en) 2015-03-13 2016-11-29 Seagate Technology Llc Defining a maximum sequential write duration for a data storage device utilizing heat-assisted recording
US9311959B1 (en) 2015-03-30 2016-04-12 Seagate Technology Llc Read channel optimization using multi-dimensional smoothing
US9489976B2 (en) 2015-04-06 2016-11-08 Seagate Technology Llc Noise prediction detector adaptation in transformed space
US9590803B2 (en) * 2015-05-22 2017-03-07 Seagate Technology Llc Timing error processor that uses the derivative of an interpolator function
CN106201333B (zh) 2015-06-01 2019-04-12 株式会社东芝 存储装置、控制器以及数据再读出方法
US9564157B1 (en) 2015-08-21 2017-02-07 Seagate Technology Llc System and method for detecting reader-writer offset in a heat-assisted magnetic recording head
US10347343B2 (en) 2015-10-30 2019-07-09 Seagate Technology Llc Adaptive read threshold voltage tracking with separate characterization on each side of voltage distribution about distribution mean
US10192614B2 (en) 2015-10-30 2019-01-29 Seagate Technology Llc Adaptive read threshold voltage tracking with gap estimation between default read threshold voltages
US9542972B1 (en) 2015-11-12 2017-01-10 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems and methods for multi-head coefficient based scaling
US9837990B1 (en) 2015-12-11 2017-12-05 Syntropy Systems, Llc Digital signal processor
US10043582B2 (en) 2016-02-11 2018-08-07 Seagate Technology Llc Establishing parameters of subsequent read retry operations based on syndrome weights of prior failed decodings
US9536563B1 (en) 2016-02-16 2017-01-03 Seagate Technology Llc Detecting shingled overwrite errors
US10445171B2 (en) 2016-02-29 2019-10-15 Seagate Technology Llc On-the-fly error detection algorithm during retry procedure
US9947362B1 (en) 2016-06-25 2018-04-17 Seagate Technology Llc Asynchronous interference cancellation
US10290358B2 (en) 2016-07-08 2019-05-14 Seagate Technology Llc Independent read threshold voltage tracking for multiple dependent read threshold voltages using syndrome weights
US10180868B2 (en) 2016-07-08 2019-01-15 Seagate Technology Llc Adaptive read threshold voltage tracking with bit error rate estimation based on non-linear syndrome weight mapping
US9819456B1 (en) 2016-10-17 2017-11-14 Seagate Technology Llc Preamble detection and frequency offset determination
US10164760B1 (en) * 2016-10-18 2018-12-25 Seagate Technology Llc Timing excursion recovery
US10152457B1 (en) 2016-10-25 2018-12-11 Seagate Technology Llc Target parameter adaptation
US9998136B1 (en) * 2017-02-17 2018-06-12 Seagate Technology Llc Loop consistency using multiple channel estimates
JP2018160302A (ja) 2017-03-23 2018-10-11 株式会社東芝 ストレージ装置及びコントローラ
US10014026B1 (en) 2017-06-20 2018-07-03 Seagate Technology Llc Head delay calibration and tracking in MSMR systems
US10276233B1 (en) 2017-10-31 2019-04-30 Seagate Technology Llc Adaptive read threshold voltage tracking with charge leakage mitigation using threshold voltage offsets
US10388368B2 (en) 2017-10-31 2019-08-20 Seagate Technology Llc Adaptive read threshold voltage tracking with charge leakage mitigation using charge leakage settling time
US10297281B1 (en) 2017-11-06 2019-05-21 Seagate Technology Llc Servo sector detection
US10498565B1 (en) 2018-09-05 2019-12-03 Macom Technology Solutions Holding, Inc Sampling phase optimization for digital modulated signals

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561013A (zh) * 2004-02-26 2005-01-05 上海交通大学 基于导频矩阵的时域自适应信道估计方法
CN101091321A (zh) * 2004-12-29 2007-12-19 英特尔公司 用于低密度奇偶校验码的多门限解码的固定门限和信道估计
US7773207B1 (en) * 2005-07-14 2010-08-10 At&T Corp. Estimating optical transmission system penalties induced by polarization mode dispersion (PMD)
US20090253898A1 (en) * 2006-04-11 2009-10-08 Engl Heinz W Mathematical Design of ION Channel Selectivity Via Inverse Problem Technology
CN1866945A (zh) * 2006-05-11 2006-11-22 上海交通大学 Ofdm系统中基于可变遗忘因子的rls信道估计方法
CN101478510A (zh) * 2009-02-17 2009-07-08 上海高清数字科技产业有限公司 一种自适应均衡器及使用该均衡器的接收机系统
CN101932001A (zh) * 2009-06-24 2010-12-29 中兴通讯股份有限公司 一种自适应调制编码方法
CN105191242A (zh) * 2013-05-15 2015-12-23 华为技术有限公司 使用非整数采样的低复杂度自适应分数间隔均衡器
CN103476026A (zh) * 2013-09-06 2013-12-25 中国科学院软件研究所 基于卫星信道编码的自适应隐蔽通信方法
CN103560984A (zh) * 2013-10-31 2014-02-05 北京工业大学 基于多模型加权软切换的信道自适应估计方法
US20150180586A1 (en) * 2013-12-24 2015-06-25 Fujitsu Limited Optical receiving device
CN104052691A (zh) * 2014-07-02 2014-09-17 东南大学 基于压缩感知的mimo-ofdm系统信道估计方法
CN105050137A (zh) * 2015-06-18 2015-11-11 西安电子科技大学 一种基于信息物理系统模型的车联网拥塞控制方法
CN105656819A (zh) * 2016-03-21 2016-06-08 电子科技大学 一种基于压缩感知和大规模mimo的自适应信道估计方法
CN105812299A (zh) * 2016-04-22 2016-07-27 中国地质大学(武汉) 基于联合块稀疏重构的无线传感网信道估计算法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIA TEK INC: ""Support for legacy UEs in adaptive TDD systems"", 《3GPP TSG-RAN1 #72 MEETING R1-130217》 *
余明宸等: ""基于硬阈值迭代的电力线载波通信脉冲噪声抑制方法"", 《2016电力行业信息化年会》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554838A (zh) * 2019-06-27 2019-12-10 中南大学 一种基于联合优化回声状态网络的热数据预测方法

Also Published As

Publication number Publication date
US11361788B2 (en) 2022-06-14
US10469290B1 (en) 2019-11-05
TW201907260A (zh) 2019-02-16
TW201905682A (zh) 2019-02-01
SG10201805246XA (en) 2019-01-30
US10014026B1 (en) 2018-07-03
US20180367164A1 (en) 2018-12-20
US10157637B1 (en) 2018-12-18
US10755734B2 (en) 2020-08-25
SG10201805247VA (en) 2019-01-30
US10607648B1 (en) 2020-03-31
US10936003B1 (en) 2021-03-02
CN109104204A (zh) 2018-12-28
US10714134B2 (en) 2020-07-14
CN109104200B (zh) 2022-07-01
US20180366156A1 (en) 2018-12-20
US10276197B2 (en) 2019-04-30
US20200005819A1 (en) 2020-01-02
US10665256B2 (en) 2020-05-26
SG10201804852XA (en) 2019-01-30
US10177771B1 (en) 2019-01-08
US20200065262A1 (en) 2020-02-27
TWI701591B (zh) 2020-08-11
CN109104388B (zh) 2021-06-11
US20180366155A1 (en) 2018-12-20
TWI691899B (zh) 2020-04-21
US10068608B1 (en) 2018-09-04
CN109104200A (zh) 2018-12-28
US20180366149A1 (en) 2018-12-20
TW201907293A (zh) 2019-02-16
US10410672B1 (en) 2019-09-10
CN109104204B (zh) 2020-09-22
US10496559B1 (en) 2019-12-03

Similar Documents

Publication Publication Date Title
CN109104388A (zh) 用于正则化参数自适应的装置、系统和方法
US8743936B2 (en) Systems and methods for determining noise components in a signal set
KR101489544B1 (ko) 데이터 처리 회로 및 채널 세팅 결정 회로
US9123356B2 (en) Detecting track information from overlapping signals read from a data storage medium
JPH1083626A (ja) データ信号処理装置、決定フィードバックイコライザ及びフィルタ調節方法
TW200402033A (en) Method and apparatus for a data-dependent noise predictive viterbi
US8406351B1 (en) Method and device to compensate for baseline wander
US10608808B1 (en) Iterative recovery from baseline or timing disturbances
WO2007051693A2 (en) Adaptive asynchronous equalization using leakage
JP5010938B2 (ja) 待ち時間の短い基線ワンダー補償システムおよび方法
US20140211336A1 (en) Automatic gain control loop adaptation for enhanced nyquist data pattern detection
US10692527B1 (en) Target parameter adaptation
JP2007299509A5 (zh)
US10148470B1 (en) Adaptive MIMO channel equalization and detection
US9195860B1 (en) Adaptively combining waveforms
US10790933B1 (en) Constrained receiver parameter optimization
US7974037B2 (en) Techniques for providing DC-free detection of DC equalization target
US8922934B2 (en) Systems and methods for transition based equalization
CN110211611B (zh) 二维信道均衡模型训练方法及二维信道均衡方法
US11016681B1 (en) Multi-threshold parameter adaptation
US9973354B1 (en) Partial zero forcing equalization
US8867154B1 (en) Systems and methods for processing data with linear phase noise predictive filter
US11658669B2 (en) Magnetoresistive asymmetry compensation
US9768988B1 (en) Jointly optimizing signal equalization and bit detection in a read channel
US20240144959A1 (en) Magnetoresistive asymmetry compensation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant