CN109097841B - 一种各向异性纳米纤维聚偏氟乙烯基复合介质及其制备方法 - Google Patents

一种各向异性纳米纤维聚偏氟乙烯基复合介质及其制备方法 Download PDF

Info

Publication number
CN109097841B
CN109097841B CN201810819906.4A CN201810819906A CN109097841B CN 109097841 B CN109097841 B CN 109097841B CN 201810819906 A CN201810819906 A CN 201810819906A CN 109097841 B CN109097841 B CN 109097841B
Authority
CN
China
Prior art keywords
bzct
pvdf
nfs
based composite
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810819906.4A
Other languages
English (en)
Other versions
CN109097841A (zh
Inventor
张昌海
迟庆国
郝玉义
张月
唐超
李华
王暄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Golden Technology Material Co ltd
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201810819906.4A priority Critical patent/CN109097841B/zh
Publication of CN109097841A publication Critical patent/CN109097841A/zh
Application granted granted Critical
Publication of CN109097841B publication Critical patent/CN109097841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Nonwoven Fabrics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开了一种各向异性纳米纤维聚偏氟乙烯基复合介质及其制备方法,所述复合介质由BZCT NFs填充相和PVDF复合而成,所述BZCT NFs填充相在复合介质中定向或非定向排布,含量为1~20vol%。本发明采用溶胶‑凝胶法和静电纺丝技术制备具有大长径比的BZCT NFs;进而利用溶液法配制纳米纤维均匀分散的PVDF混合溶液;最终结合静电纺丝技术和淬火工艺获得定向或非定向BZCT‑PVDF。本发明制备的一维无机填充相‑聚合物基复合介质具有明显的各向异性,具有集成、高效、灵活、轻量和低成本优势,可用于先进商业、航空航天和军事领域,推动高性能聚合物基纳米复合材料的发展。

Description

一种各向异性纳米纤维聚偏氟乙烯基复合介质及其制备方法
技术领域
本发明属于介质电容器领域,涉及一种聚合物基电介质纳米复合材料及其制备方法,具体涉及一种一维无机填充相-聚合物基复合介质及其制备方法。
背景技术
各向异性纳米纤维聚偏氟乙烯基复合介质具有兼容性好、各向异性、韧性好、击穿强度高等优点,在电介质储能领域具有广阔应用前景。由于一维纳米纤维本身具有较大长径比,因此在各向异性方面具有明显的优势,这对复合材料在电学、热学和力学性能方面的研究具有深远意义。因此,一维纳米纤维如何取向成为获得优异性能的复合材料的重点和难点,如纳米纤维在复合介质的面内方向平行取向时,可以提高复合材料的介电击穿强度;同时,当纳米纤维在复合介质的贯穿面方向上垂直取向时,复合材料的电极化强度可以得到改善,这为调节和控制复合材料性能的各向异性提供了启发。
发明内容
本发明为了解决现阶段介质击穿强度偏低、储能密度较低的问题,提供了一种各向异性纳米纤维聚偏氟乙烯基复合介质及其制备方法。本发明制备的一维无机填充相-聚合物基复合介质具有明显的各向异性(例如面内和贯通面内具有不同的极化行为和击穿强度),具有集成、高效、灵活、轻量和低成本优势,可用于先进商业、航空航天和军事领域,推动高性能聚合物基纳米复合材料的发展。
本发明的目的是通过以下技术方案实现的:
一种各向异性纳米纤维聚偏氟乙烯基复合介质,由BZCT NFs填充相和PVDF复合而成,所述BZCT NFs填充相在复合介质中定向或非定向排布,BZCT NFs的含量为1~20vol%。
一种上述各向异性纳米纤维聚偏氟乙烯基复合介质的制备方法,包括如下步骤:
步骤一、制备规则排布的各向异性BZCT NFs-PVDF基复合薄膜:
(1)将BZCT NFs填充相均匀分散在N,N-二甲基甲酰胺(DMF)溶液中;
(2)向分散液中加入聚偏氟乙烯(PVDF)粉末,配制均质稳定的BZCT NFs填充相-PVDF混合溶液,并置于真空箱内抽真空、静置、排气泡;
(3)将步骤(2)所得的BZCT NFs填充相-PVDF混合溶液吸入注射器进行高速静电纺丝,获得规则排布的各向异性BZCT NFs-PVDF基复合湿膜;
(4)将复合湿膜放在真空烘箱内进行烘干处理,得到定向BZCT-PVDF复合薄膜;
步骤二、制备无规则排布的BZCT NFs-PVDF基复合薄膜:
(1)将BZCT NFs填充相均匀分散在N,N-二甲基甲酰胺(DMF)溶液中;
(2)向分散液中加入聚偏氟乙烯(PVDF)粉末,配制均质稳定的BZCT NFs填充相-PVDF混合溶液,并置于真空箱内抽真空、静置、排气泡;
(3)将步骤(2)所得的BZCT NFs填充相-PVDF混合溶液吸入注射器进行低速静电纺丝,获得无规则排布的BZCT NFs-PVDF基复合湿膜;
(4)将复合湿膜放在真空烘箱内进行烘干处理,得到非定向BZCT-PVDF复合薄膜;
步骤三、制备复合介质:
采用热压工艺,将定向或非定向BZCT-PVDF复合薄膜置于热压模板中进行热压处理,获得致密的定向或非定向BZCT-PVDF基复合介质。
本发明中,所述BZCT NFs填充相的制备方法如下:
(1)将八水合氢氧化钡和氢氧化钙溶解乙酸中,将其在30~80℃温度下磁力搅拌至澄清溶液后,将其缓慢冷却至室温;随后加入乙酰丙酮溶液和乙酰丙酮锆粉末,继续室温下磁力搅拌至澄清;再缓慢滴加钛酸四丁酯溶液,室温下搅拌,得到BZCT前驱体溶液,控制Ba:Ca:Zr:Ti的化学计量比为0.05~1.00:0.05~0.30:0.01~0.20:0.50~2.00;为调节纺丝BZCT前驱体溶液的粘度,需加入适量聚乙烯基吡咯烷酮(PVP),控制BZCT前驱体溶液与PVP的比例为0.05~7.5g/10~100mL。
(2)将步骤(1)所得的BZCT前驱体溶液吸入注射器进行静电纺丝;
(3)静电纺丝结束后,将前驱体纤维放在马弗炉内烧结,最终获得BZCT无机陶瓷纤维填充相。
本发明中,所述静电纺丝过程中,注射器的推进速度设置为0.06~0.3mm/min,接收器的转速设置为80~130r/min,注射器至接收器距离为10~20cm,注射器和接收器同时施加V+=12~20kV,V-=12~20kV的电压。
本发明中,所述烧结温度为600~800℃,时间为2~6h。
本发明中,所述低速静电纺丝过程中,接收器滚筒的转速设置为60~140r/min,注射器的推进速度设置为0.1~0.3mm/min,注射器至接收器距离为10~30cm,针头和滚筒同时施加V+=8~18kV,V-=8~18kV的电压,温度为10~40℃,相对湿度为10~50%。与转速高达2000r/min时的纤维高定向排布所呈现出的各向异性相比,由于纤维在60~140r/min低速下受到的拉伸力和电场的静电力作用较弱,因此纤维在聚合物基体内部呈现杂乱无章的排列。
本发明中,所述高速静电纺丝过程中,接收器转速为2000~3000r/min,注射器的推进速度设置为0.05~0.2mm/min,注射器至接收器的距离为7~20cm,注射器和接收器同时施加V+=10~20kV,V-=10~20kV的电压。相比于60~140r/min低速下的纤维在聚合物基体内部呈现杂乱无章的排列,转速高达2000r/min时纤维受到的拉伸力和电场的静电力共同作用,使无机纤维彼此之间呈现高度平行排列,因此纤维在基体内朝向保持一致,且此材料在外电场下应用时内部有规律排列的纤维均与外电场方向垂直,这有利于提高复合材料的击穿。
本发明中,所述高定向排布的各向异性具体指纤维在聚合物基体内部呈现彼此高度平行排列,对其宏观性能进行测试,可以检测出该复合材料沿着不同方向存在各向异性,并且在其应用过程中与外加电场方向垂直。
本发明中,所述烘干温度为40~70℃,时间为4~48h。
本发明中,所述热压处理为梯度热压处理,第一阶段热压温度110~160℃,在2~6MPa下保压5~20min;第二阶段进行卸压排气泡处理,并在卸压后150~180℃保温20~40min以去除复合薄膜介质内部由于静电纺丝而引入的残留应力;第三阶段热压温度150~180℃,在15~20MPa下保压5~30min;最后通过水冷装置将复合薄膜的温度迅速降至室温,在1~10MPa下保压1~15min。
本发明中,所述定向或非定向BZCT-PVDF基复合介质的厚度约为10~30μm。
相比于现有技术,本发明具有如下优点:
1、规则排布的各向异性BZCT纤维具有较高的介电常数和提高复合介质抗击穿的能力,可以提升PVDF复合介质整体的介电常数和击穿场强;尤其是在PVDF基体内部高度定向排列的BZCT NFs,这种具有大长径比的纤维结构会有效抑制电树枝的延伸,进一步提升介质的击穿强度,有效降低了PVDF基复合介质的击穿概率。
2、本发明制备的规则排布的各向异性定向BZCT-PVDF复合介质可以显著提升聚合物的介电常数和击穿场强,并且具有较低的损耗,维持了聚合物基体自身优异的机械性能。因此,本发明所制备的规则排布的各向异性定向BZCT-PVDF复合介质可以应用在储能领域。
3、本发明制备工艺及所需设备价格低廉,实验简易且容易实施。
附图说明
图1为一维无机填充相BZCT NFs、PVDF基复合薄膜介质的X射线衍射图谱;
图2为规则排布的各向异性的定向BZCT-PVDF与无规则排布的非定向BZCT-PVDF复合介质断面扫描电镜图;
图3为规则排布的各向异性的定向BZCT-PVDF与无规则排布的非定向BZCT-PVDF复合介质介电常数和损耗;
图4为规则排布的各向异性的定向BZCT-PVDF与无规则排布的非定向BZCT-PVDF复合介质介击穿强度威布尔分布;
图5为规则排布的各向异性的定向BZCT-PVDF与无规则排布的非定向BZCT-PVDF复合介质介复合介质储能性能。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
具体实施方式一:本实施方式提供的各向异性纳米纤维聚偏氟乙烯基复合介质由BZCT NFs填充相和PVDF复合而成,所述BZCT NFs填充相在复合介质中高定向或非定向排布,BZCT NFs在定向或非定向排布的各向异性BZCT NFs-PVDF基复合薄膜中的含量为0~20vol%。
上述各向异性纳米纤维聚偏氟乙烯基复合介质的制备方法,采用溶胶-凝胶法和静电纺丝技术制备具有大长径比的无机纤维填充相锆钛酸钡钙纳米纤维(BZCT NFs);进而利用溶液法配制纳米纤维均匀分散的聚偏氟乙烯(PVDF)混合溶液;最终结合静电纺丝技术和淬火工艺获得致密的高定向排布的各向异性BZCT NFs-PVDF基复合薄膜。具体实施步骤如下:
步骤一:将八水合氢氧化钡和氢氧化钙溶解乙酸中,将其在30~80℃温度下磁力搅拌至澄清溶液后,将其缓慢冷却至室温;随后加入乙酰丙酮溶液和乙酰丙酮锆粉末,继续室温下磁力搅拌至澄清;再缓慢滴加钛酸四丁酯溶液,室温下搅拌,得到BZCT前驱体溶液,控制Ba:Ca:Zr:Ti的化学计量比为0.05~1.00:0.05~0.30:0.01~0.20:0.50~2.00;为调节纺丝前驱体溶液的粘度,需加入适量聚乙烯基吡咯烷酮(PVP),控制BZCT前驱体溶液与PVP的比例为0.05~7.5g/10~100mL。
步骤二:将步骤一所得的BZCT前驱体溶液吸入注射器,准备进行纺丝,静电纺丝过程将注射器的推进速度设置为0.06~0.3mm/min,接收器的转速设置为80~130r/min,注射器至接收器距离为10~20cm,注射器和接收器同时施加V+=12~20kV,V-=12~20kV的电压;纺丝结束后,将前驱体纤维放在马弗炉内600~800℃温度下烧结2~6h;最终获得BZCT无机陶瓷纤维填充相(BZCT NFs填充相)。
步骤三:步骤二所得的BZCT NFs填充相0.0~3.0g分散于20~60mL N,N-二甲基甲酰胺(DMF)溶液中,超声分散1~30min,使其均匀分散在DMF溶液中;随后向分散液中加入聚偏氟乙烯(PVDF)粉末2.0~6.0g,采用溶液法按照配比0~20vol%配制成均质稳定的BZCTNFs填充相-PVDF混合溶液,并置于真空箱内抽真空、静置、排气泡1~10h;然后按照步骤二的静电纺丝过程,在低速(60~140r/min)条件下静电纺丝获得无规则排布的BZCT NFs-PVDF(非定向BZCT-PVDF)基复合湿膜,在高速(2000~3000r/min)条件下静电纺丝获得规则排布的各向异性BZCT NFs-PVDF(定向BZCT-PVDF)基复合湿膜;将湿膜放在真空烘箱内40~70℃温度下进行烘干处理4~48h,得到定向BZCT-PVDF复合薄膜和非定向BZCT-PVDF复合薄膜。
步骤四:采用热压工艺,将定向BZCT-PVDF复合薄膜和非定向BZCT-PVDF复合薄膜分别置于热压模板中进行梯度升温热压处理:第一阶段热压温度110~160℃,在2~6MPa下保压5~20min;第二阶段进行卸压排气泡处理,并在卸压后150~180℃保温20~40min以去除复合薄膜介质内部由于静电纺丝而引入的残留应力;第三阶段热压温度150~180℃,在15~20MPa下保压5~30min;最后通过水冷装置将复合薄膜的温度迅速降至室温,在1~10MPa下保压1~15min获得致密的定向BZCT-PVDF基复合介质和非定向BZCT-PVDF基复合介质,厚度约为10~30μm。
本实施方式的制备工艺流程简便,容易推广实施,制备的各向异性BZCT NFs-PVDF基复合薄膜介质具有显著提高的介电、击穿和储能性能,也维持了聚合物自身优异的电绝缘与机械性能。
具体实施方式二:本实施方式提供的各向异性纳米纤维聚偏氟乙烯基复合介质由BZCT NFs填充相和PVDF复合而成,所述BZCT NFs填充相在复合介质中高定向或非定向排布,BZCT NFs在定向或非定向排布的各向异性BZCT NFs-PVDF基复合薄膜中的含量为3vol%。具体制备步骤如下:
步骤一:将八水合氢氧化钡和氢氧化钙溶解乙酸中,将其在50℃温度下磁力搅拌至澄清溶液后,将其缓慢冷却至室温;随后加入乙酰丙酮溶液和乙酰丙酮锆粉末,继续室温下磁力搅拌至澄清;再缓慢滴加钛酸四丁酯溶液,室温下搅拌,得到BZCT前驱体溶液,控制各种化学原料Ba:Ca:Zr:Ti的化学计量比为0.85:0.15:0.10:0.90;为调节纺丝前驱体溶液的粘度,需加入适量PVP,控制BZCT前驱体溶液与PVP的比例为60mL:1g。
步骤二:将步骤一所得的BZCT前驱体溶液吸入注射器,准备进行纺丝,静电纺丝过程将注射器的推进速度设置为0.12mm/min,接收器的转速设置为120r/min,注射器至接收器距离为14cm,注射器和接收器同时施加V+=14kV,V-=14kV的电压;纺丝结束后,将前驱体纤维放在马弗炉内700℃温度下烧结3.5h;最终获得一维BZCT无机陶瓷纤维填充相(BZCTNFs)。
步骤三:将步骤二所得的BZCT NFs填充0.3g分散于30mL N,N-二甲基甲酰胺(DMF)溶液中,超声分散5min,使其均匀分散在DMF溶液中;随后向分散液中加入聚偏氟乙烯(PVDF)粉末3.0g,采用溶液法按照配比3vol%配制成均质稳定的BZCT NFs填充相-PVDF混合溶液,并置于真空箱内抽真空、静置、排气泡8h;然后按照步骤二的静电纺丝过程,在低速(100r/min)条件下静电纺丝获得无规则排布的BZCT NFs-PVDF(非定向BZCT-PVDF)基复合湿膜,在高速(2000r/min)条件下静电纺丝获得规则排布的各向异性BZCT NFs-PVDF(定向BZCT-PVDF)基复合湿膜;将湿膜放在真空烘箱内60℃温度下进行烘干处理24h,得到定向BZCT-PVDF复合薄膜和非定向BZCT-PVDF复合薄膜。
步骤四:采用热压工艺,将定向BZCT-PVDF复合薄膜和非定向BZCT-PVDF复合薄膜分别置于热压模板中进行梯度升温热压处理:第一阶段热压温度160℃,在6MPa下保压10min;第二阶段进行卸压排气泡处理,并在卸压后180℃保温30min以去除复合薄膜介质内部由于静电纺丝而引入的残留应力;第三阶段热压温度170℃,在15MPa下保压20min;最后通过水冷装置将复合薄膜的温度迅速降至室温,在8MPa下保压4min获得致密的定向BZCT-PVDF基复合介质和非定向BZCT-PVDF基复合介质,厚度约为15μm。
本实施方式中所得一维无机填充相BZCT NFs、PVDF基复合薄膜介质的X射线衍射图谱和PVDF基复合薄膜介质的断面扫描电镜图如图1所示。观察XRD图谱发现,BZCT NFs结晶完全,属于典型钙钛矿结构。
通过扫描电镜图2可以发现,填充相BZCT NFs在PVDF基体中呈现规则排布的各向异性的定向BZCT-PVDF复合介质薄膜厚度约为14μm;而无规则排布的非定向BZCT-PVDF复合介质薄膜厚度约为16μm,且BZCT NFs在PVDF基体中呈现杂乱无章的排布;同时,两种薄膜和PVDF基体相容性良好、无明显团聚或缺陷存在;说明无机填充相BZCT NFs和PVDF基体复合成功。
图3为规则排布的各向异性的定向BZCT-PVDF与无规则排布的非定向BZCT-PVDF复合介质介电常数和损耗图谱。从图3中看出,相比于纯PVDF介质,引入无机相BZCT NFs的复合介质的介电常数明显升高;且相同含量下非定向BZCT-PVDF的介电常数稍大于定向BZCT-PVDF,由于前者平行于外电场方向具有较大的偶极矩;同时,介电损耗随着无机相BZCT NFs的引入,稍有增加,但仍处于较低水平。
图4为规则排布的各向异性的定向BZCT-PVDF与无规则排布的非定向BZCT-PVDF复合介质介击穿强度威布尔分布图。从图4中可以看出,相比于非定向BZCT-PVDF,定向BZCT-PVDF复合介质随着纤维相呈现高定向排布,其击穿电场呈现明显增大趋势;说明高定向排布的BZCT NFs有阻碍导电通路形成作用,因此使得定向BZCT-PVDF复合介质具有较高承受击穿电场的能力。
图5为规则排布的各向异性的定向BZCT-PVDF与无规则排布的非定向BZCT-PVDF复合介质介储能性能图谱。从图5中可以观察到,相比于无规则排布的非定向BZCT-PVDF,规则排布的各向异性定向BZCT-PVDF复合介质具有较高的耐电场的能力,由于高定向的BZCTNFs阻碍电树枝扩展和导电通路的形成;规则排布的各向异性定向BZCT-PVDF复合介质具有较高的储能密度。
由图3、图4和图5可以看出,本实施方式制备方法可使所制备的规则排布的各向异性BZCT NFs-PVDF(定向BZCT-PVDF)具有较高的介电常数与较低的介电损耗,同时具有较高的击穿电场强度。本实施方式通过合理设计各向异性的BZCT NFs规则排布,提高了复合薄膜的击穿场强、放电能量、放电效率,降低了复合薄膜的能量损耗,同时保证了聚合物基体的良好柔韧性,在无机填充相低含量下实现了高储能性能。

Claims (8)

1.一种各向异性纳米纤维聚偏氟乙烯基复合介质的制备方法,其特征在于,步骤如下:
步骤一、制备规则排布的各向异性BZCT NFs-PVDF基复合薄膜:
(1)将BZCT NFs填充相均匀分散在DMF溶液中;
(2)向分散液中加入PVDF粉末,配制均质稳定的BZCT NFs填充相-PVDF混合溶液,并置于真空箱内抽真空、静置、排气泡;
(3)将步骤(2)所得的BZCT NFs填充相-PVDF混合溶液吸入注射器进行高速静电纺丝,获得规则排布的各向异性BZCT NFs-PVDF基复合湿膜;
(4)将复合湿膜放在真空烘箱内进行烘干处理,得到定向BZCT-PVDF复合薄膜;
步骤二、制备无规则排布的BZCT NFs-PVDF基复合薄膜:
(1)将BZCT NFs填充相均匀分散在DMF溶液中;
(2)向分散液中加入PVDF粉末,配制均质稳定的BZCT NFs填充相-PVDF混合溶液,并置于真空箱内抽真空、静置、排气泡;
(3)将步骤(2)所得的BZCT NFs填充相-PVDF混合溶液吸入注射器进行低速静电纺丝,获得无规则排布的BZCT NFs-PVDF基复合湿膜;
(4)将复合湿膜放在真空烘箱内进行烘干处理,得到非定向BZCT-PVDF复合薄膜;
步骤三、制备复合介质:
采用热压工艺,将定向或非定向BZCT-PVDF复合薄膜置于热压模板中进行热压处理,获得致密的定向或非定向BZCT-PVDF基复合介质。
2.根据权利要求1所述的各向异性纳米纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述BZCT NFs填充相的制备方法如下:
(1)将八水合氢氧化钡和氢氧化钙溶解乙酸中,将其在30~80℃温度下磁力搅拌至澄清溶液后,将其缓慢冷却至室温;随后加入乙酰丙酮溶液和乙酰丙酮锆粉末,继续室温下磁力搅拌至澄清;再缓慢滴加钛酸四丁酯溶液,室温下搅拌,得到BZCT前驱体溶液;为调节纺丝BZCT前驱体溶液的粘度,向BZCT前驱体溶液加入聚乙烯基吡咯烷酮PVP;
(2)将步骤(1)所得的BZCT前驱体溶液吸入注射器进行静电纺丝;
(3)静电纺丝结束后,将前驱体纤维放在马弗炉内烧结,最终获得BZCT无机陶瓷纤维填充相。
3.根据权利要求2所述的各向异性纳米纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述BZCT前驱体溶液与PVP的比例为0.05~7.5 g/10~100 mL,Ba:Ca:Zr:Ti的化学计量比为0.05~1.00:0.05~0.30:0.01~0.20:0.50~2.00。
4.根据权利要求2所述的各向异性纳米纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述静电纺丝过程中,注射器的推进速度设置为0.06~0.3 mm/min,接收器的转速设置为80~130 r/min,注射器至接收器距离为10~20 cm,注射器和接收器同时施加V+=12~20 kV,V-=12~20 kV的电压;所述烧结温度为600~800℃,时间为2~6 h。
5.根据权利要求1所述的各向异性纳米纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述高速静电纺丝过程中,接收器转速为2000~3000 r/min;所述低速静电纺丝过程中,接收器滚筒的转速设置为60~140 r/min。
6.根据权利要求1所述的各向异性纳米纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述烘干温度为40~70℃,时间为4~48 h。
7.根据权利要求1所述的各向异性纳米纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述热压处理为梯度热压处理,第一阶段热压温度110~160℃,在2~6 MPa下保压5~20 min;第二阶段进行卸压排气泡处理,并在卸压后150~180℃保温20~40 min以去除复合薄膜介质内部由于静电纺丝而引入的残留应力;第三阶段热压温度150~180 ℃,在15~20 MPa下保压5~30 min;最后通过水冷装置将复合薄膜的温度迅速降至室温,在1~10MPa下保压1~15 min。
8.根据权利要求1所述的各向异性纳米纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述定向或非定向BZCT-PVDF基复合介质的厚度为10~30 μm。
CN201810819906.4A 2018-07-24 2018-07-24 一种各向异性纳米纤维聚偏氟乙烯基复合介质及其制备方法 Active CN109097841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810819906.4A CN109097841B (zh) 2018-07-24 2018-07-24 一种各向异性纳米纤维聚偏氟乙烯基复合介质及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810819906.4A CN109097841B (zh) 2018-07-24 2018-07-24 一种各向异性纳米纤维聚偏氟乙烯基复合介质及其制备方法

Publications (2)

Publication Number Publication Date
CN109097841A CN109097841A (zh) 2018-12-28
CN109097841B true CN109097841B (zh) 2021-10-22

Family

ID=64847302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810819906.4A Active CN109097841B (zh) 2018-07-24 2018-07-24 一种各向异性纳米纤维聚偏氟乙烯基复合介质及其制备方法

Country Status (1)

Country Link
CN (1) CN109097841B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109893680B (zh) * 2019-03-07 2021-10-08 宁波光远致信生物科技有限公司 一种修复纤维膜、修复套接管及其制备方法和用途
CN110331520A (zh) * 2019-07-11 2019-10-15 哈尔滨理工大学 一种二氧化硅包覆钛酸钡/聚醚酰亚胺复合材料及其制备方法与应用
CN112030369A (zh) * 2020-07-22 2020-12-04 哈尔滨理工大学 一种一维铁磁填料-铁电聚合物的多铁复合介质及其制备方法
CN112980188B (zh) * 2021-05-07 2022-11-18 哈尔滨理工大学 一种锆钛酸钡钙纤维/聚醚砜基复合电介质制备及储能性能优化
CN113061341B (zh) * 2021-05-08 2023-02-21 哈尔滨理工大学 一种表面修饰的无机填充相/聚醚砜基复合电介质制备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107090088A (zh) * 2017-05-25 2017-08-25 陕西科技大学 高β晶体含量的聚偏氟乙烯复合取向介电膜及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788910B2 (ja) * 2006-07-04 2011-10-05 大日本印刷株式会社 ホログラム異方性反射複合媒体
CN104327433B (zh) * 2013-10-30 2017-04-12 东莞市长安东阳光铝业研发有限公司 一种聚偏氟乙烯基薄膜的制备方法
CN105884350B (zh) * 2016-04-08 2019-04-02 江苏大学 一种锆钛酸钡钙无铅压电陶瓷材料及其制备方法
CN107195836A (zh) * 2017-05-10 2017-09-22 东南大学 一种压电驱动自充电电池隔膜及其制备方法
CN107177144B (zh) * 2017-06-27 2019-08-16 哈尔滨理工大学 一种三明治结构纳米纤维/聚偏氟乙烯复合介质及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107090088A (zh) * 2017-05-25 2017-08-25 陕西科技大学 高β晶体含量的聚偏氟乙烯复合取向介电膜及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张昌海.高储能密度聚偏氟乙烯基复合介质的制备与性能研究.《中国博士学位论文全文数据库 工程科技Ⅰ辑》.2018,(第1期),第28-29页. *
高储能密度聚偏氟乙烯基复合介质的制备与性能研究;张昌海;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20180115(第1期);B020-70 *

Also Published As

Publication number Publication date
CN109097841A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
CN109097841B (zh) 一种各向异性纳米纤维聚偏氟乙烯基复合介质及其制备方法
CN109265879B (zh) 一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法
US10186698B2 (en) Ceramic-polymer hybrid nanostructures, methods for producing and applications thereof
Song et al. Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO 3 nanofibers in flexible poly (vinylidene fluoride-trifluoroethylene) nanocomposites
CN105295263B (zh) 一种聚合物基复合材料及其制备方法
CN108187503B (zh) 一种蒙脱土增强型壳聚糖复合醋酸纤维素薄膜的制备方法
CN108998893B (zh) 一种梯度结构聚偏氟乙烯基复合介质及其制备方法
CN109666172B (zh) 一种梯度结构聚合物纳米复合材料及其制备方法与应用
CN107901523B (zh) 高介电、高储能纳米复合材料的制备方法
KR101668391B1 (ko) 단일 배향성 고밀도 탄소나노섬유펠트 및 상기 탄소나노섬유펠트를 포함하는 탄소나노섬유펠트 응용제품
CN106633153A (zh) 一种三层结构的聚合物基介电储能纳米复合材料及其制备方法
Chang et al. Large d 33 and enhanced ferroelectric/dielectric properties of poly (vinylidene fluoride)-based composites filled with Pb (Zr 0.52 Ti 0.48) O 3 nanofibers
CN106238726B (zh) 一种柔性复合纳米银线及其制备方法
CN114455846B (zh) 一种具有垂直取向结构的多孔莫来石纳米纤维基絮片材料及其制备方法
Luo et al. Sandwich-structured polymer nanocomposites with Ba0· 6Sr0· 4TiO3 nanofibers networks as mediate layer inducing enhanced energy storage density
CN105506783A (zh) 一种取向排列钛酸钡纳米纤维的制备方法
CN107611320A (zh) 锂电池涂布隔膜用水性浆料、锂电池涂布隔膜以及它们的制备方法
CN110628152B (zh) 一种聚合物基复合电卡材料及其制备方法
CN108866819A (zh) 一种聚合物纳米复合材料及其制备方法
Zhang et al. Recent progress in polymer dielectric energy storage: From film fabrication and modification to capacitor performance and application
CN110341205B (zh) 一种多层聚合物纳米复合材料及其制备方法
CN113279142B (zh) 一种具有多层梯度结构的聚醚酰亚胺基复合介质及其制备方法及其应用
CN107323040A (zh) 一种三明治结构全有机介质及其制备方法
CN104877278A (zh) 一种聚甲基丙烯酸正丁酯/聚偏氟乙烯基复合介电薄膜及其制备方法
WO2020013268A1 (ja) 屈曲性を有する高熱伝導性材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhang Changhai

Inventor after: Chi Qingguo

Inventor after: Hao Yuyi

Inventor after: Zhang Yue

Inventor after: Tang Chao

Inventor after: Li Hua

Inventor after: Wang Xuan

Inventor before: Chi Qingguo

Inventor before: Hao Yuyi

Inventor before: Zhang Yue

Inventor before: Zhang Changhai

Inventor before: Wang Xuan

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231010

Address after: 215200 no.688, Yuexiu Road, Lili Town, Wujiang District, Suzhou City, Jiangsu Province

Patentee after: SUZHOU GOLDEN TECHNOLOGY MATERIAL CO.,LTD.

Address before: 150080 No. 52, Xuefu Road, Nangang District, Heilongjiang, Harbin

Patentee before: HARBIN University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right