CN109265879B - 一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法 - Google Patents

一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法 Download PDF

Info

Publication number
CN109265879B
CN109265879B CN201810820706.0A CN201810820706A CN109265879B CN 109265879 B CN109265879 B CN 109265879B CN 201810820706 A CN201810820706 A CN 201810820706A CN 109265879 B CN109265879 B CN 109265879B
Authority
CN
China
Prior art keywords
bzct
core
sio
pvdf
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810820706.0A
Other languages
English (en)
Other versions
CN109265879A (zh
Inventor
张月
迟庆国
刘立柱
张昌海
王暄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201810820706.0A priority Critical patent/CN109265879B/zh
Publication of CN109265879A publication Critical patent/CN109265879A/zh
Application granted granted Critical
Publication of CN109265879B publication Critical patent/CN109265879B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开了一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法,所述复合介质由核壳结构BZCT@SiO2NFs填充相和PVDF复合而成,其中:所述BZCT@SiO2NFs为核壳纤维结构,核层为锆钛酸钡钙,壳层为氧化硅。本发明首先采用溶胶‑凝胶法和静电纺丝技术制备具有大长径比的无机纤维填充相,然后对其进行二氧化硅包裹,随后与PVDF复合,并进行淬火处理,得到致密的高定向一维核壳结构的无机纤维‑PVDF基复合薄膜。本发明的高定向排布的一维核壳结构无机纤维‑PVDF基复合薄膜介质能够显著提高介电、击穿和储能性能,维持了聚合物自身优异的电绝缘与机械性能。

Description

一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制 备方法
技术领域
本发明属于介质电容器领域,涉及一种聚合物基电介质纳米复合材料及其制备方法,具体涉及一种一维核壳结构无机填充相-聚合物基复合介质及其制备方法。
背景技术
电力电子领域对先进电介质材料的要求不断提高,其中聚合物基电介质纳米复合材料具有广阔的应用前景。然而,同时提高复合材料的介电性能和电击穿强度仍然是长期以来研究学者所面临的重要挑战。另外,无机填充相和聚合物基体存在较大的介电差异问题,这会导致复合介质内部局部电场分布不均,破坏其耐击穿能力,从而导致储能性能裂化。
发明内容
本发明为了解决现阶段介质击穿强度偏低、储能密度较低的问题,提供了一种具有高储能密度、高击穿强度的高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法。本发明制备工艺流程简便,容易推广实施。通过对比发现,本发明的高定向排布的一维核壳结构无机纤维-PVDF基复合薄膜介质能够显著提高介电、击穿和储能性能,维持了聚合物自身优异的电绝缘与机械性能。
本发明的目的是通过以下技术方案实现的:
一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质,由核壳结构BZCT@SiO2NFs填充相和PVDF复合而成,所述核壳结构BZCT@SiO2 NFs填充相在复合介质中定向排布,BZCT@SiO2 NFs为核壳纤维结构,核层为锆钛酸钡钙,壳层为氧化硅,核壳结构BZCT@SiO2NFs填充相在复合介质中的含量为1~20vol%。
一种上述高定向排布核壳结构纤维聚偏氟乙烯基复合介质的制备方法,包括如下步骤:
步骤一、制备核壳结构BZCT@SiO2 NFs:
(1)将1~5g锆钛酸钡钙纳米纤维分散在100~400mL乙醇、200~500mL去离子水和1~20mL氨水的混合液中;
(2)加入5~20mL TEOS溶液,连续搅拌30~180min,然后将混合液在60~70℃温度下再搅拌6~24h;
(3)通过离心清洗收集被修饰粉末,用去离子水和乙醇洗涤至pH=6~8,烘干,获得核壳结构BZCT@SiO2 NFs;
步骤二、制备BZCT@SiO2-PVDF复合薄膜:
(1)将核壳结构BZCT@SiO2 NFs填充相置于N,N-二甲基甲酰胺(DMF)溶液中,超声分散5~60min,使其均匀分散在DMF溶液中;
(2)向上述分散液中缓慢加入聚偏氟乙烯(PVDF)粉末,配制均质稳定的含有BZCT@SiO2 NFs填充相的PVDF混合溶液,置于真空箱内抽真空、静置、排气泡;
(3)将步骤(2)所得的混合溶液吸入注射器进行高速定向静电纺丝,获得高定向排布的BZCT@SiO2-PVDF基复合湿膜;
(4)将湿膜放在真空烘箱内进行烘干处理,获得高定向排布的BZCT@SiO2-PVDF基复合薄膜;
步骤三、制备BZCT@SiO2-PVDF复合介质:
采用热压工艺,将高定向排布的BZCT@SiO2-PVDF基复合薄膜放置于热压模板中进行热压处理,获得致密的高定向排布的BZCT@SiO2-PVDF复合介质。
本发明中,所述热压处理为梯度热压处理,第一阶段热压温度100~150℃,在1~5MPa下保压10~60min;第二阶段进行卸压排气泡处理,并在卸压后150~180℃保温20~40min以去除复合薄膜介质内部由于静电纺丝而引入的残留应力;第三阶段热压温度140~180℃,在10~15MPa下保压5~20min;最后通过水冷装置将复合薄膜的温度迅速降至20℃,在1~10MPa下保压1~10min。
本发明中,所述锆钛酸钡钙纳米纤维的制备方法如下:
(1)将1.0~15.0g八水合氢氧化钡和0.1~0.6g氢氧化钙溶解在10~50mL乙酸溶剂中,将其在40~80℃温度下磁力搅拌至澄清溶液后停止加热,缓慢冷却至室温;
(2)向步骤(1)澄清溶液中加入1~15mL乙酰丙酮溶液和0.1~3.0g乙酰丙酮锆,将混合溶液在室温下磁力搅拌至澄清;
(3)向步骤(2)澄清溶液中滴加1~17mL钛酸四丁酯溶液,室温下磁力搅拌;
(4)待BZCT前驱体溶液添加完毕后,加入0.2~2.0g聚乙烯基吡咯烷酮;
(5)将步骤(4)所得的BZCT前驱体溶液吸入注射器中进行静电纺丝;
(6)纺丝结束后,将前驱体纤维放于马弗炉内烧结,获得BZCTNFs。
本发明中,所述静电纺丝过程中,注射器的推进速度设置为0.05~0.2mm/min,接收器转速为60~100r/min,注射器至接收器的距离为7~20cm,注射器和接收器同时施加V+=10~20kV,V-=10~20kV的电压。
本发明中,所述烧结温度为500~800℃,时间为2~4h。
本发明中,所述烘干温度为60~80℃,时间为6~24h。
本发明中,所述BZCT@SiO2-PVDF复合介质的厚度约为10~20μm。
本发明中,所述高速静电纺丝过程中,接收器转速为2000~3000r/min,注射器的推进速度设置为0.05~0.2mm/min,注射器至接收器的距离为7~20cm,注射器和接收器同时施加V+=10~20kV,V-=10~20kV的电压。相比于60~140r/min低速下的纤维在聚合物基体内部呈现杂乱无章的排列,转速高达2000r/min时纤维受到的拉伸力和电场的静电力共同作用,使无机纤维彼此之间呈现高度平行排列,因此纤维在基体内朝向保持一致,且此材料在外电场下应用时内部有规律排列的纤维均与外电场方向垂直,这有利于提高复合材料的击穿。
本发明中,所述高定向排布的各向异性具体指纤维在聚合物基体内部呈现彼此高度平行排列,对其宏观性能进行测试,可以检测出该复合材料沿着不同方向存在各向异性,并且在其应用过程中与外加电场方向垂直。
相比于现有技术,本发明具有如下优点:
1、高定向排布的一维核壳结构无机填充相具有较高的介电常数和提高复合介质抗击穿的能力,这可以提升PVDF复合介质整体的介电常数和击穿场强;尤其是在PVDF基体内部高度定向排列的一维核壳结构无机纤维,这种具有大长径比的纤维结构会有效抑制电树枝的延伸,进一步提升介质的击穿强度;另外由于BZCT纤维的外部包裹了一层SiO2,有效缓解了基体与填充相间较大的介电差异,有效降低了PVDF基复合介质的击穿概率。
2、本发明制备的高定向排布的BZCT@SiO2-PVDF或BZCT-PVDF基复合薄膜介质可以显著提升聚合物的介电常数和击穿场强,并且具有较低的损耗,维持了聚合物基体自身优异的机械性能,可以应用在储能领域。
3、本发明制备工艺及所需设备价格低廉,实验简易且容易实施。
附图说明
图1为PVDF、BZCT纤维和高定向排布BZCT@SiO2-PVDF复合材料的X射线衍射图谱;
图2为PVDF和3vol%高定向排布BZCT@SiO2-PVDF复合介质扫描电镜图;
图3为PVDF和3vol%高定向排布BZCT@SiO2-PVDF复合材料的介电性能;
图4为PVDF和3vol%高定向排布BZCT@SiO2-PVDF复合介质击穿强度威布尔分布;
图5为PVDF和3vol%高定向排布BZCT@SiO2-PVDF复合介质储能特性。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
具体实施方式一:本实施方式提供的高定向排布核壳结构纤维聚偏氟乙烯基复合介质由高定向排布的各向异性的核壳结构BZCT@SiO2 NFs填充相和PVDF复合而成,所述核壳结构BZCT@SiO2 NFs填充相在复合介质中高定向排布,BZCT@SiO2 NFs为核壳纤维结构,核层为锆钛酸钡钙,壳层为氧化硅。
上述高定向排布核壳结构纤维聚偏氟乙烯基复合介质的制备方法,首先采用溶胶-凝胶法和静电纺丝技术制备具有大长径比的无机纤维填充相,然后对其进行二氧化硅包裹,随后与聚偏氟乙烯(PVDF)复合,并进行淬火处理,得到致密的高定向一维核壳结构的无机纤维-PVDF基复合薄膜。具体制备步骤如下:
步骤一:将1.0~15.0g八水合氢氧化钡[Ba(OH)2·8H2O]和0.1~0.6g氢氧化钙[Ca(OH)2]溶解在10~50mL乙酸溶剂中,将其在40~80℃温度下磁力搅拌至澄清溶液后停止加热,缓慢冷却至室温;随后向上述澄清溶液中加入1~15mL乙酰丙酮溶液和0.1~3.0g乙酰丙酮锆,将混合溶液在室温下磁力搅拌至澄清;最后向上述澄清溶液中缓慢滴加1~17mL钛酸四丁酯溶液,室温下磁力搅拌;待BZCT前驱体溶液添加完毕后,为调节纺丝前驱体溶液的粘度,需加入0.2~2.0g聚乙烯基吡咯烷酮(PVP)。
步骤二:将步骤一所得的BZCT前驱体溶液缓慢吸入注射器中,选取型号为23G的金属针头准备进行纺丝,静电纺丝过程将注射器的推进速度设置为0.05~0.2mm/min,接收器转速为60~100r/min,注射器至接收器的距离为7~20cm,注射器和接收器同时施加V+=10~20kV,V-=10~20kV的电压;纺丝结束后,将前驱体纤维放于马弗炉内500~800℃温度下烧结2~4h;最终获得锆钛酸钡钙纳米纤维(BZCT NFs)。
步骤三:对BZCT NFs进行二氧化硅(SiO2)包裹,具体步骤如下:将1~5g BZCT NFs悬浮液分散在乙醇(C2H5OH,100~400mL)、去离子水(200~500mL)和氨水(NH3·H2O,1~20mL,28wt.%)的混合液中;加入5~20mL正硅酸乙酯溶液(TEOS,5~30vol.%TEOS的乙醇溶液),连续搅拌下30~180min,然后将混合液在60~70℃温度下再搅拌6~24h;通过离心清洗收集被修饰粉末,用去离子水和乙醇洗涤至pH=6~8,烘干;最终获得包裹SiO2的BZCT纳米纤维(BZCT@SiO2 NFs)。
步骤四:将步骤三所得的核壳结构BZCT@SiO2 NFs填充相0.0~2.2g置20~60mLN,N-二甲基甲酰胺(DMF)溶液中,超声分散5~60min,使其均匀分散在DMF溶液中;随后向上述分散液中缓慢加入2.0~6.0g聚偏氟乙烯(PVDF)粉末;通过采用溶液法按照配比0vol%、1vol%、3vol%、5vol%、7vol%、10vol%、15vol%、20vol%配制成均质稳定的含有BZCT@SiO2 NFs填充相的PVDF混合溶液,置于真空箱内抽真空、静置、排气泡1~10h;按照步骤二的静电纺丝过程,利用高速(2000~3000r/min)定向静电纺丝技术获得高定向排布的BZCT@SiO2-PVDF基复合湿膜;纺丝结束后,将湿膜放在真空烘箱内60~80℃温度下进行烘干处理6~24h;最终获得高定向排布的BZCT@SiO2-PVDF复合薄膜。
步骤五:采用热压工艺,将高定向排布的BZCT@SiO2-PVDF基复合薄膜放置于热压模板中,进行梯度升温热压处理:第一阶段热压温度100~150℃,在1~5MPa下保压10~60min;第二阶段进行卸压排气泡处理,并在卸压后150~180℃保温20~40min以去除复合薄膜介质内部由于静电纺丝而引入的残留应力;第三阶段热压温度140~180℃,在10~15MPa下保压5~20min;最后通过水冷装置将复合薄膜的温度迅速降至20℃,在1~10MPa下保压1~10min,获得致密的高定向排布的BZCT@SiO2-PVDF复合介质,厚度约为16μm。
具体实施方式二:本实施方式提供的高定向排布核壳结构纤维聚偏氟乙烯基复合介质由高定向排布的各向异性的核壳结构BZCT@SiO2 NFs填充相和PVDF复合而成,所述核壳结构BZCT@SiO2 NFs填充相在复合介质中高定向排布,BZCT@SiO2 NFs为核壳纤维结构,核层为锆钛酸钡钙,壳层为氧化硅,核壳结构BZCT@SiO2 NFs填充相在复合介质中的含量为3vol%。
上述高定向排布核壳结构纤维聚偏氟乙烯基复合介质的制备步骤如下:
步骤一:将4.7g八水合氢氧化钡[Ba(OH)2·8H2O]和0.2g氢氧化钙[Ca(OH)2]溶解16mL乙酸溶剂中,将其在50℃温度下磁力搅拌至澄清溶液后停止加热,缓慢冷却至室温;所述随后向上述澄清溶液中加入4mL乙酰丙酮溶液和0.9g乙酰丙酮锆,将混合溶液在室温下磁力搅拌至澄清;所述最后向上述澄清溶液中缓慢滴加5mL钛酸四丁酯溶液,室温下磁力搅拌;所述待前驱体溶液添加完毕后,为调节纺丝前驱体溶液的粘度,需加入0.3g聚乙烯基吡咯烷酮。
步骤二:将步骤一所得的BZCT前驱体溶液缓慢吸入注射器中,选取型号为23G的金属针头准备进行纺丝,静电纺丝过程将注射器的推进速度设置为0.12mm/min,接收器转速为100r/min,注射器至接收器的距离为15cm,注射器和接收器同时施加V+=15kV,V-=15kV的电压;所述纺丝结束后,将前驱体纤维放于马弗炉内750℃温度下烧结3h;最终获得锆钛酸钡钙纳米纤维(BZCT NFs)。
步骤三:对BZCT NFs进行二氧化硅(SiO2)包裹:将3g BZCT NFs悬浮液分散在乙醇(C2H5OH,40mL)、去离子水(350mL)和氨水(NH3·H2O,4mL,28wt.%)的混合液中;然后加入10mL正硅酸乙酯溶液(TEOS,20vol.%TEOS的乙醇溶液)在连续搅拌下缓慢加入120min,并将混合液在60℃温度下再搅拌12h;所述通过离心清洗收集被修饰粉末,用去离子水和乙醇洗涤至pH=7,烘干;最终获得包裹SiO2的BZCT纳米纤维(BZCT@SiO2 NFs)。
步骤四:将步骤三所得的核壳结构BZCT@SiO2 NFs填充相0.3g置于30mL N,N-二甲基甲酰胺(DMF)溶液中,超声分散10min,使其均匀分散在DMF溶液中;随后向上述分散液中缓慢加入3.0g聚偏氟乙烯(PVDF)粉末;通过采用溶液法按照配比3vol%配制成均质稳定的含有BZCT@SiO2 NFs填充相的PVDF混合溶液,置于真空箱内抽真空、静置、排气泡6h;按照步骤二的静电纺丝过程,利用高速(2000r/min)定向静电纺丝技术获得高定向排布的BZCT@SiO2-PVDF基复合湿膜;纺丝结束后,将湿膜放在真空烘箱内60℃温度下进行烘干处理18h;最终获得高定向排布的BZCT@SiO2-PVDF复合薄膜。
步骤五:采用热压工艺,将高定向排布的BZCT@SiO2-PVDF基复合薄膜放置于热压模板中,进行梯度升温热压处理:第一阶段热压温度150℃,在5MPa下保压15min;第二阶段进行卸压排气泡处理,并在卸压后180℃保温30min以去除复合薄膜介质内部由于静电纺丝而引入的残留应力;第三阶段热压温度175℃,在15MPa下保压10min;最后通过水冷装置将复合薄膜的温度迅速降至20℃,在5MPa下保压3min获得致密的高定向排布的BZCT@SiO2-PVDF复合介质,厚度约为16μm。
本实施方式制备的一维BZCT NFs结晶相为典型钙钛矿结构,无其它杂质;BZCT@SiO2 NFs核壳结构中BZCT直径~270nm,SiO2包裹层~17nm;所得一维无机填充相-聚合物基复合介质,通过X射线衍射图谱(XRD)对高定向排布的BZCT@SiO2-PVDF基复合薄膜的晶体结构进行表征分析,结果如图1所示:XRD图谱检测到填充相BZCT NFs的衍射峰和PVDF的晶体结构,说明无机相与基体复合成功。
图2为纯PVDF和高定向排布BZCT@SiO2-PVDF复合介质断面的扫描电镜图,根据测试结果可以看出,PVDF膜厚约为18μm,复合薄膜厚度约为15μm;可以清楚的观察到BZCT@SiO2纤维在BZCT@SiO2-PVDF复合介质内部呈高定向排布,且分布均匀。
图3为纯PVDF和高定向排布BZCT@SiO2-PVDF复合介质的介电性能图谱。从图3中看出,高定向排布BZCT@SiO2-PVDF复合介质介电性能得到明显提升;同时,复合介质的介电损耗稍微有所降低,且处于较低水平。
图4为纯PVDF和高定向排布BZCT@SiO2-PVDF复合介质击穿强度的威布尔分布图。从图4中可以看出,相比于纯PVDF,3vol%高定向排布BZCT@SiO2-PVDF复合介质具有较高的击穿电场;说明SiO2层对BZCT@SiO2-PVDF复合介质击穿具有缓冲作用,因此使得BZCT@SiO2-PVDF复合介质具有较高承受击穿电场的能力。
图5为纯PVDF和高定向排布BZCT@SiO2-PVDF复合介质储能性能图谱。从图5中可以观察到,相比于PVDF介质,BZCT@SiO2-PVDF复合介质具有较高的极化强度和耐高电场的能力,这使得其具有较高储能密度;另外,SiO2层抑制介电损耗升高,这使得BZCT@SiO2-PVDF复合介质具有高储能密度的同时还具有较高的充放电效率。
由图3、图4和图5可以看出本实施方式制备方法可使所制备的高定向排布的一维核壳结构无机填充相-聚合物基复合介质具有优异的介电常数与较低的介电损耗,同时具有较高的耐击穿电场强度。本实施方式通过合理设计高定向排布的一维核壳结构无机纤维,提高了复合介质的击穿强度、放电能量密度、充放电效率,降低了复合介质的能量损耗,同时保证了聚合物基体优异的柔韧性,在低含量高定向排布的一维核壳结构无机纤维下制备了具有优异储能性能的复合薄膜介质。

Claims (10)

1.一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质,其特征在于所述复合介质由核壳结构BZCT@SiO2NFs填充相和PVDF复合而成,其中:所述核壳结构BZCT@SiO2NFs填充相在复合介质中定向排布,BZCT@SiO2NFs为核壳纤维结构,核层为锆钛酸钡钙,壳层为氧化硅。
2.根据权利要求1所述的高定向排布核壳结构纤维聚偏氟乙烯基复合介质,其特征在于所述核壳结构BZCT@SiO2NFs填充相在复合介质中的含量为1~20vol%。
3.根据权利要求2所述的高定向排布核壳结构纤维聚偏氟乙烯基复合介质,其特征在于所述核壳结构BZCT@SiO2NFs填充相在复合介质中的含量为1vol%、3vol%、5vol%、7vol%、10vol%、15vol%或20vol%。
4.一种权利要求1-3任一权利要求所述的高定向排布核壳结构纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述方法步骤如下:
步骤一、制备核壳结构BZCT@SiO2NFs:
(1)将1~5g锆钛酸钡钙纳米纤维分散在100~400mL乙醇、200~500mL去离子水和1~20mL氨水的混合液中;
(2)加入5~20mL TEOS溶液,连续搅拌30~180min,然后将混合液在60~70℃温度下再搅拌6~24h;
(3)通过离心清洗收集被修饰粉末,用去离子水和乙醇洗涤至pH=6~8,烘干,获得核壳结构BZCT@SiO2NFs;
步骤二、制备BZCT@SiO2-PVDF复合薄膜:
(1)将核壳结构BZCT@SiO2NFs填充相置于N,N-二甲基甲酰胺(DMF)溶液中,超声分散5~60min,使其均匀分散在DMF溶液中;
(2)向上述分散液中缓慢加入聚偏氟乙烯(PVDF)粉末,配制均质稳定的含有BZCT@SiO2NFs填充相的PVDF混合溶液,置于真空箱内抽真空、静置、排气泡;
(3)将步骤(2)所得的混合溶液吸入注射器进行高速定向静电纺丝,获得高定向排布的BZCT@SiO2-PVDF基复合湿膜;
(4)将湿膜放在真空烘箱内进行烘干处理,获得高定向排布的BZCT@SiO2-PVDF基复合薄膜;
步骤三、制备BZCT@SiO2-PVDF复合介质:
采用热压工艺,将高定向排布的BZCT@SiO2-PVDF基复合薄膜放置于热压模板中进行热压处理,获得致密的高定向排布的BZCT@SiO2-PVDF复合介质。
5.根据权利要求4所述的高定向排布核壳结构纤维聚偏氟乙烯基复合介质的制备方法,其特征在于 所述锆钛酸钡钙纳米纤维的制备方法如下:
(1)将1.0~15.0g八水合氢氧化钡和0.1~0.6g氢氧化钙溶解在10~50mL乙酸溶剂中,将其在40~80℃温度下磁力搅拌至澄清溶液后停止加热,缓慢冷却至室温;
(2)向步骤(1)澄清溶液中加入1~15mL乙酰丙酮溶液和0.1~3.0g乙酰丙酮锆,将混合溶液在室温下磁力搅拌至澄清;
(3)向步骤(2)澄清溶液中滴加1~17mL钛酸四丁酯溶液,室温下磁力搅拌;
(4)待BZCT前驱体溶液添加完毕后,加入0.2~2.0g聚乙烯基吡咯烷酮;
(5)将步骤(4)所得的BZCT前驱体溶液吸入注射器中进行静电纺丝;
(6)纺丝结束后,将前驱体纤维放于马弗炉内烧结,获得BZCT NFs。
6.根据权利要求5所述的高定向排布核壳结构纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述烧结温度为500~800℃,时间为2~4h;所述静电纺丝过程中,注射器的推进速度设置为0.05~0.2mm/min,接收器转速为60~100r/min,注射器至接收器的距离为7~20cm,注射器和接收器同时施加V+=10~20kV,V-=10~20kV的电压。
7.根据权利要求4所述的高定向排布核壳结构纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述高速静电纺丝过程中,接收器转速为2000~3000r/min。
8.根据权利要求4所述的高定向排布核壳结构纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述烘干温度为60~80℃,时间为6~24h。
9.根据权利要求4所述的高定向排布核壳结构纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述热压处理为梯度热压处理,第一阶段热压温度100~150℃,在1~5MPa下保压10~60min;第二阶段进行卸压排气泡处理,并在卸压后150~180℃保温20~40min以去除复合薄膜介质内部由于静电纺丝而引入的残留应力;第三阶段热压温度140~180℃,在10~15MPa下保压5~20min;最后通过水冷装置将复合薄膜的温度迅速降至20℃,在1~10MPa下保压1~10min。
10.根据权利要求4所述的高定向排布核壳结构纤维聚偏氟乙烯基复合介质的制备方法,其特征在于所述BZCT@SiO2-PVDF复合介质的厚度为10~20μm。
CN201810820706.0A 2018-07-24 2018-07-24 一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法 Expired - Fee Related CN109265879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810820706.0A CN109265879B (zh) 2018-07-24 2018-07-24 一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810820706.0A CN109265879B (zh) 2018-07-24 2018-07-24 一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法

Publications (2)

Publication Number Publication Date
CN109265879A CN109265879A (zh) 2019-01-25
CN109265879B true CN109265879B (zh) 2020-07-10

Family

ID=65148218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810820706.0A Expired - Fee Related CN109265879B (zh) 2018-07-24 2018-07-24 一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法

Country Status (1)

Country Link
CN (1) CN109265879B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951195A (zh) * 2019-12-09 2020-04-03 哈尔滨理工大学 一种pmma/pvdf复合薄膜及其制备方法
CN111575918B (zh) * 2020-05-26 2022-08-02 哈尔滨理工大学 一种具有双梯度结构的聚醚酰亚胺基复合介质及其制备方法与应用
CN112030369A (zh) * 2020-07-22 2020-12-04 哈尔滨理工大学 一种一维铁磁填料-铁电聚合物的多铁复合介质及其制备方法
CN111995830B (zh) * 2020-07-22 2022-02-08 哈尔滨理工大学 一种具有铁磁各向异性的聚合物基复合介质及其制备方法
CN113061341B (zh) * 2021-05-08 2023-02-21 哈尔滨理工大学 一种表面修饰的无机填充相/聚醚砜基复合电介质制备
CN113279142B (zh) * 2021-05-18 2022-05-03 哈尔滨理工大学 一种具有多层梯度结构的聚醚酰亚胺基复合介质及其制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104893187A (zh) * 2015-04-09 2015-09-09 同济大学 高储能密度及效率的聚合物复合薄膜及其制备方法
CN107195836A (zh) * 2017-05-10 2017-09-22 东南大学 一种压电驱动自充电电池隔膜及其制备方法
CN108017861A (zh) * 2017-10-09 2018-05-11 南通洪明电工科技有限公司 一种二氧化硅包覆钛酸铜钙纳米纤维的聚合物基介电复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104893187A (zh) * 2015-04-09 2015-09-09 同济大学 高储能密度及效率的聚合物复合薄膜及其制备方法
CN107195836A (zh) * 2017-05-10 2017-09-22 东南大学 一种压电驱动自充电电池隔膜及其制备方法
CN108017861A (zh) * 2017-10-09 2018-05-11 南通洪明电工科技有限公司 一种二氧化硅包覆钛酸铜钙纳米纤维的聚合物基介电复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Microstructure and dielectric properties of BZT-BCT/PVDF nanocomposites;Chi Qingguo等;《Results in Physics》;20171219;第391-396页 *
Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanofibers;Chi Qingguo等;《Journal of Materials Chemistry A》;20171231;第16757-16766页 *

Also Published As

Publication number Publication date
CN109265879A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
CN109265879B (zh) 一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法
CN109097841B (zh) 一种各向异性纳米纤维聚偏氟乙烯基复合介质及其制备方法
CN105295263B (zh) 一种聚合物基复合材料及其制备方法
CN109666172A (zh) 一种梯度结构聚合物纳米复合材料及其制备方法与应用
CN108511793B (zh) 固态锂镧锆氧陶瓷纳米纤维电解质薄膜及其制备
CN109112728B (zh) 柔性二氧化钛/碳复合多孔纳米纤维膜材料的制备方法
Feng et al. Enhanced energy storage characteristics in PVDF-based nanodielectrics with core-shell structured and optimized shape fillers
Liu et al. A small loading of surface-modified Ba 0.6 Sr 0.4 TiO 3 nanofiber-filled nanocomposites with enhanced dielectric constant and energy density
CN111575918B (zh) 一种具有双梯度结构的聚醚酰亚胺基复合介质及其制备方法与应用
CN103451851A (zh) 一种柔韧高强氧化锆纳米纤维膜的制备方法
CN113831581B (zh) 一种高弹性抗辐射纳米纤维气凝胶材料及其制备方法
CN107611320A (zh) 锂电池涂布隔膜用水性浆料、锂电池涂布隔膜以及它们的制备方法
CN108998893B (zh) 一种梯度结构聚偏氟乙烯基复合介质及其制备方法
CN110885473B (zh) 一种纳米颗粒、复合薄膜及其制备方法和应用
CN108017861A (zh) 一种二氧化硅包覆钛酸铜钙纳米纤维的聚合物基介电复合材料及其制备方法
CN108866819A (zh) 一种聚合物纳米复合材料及其制备方法
CN110331520A (zh) 一种二氧化硅包覆钛酸钡/聚醚酰亚胺复合材料及其制备方法与应用
CN106349613A (zh) 一种高能量密度、低介电损耗复合薄膜材料及其制备方法
CN108623955B (zh) 柔性复合薄膜及其制备方法
CN112185703B (zh) 一种二维复合三明治结构介电储能材料及制备方法与应用
CN113668139A (zh) 一种柔性耐高温SiO2陶瓷纳米纤维膜的制备方法
CN110341205B (zh) 一种多层聚合物纳米复合材料及其制备方法
CN113402748A (zh) 一种全有机复合电介质的制备及储能性能优化方法
CN113279142B (zh) 一种具有多层梯度结构的聚醚酰亚胺基复合介质及其制备方法及其应用
CN113896536A (zh) 一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200710

Termination date: 20210724