CN113896536A - 一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用 - Google Patents

一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用 Download PDF

Info

Publication number
CN113896536A
CN113896536A CN202111255010.6A CN202111255010A CN113896536A CN 113896536 A CN113896536 A CN 113896536A CN 202111255010 A CN202111255010 A CN 202111255010A CN 113896536 A CN113896536 A CN 113896536A
Authority
CN
China
Prior art keywords
solution
fiber material
ceramic fiber
spinning
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111255010.6A
Other languages
English (en)
Other versions
CN113896536B (zh
Inventor
李娜
钟佳锦
包海峰
秦艳敏
方正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Textile University
Original Assignee
Wuhan Textile University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Textile University filed Critical Wuhan Textile University
Priority to CN202111255010.6A priority Critical patent/CN113896536B/zh
Publication of CN113896536A publication Critical patent/CN113896536A/zh
Application granted granted Critical
Publication of CN113896536B publication Critical patent/CN113896536B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Fibers (AREA)

Abstract

一种Si‑Zr‑O‑C基陶瓷纤维材料的制备方法,先将锆源溶于络合剂中以得到一次溶液,再将一次溶液、硅源、纺丝助剂溶液相混合以得到前驱体溶胶纺丝液,然后对上述前驱体溶胶纺丝液进行静电纺丝,以获得前驱体凝胶纤维,再对上述前驱体凝胶纤维依次进行干燥处理、烧结处理,以获得最终的产物,即陶瓷纤维材料,该陶瓷纤维材料能够应用在隔热领域中。本设计不仅在高温使用环境下,能够兼具隔热性能、力学性能,而且生产成本较低,纤维连续性较好,能耗低。

Description

一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用
技术领域
本发明涉及一种陶瓷纤维材料的制备工艺,属于隔热技术领域,尤其涉及一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用。
背景技术
陶瓷纤维是一种低密度、高强度、高温热稳定性好、耐烧蚀、韧性好的材料,因而,具有柔性的陶瓷纤维既可以单独作为隔热材料,也可以作为复合材料的中的增强基,因此,陶瓷纤维材料在高温隔热领域,如航天飞行器的热防护系统中,具有很大应用前景的选择。
常见的陶瓷纤维材料主要包括氧化物和非氧化物,其中,氧化物陶瓷纤维主要有Al2O3、SiO2、ZrO2等,非氧化物陶瓷纤维主要有SiC、Si3N4等。这些陶瓷纤维在常温下都具备不错的隔热性或者力学性能,但在高温使用环境下,其隔热性能和力学性能会大大降低。
公开该背景技术部分的信息仅仅旨在增加对本专利申请的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的是克服现有技术中存在的在高温使用环境下,难以兼具隔热性能、力学性能的缺陷与问题,提供一种在高温使用环境下,能够兼具隔热性能、力学性能的Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用。
为实现以上目的,本发明的技术解决方案是:一种Si-Zr-O-C基陶瓷纤维材料的制备方法,包括以下步骤:
前驱体溶胶纺丝液的制取:先将锆源溶于络合剂中以得到一次溶液,再将一次溶液、硅源、纺丝助剂溶液相混合以得到前驱体溶胶纺丝液;所述纺丝助剂溶液由助剂溶质、助剂溶剂、催化剂构成,所述助剂溶质为以下任意一种或任意混合:聚乙烯吡咯烷酮、聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯二醇、聚氧烯醇;
前驱体凝胶纤维的制取:对上述前驱体溶胶纺丝液进行静电纺丝,以获得前驱体凝胶纤维;
陶瓷纤维材料的获取:对上述前驱体凝胶纤维依次进行干燥处理、烧结处理,以获得所述的陶瓷纤维材料。
所述前驱体溶胶纺丝液的制取中,所述锆源、硅源在助剂溶剂、催化剂的作用下进行水解与缩聚反应。
所述锆源、络合剂、助剂溶剂、催化剂、硅源为以下任意组合:
锆源:锆酸丁酯、四正丙氧基锆、正丙醇锆、异丙醇锆、乙酸锆中的任意一种或任意混合;
络合剂:柠檬酸、醋酸、乙酸中的任意一种或任意混合;
助剂溶剂:乙醇、异丙醇、二甲基甲酰胺中的任意一种或任意混合;
催化剂:硝酸、盐酸、硼酸中的任意一种或任意混合;
硅源:正硅酸乙酯、乙烯基三甲氧基硅烷、甲基三乙氧基硅烷、二甲基二乙氧基硅烷、聚甲基苯基硅氧烷中的任意一种或任意混合。
所述前驱体溶胶纺丝液中,纺丝助剂溶液的用量为5—10wt.%。
所述纺丝助剂溶液的用量为7.5wt.%
所述锆源、络合剂、硅源、助剂溶剂、催化剂之间的用量比为:
锆源:络合剂的摩尔比为1:(2—3);
锆源:硅源的摩尔比为(0.5—2):1;
锆源:助剂溶剂的用量比为(0.01—0.04)mol:(20—25)mL;
催化剂:硅源的用量比为(0.01—0.04)mol:(0.8—2)mL。
所述前驱体凝胶纤维的制取中,采用注射器盛装所述的前驱体溶胶纺丝液,采取铝箔、离型纸、无纺布或者硅油纸作为收集装置。
所述陶瓷纤维材料的获取中,所述干燥处理、烧结处理的参数分别为:
干燥处理:温度为50—80℃,时间为1—2h;
烧结处理:烧结温度为800—1400℃,保温时间为1—2小时,升温速率为2—5℃/min,降温速率为随炉冷,烧结中应用的惰性气体为Ar 气氛或N2气氛。
一种产品,所述产品为依照上述的一种Si-Zr-O-C基陶瓷纤维材料的制备方法所制取的最终产物。
一种产品的应用,所述产品的应用是指上述所获取的最终产物在隔热领域中的应用。
与现有技术相比,本发明的有益效果为:
1、本发明一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用中,主要包括前驱体溶胶纺丝液的制取、前驱体凝胶纤维的制取、陶瓷纤维材料的获取这三大步骤,其中,在前驱体溶胶纺丝液的制取中,需要先由锆源、络合剂获得一次溶液,再将一次溶液、纺丝助剂溶液、硅源均匀混合以得到前驱体溶胶纺丝液;在采用本发明制取之后,所获得的产物在应用时同时具备物理的热阻隔、尺寸热辐射隔热这双重效果,其中,物理的热阻隔主要体现在氧化锆晶体具有低的固体导热率,以及SiC具有良好的红外遮蔽能力,在高温下能降低材料的红外辐射,进而在物理上能降低热导率;尺寸热辐射隔热主要体现在本设计最终获取的产物,具有高长径比,其纤维直径位于1—3微米,能对近高温1000℃的环境热辐射进行散射与缠绕,增大纤维对热量的阻隔效果,即兼具对热的阻隔与对红外的阻隔作用,此外,在具体应用时,物理的热阻隔、尺寸热辐射隔热这两者相辅相成,以取得更佳的隔热效果(如Zr会捕捉O以形成ZrO2晶粒,利于细化纤维,而细化纤维能增强红外遮蔽效果,进而提高隔热效果),同时具备较强的机械性能。因此,本发明在高温使用环境下,能够兼具隔热性能、力学性能。
2、本发明一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用中,先由锆源、络合剂获得一次溶液,再将一次溶液、纺丝助剂溶液、硅源均匀混合以得到前驱体溶胶纺丝液,其中,锆源、硅源在助剂溶剂、催化剂的作用下进行水解与缩聚反应,以得到最终的前驱体溶胶纺丝液,因而,水解与缩聚反应是必不可少的,有利于后续的静电纺丝,为了确保水解与缩聚反应的正常实现,本发明限定先由锆源、络合剂获得一次溶液,其原因在于锆源需要与络合剂先反应,以形成双齿桥合结构,这种双齿桥合结构的配合物在水解时会非常稳定,只有酯基水解并聚合,从而获得所需的链式聚合物,进而最终有利于纺丝。因此,本发明中前驱体溶胶纺丝液的制取、前驱体凝胶纤维的制取之间的步骤衔接性较好,利于纺丝以获得符合直径需求的产物,进而利于高温隔热 。
3、本发明一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用中,前一步骤制取的前驱体溶胶纺丝液,适合于后一步骤中应用静电纺丝以制取前驱体凝胶纤维,从而获得形状比较均匀,细度较小的陶瓷纤维,同时,静电纺丝还利于进行纤维尺寸方面的调整,也利于提升纤维分散的均匀度。因此,本发明不仅可调性较强,而且利于获取符合尺寸需求的陶瓷纤维。
4、本发明一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用中,在获得前驱体凝胶纤维之后,需要依次进行干燥处理、烧结处理,以得到最终的产物,其中,先干燥后烧结的目的在于去除溶剂,减少直接烧结时过大的收缩,此外,如果直接烧结,大量有机溶剂与吸收的空气中的水分容易对烧结设备,如刚玉管造成不可逆伤害。因此,本发明不仅能提升最终产物的质量,而且对设备的保护效果较好。
5、本发明一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用中,从整体上看,与单一氧化硅等陶瓷纤维生产相比,本发明制取的Si-Zr-O-C基陶瓷纤维材料添加了Zr源,能够有效降低成本,同时,前驱体为静电纺丝得到的纤维,而只要能提供足量的纺丝液,电纺就可以连续生产,从而保证了纤维连续性,此外,本发明在融合SiC纤维的优点的同时,还避免了继续进行传统的SiC纤维的生产,从而避免了其生产所带来的高耗能、高污染的特点,每生产1吨黑碳化硅耗电约8000度,绿碳化硅约9300度,从而在整体上降低能耗,提升环保效果。因此,本发明不仅生产成本较低,纤维连续性较好,而且能耗低,环保性较强。
附图说明
图1为本发明中实施例2所制备的Si-Zr-O-C陶瓷纤维的热稳定性热分析图。
图2为本发明中实施例3所制备的Si-Zr-O-C基陶瓷纤维的微观形貌图。
具体实施方式
以下结合附图说明和具体实施方式对本发明作进一步详细的说明。
参见图1与图2,一种Si-Zr-O-C基陶瓷纤维材料的制备方法,包括以下步骤:
前驱体溶胶纺丝液的制取:先将锆源溶于络合剂中以得到一次溶液,再将一次溶液、硅源、纺丝助剂溶液相混合以得到前驱体溶胶纺丝液;所述纺丝助剂溶液由助剂溶质、助剂溶剂、催化剂构成,所述助剂溶质为以下任意一种或任意混合:聚乙烯吡咯烷酮、聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯二醇、聚氧烯醇;
前驱体凝胶纤维的制取:对上述前驱体溶胶纺丝液进行静电纺丝,以获得前驱体凝胶纤维;
陶瓷纤维材料的获取:对上述前驱体凝胶纤维依次进行干燥处理、烧结处理,以获得所述的陶瓷纤维材料。
所述前驱体溶胶纺丝液的制取中,所述锆源、硅源在助剂溶剂、催化剂的作用下进行水解与缩聚反应。
所述锆源、络合剂、助剂溶剂、催化剂、硅源为以下任意组合:
锆源:锆酸丁酯、四正丙氧基锆、正丙醇锆、异丙醇锆、乙酸锆中的任意一种或任意混合;
络合剂:柠檬酸、醋酸、乙酸中的任意一种或任意混合;
助剂溶剂:乙醇、异丙醇、二甲基甲酰胺中的任意一种或任意混合;
催化剂:硝酸、盐酸、硼酸中的任意一种或任意混合;
硅源:正硅酸乙酯、乙烯基三甲氧基硅烷、甲基三乙氧基硅烷、二甲基二乙氧基硅烷、聚甲基苯基硅氧烷中的任意一种或任意混合。
所述前驱体溶胶纺丝液中,纺丝助剂溶液的用量为5—10wt.%。
所述纺丝助剂溶液的用量为7.5wt.%
所述锆源、络合剂、硅源、助剂溶剂、催化剂之间的用量比为:
锆源:络合剂的摩尔比为1:(2—3);
锆源:硅源的摩尔比为(0.5—2):1;
锆源:助剂溶剂的用量比为(0.01—0.04)mol:(20—25)mL;
催化剂:硅源的用量比为(0.01—0.04)mol:(0.8—2)mL。
所述前驱体凝胶纤维的制取中,采用注射器盛装所述的前驱体溶胶纺丝液,采取铝箔、离型纸、无纺布或者硅油纸作为收集装置。
所述陶瓷纤维材料的获取中,所述干燥处理、烧结处理的参数分别为:
干燥处理:温度为50—80℃,时间为1—2h;
烧结处理:烧结温度为800—1400℃,保温时间为1—2小时,升温速率为2—5℃/min,降温速率为随炉冷,烧结中应用的惰性气体为Ar 气氛或N2气氛。
一种产品,所述产品为依照上述的一种Si-Zr-O-C基陶瓷纤维材料的制备方法所制取的最终产物。
一种产品的应用,所述产品的应用是指上述所获取的最终产物在隔热领域中的应用。
本发明的原理说明如下:
本发明中的纺丝助剂溶液的配制过程优选为包括以下步骤:先将助剂溶质(如PVP),放置在烧杯中,再加入助剂溶剂(如无水乙醇)与催化剂(如硝酸),然后依次进行搅拌(磁力搅拌、玻璃棒搅拌或震荡搅拌)、分散(超声分散或机械分散),以使助剂溶质充分的分散均匀,从而获得纺丝助剂溶液。
本发明中所获取的陶瓷纤维材料中的相包括ZrO2相和SiC相。其中,ZrO2相具有很低的固体热导率,但是高温下红外屏蔽能力很差,而SiC相则固体热导率较高,但是高温红外屏蔽能力优秀。因而,本发明将两者的优点结合,进行互补,使得最终产物同时具有低热导率和良好的高温红外屏蔽能力。
本发明中涉及的各物质及其简称如下:聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)、聚乙烯醇缩丁醛(PVB)、聚乙烯二醇(PEG)、聚氧烯醇(PEO)、锆酸丁酯(Zr(OC4H9)4)、四正丙氧基锆Zr(OnPr)4、正硅酸乙酯(TEOS)、乙烯基三甲氧基硅烷(VTMS)、甲基三乙氧基硅烷(MTES)、二甲基二乙氧基硅烷(DMDES)、聚甲基苯基硅氧烷(PMPS)、醋酸(CH3COOH))、二甲基甲酰胺(DMF)。
本发明中优选水解和缩聚所需要的搅拌时间为0.5h—2h。
本发明中优选静电纺丝的工艺参数如下:电压范围为10—20 kV,注射速率为1—1.5ml/hr,接收距离为10—15cm,纺丝环境温度为20—40℃,纺丝环境湿度为20—70%;
实施例1:
前驱体溶胶纺丝液的制取:称取1.91g的锆酸丁酯溶于0.6g的乙酸溶液中,不断搅拌形成均匀的溶液,获得一次溶液;将0.25g的PVP放置在烧杯中,加入4.75g的无水乙醇和0.5g的1mol/L的稀硝酸,磁力搅拌1小时,并超声10分钟使得PVP充分分散均匀,获得纺丝助剂溶液;将一次溶液和0.74g VTMS加入到纺丝助剂溶液中,常温下搅拌30分钟,使得锆源和硅源得到充分的水解与缩聚,形成前驱体溶胶纺丝液;
前驱体凝胶纤维的制取:将配制好的前驱体溶胶纺丝液装入医用注射器中,采用静电纺丝技术,电压为20kV,注射速率为1.5mL/hr,接收距离为15cm,纺丝环境温度为30℃,纺丝环境湿度为30%,在收集装置上可获得均匀的前驱体凝胶纤维;
陶瓷纤维材料的获取:先将从收集装置上剥离下来的前驱体凝胶纤维放置在鼓风干燥箱中干燥,温度为60℃,时间为1h;再对干燥后的纤维在惰性气体为Ar气氛下进行烧结,烧结温度为1000℃,保温时间为1小时,升温速率为2℃/min,最后,降温速率为随炉冷,以获得最终产物。
实施例2:
前驱体溶胶纺丝液的制取:称取1.91g的锆酸丁酯溶于0.6g的乙酸溶液中,不断搅拌形成均匀的溶液,获得一次溶液;将0.25g的PVP放置在烧杯中,加入4.75g的无水乙醇和0.5g的1mol/L的稀硝酸,磁力搅拌1小时,并超声10分钟使得PVP充分分散均匀,获得纺丝助剂溶液;将一次溶液和1.48g VTMS加入到纺丝助剂溶液中,常温下搅拌30分钟,使得锆源和硅源得到充分的水解与缩聚,形成前驱体溶胶纺丝液;
前驱体凝胶纤维的制取:将配制好的前驱体溶胶纺丝液装入医用注射器中,采用静电纺丝技术,电压为20 kV,注射速率为1.5mL/hr,接收距离为15cm,纺丝环境温度为30℃,纺丝环境湿度为30%,在收集装置上获得均匀的前驱体凝胶纤维;
陶瓷纤维材料的获取:先将从收集装置上剥离下来的前驱体凝胶纤维放置在鼓风干燥箱中干燥,温度为60℃,烘干时间为1h;再对干燥后的纤维在惰性气体为Ar气氛下进行烧结,烧结温度为1000℃,保温时间为1小时,升温速率为2℃/min,最后,降温速率为随炉冷,以获得最终产物。
由图1能够看出,最终产物Si-Zr-O-C基陶瓷纤维材料的热稳定性较好。
实施例3:
前驱体溶胶纺丝液的制取:称取1.91g的锆酸丁酯溶于0.6g的乙酸溶液中,不断搅拌形成均匀的溶液,获得一次溶液;将0.25g的PVP放置在烧杯中,加入4.75g的无水乙醇和0.5g的1mol/L的稀硝酸,磁力搅拌1小时,并超声10分钟使得PVP充分分散均匀,获得纺丝助剂溶液;将一次溶液和1.48g VTMS加入到纺丝助剂中,常温下搅拌30分钟,使得锆源和硅源得到充分的水解与缩聚,形成前驱体溶胶纺丝液;
前驱体凝胶纤维的制取:将配制好的前驱体溶胶纺丝液装入医用注射器中,采用静电纺丝技术,电压为15 kV,注射速率为1.5mL/hr,接收距离为15cm,纺丝环境温度为30℃,纺丝环境湿度为30%,在收集装置上获得均匀的前驱体凝胶纤维;
陶瓷纤维材料的获取:先将从收集装置上剥离下来的前驱体凝胶纤维放置在鼓风干燥箱中干燥,温度为60℃,烘干时间为1h;再对干燥后的纤维在惰性气体为Ar气氛下进行烧结,烧结温度为1000℃,保温时间为1小时,升温速率为2℃/min,最后,降温速率为随炉冷,以获得最终产物。
由图2能够看出,纤维的尺寸直径都小于2μm,能够极大阻碍材料对红外辐射的阻隔,起到尺寸热辐射隔热的效果。
实施例4:
前驱体溶胶纺丝液的制取:称取1.91g的锆酸丁酯溶于0.6g的乙酸溶液中,不断搅拌形成均匀的溶液,获得一次溶液;将0.25g的PVP放置在烧杯中,加入4.75g的无水乙醇和0.5g的1mol/L的稀硝酸,磁力搅拌1小时,并超声10分钟使得PVP充分分散均匀,获得纺丝助剂溶液;将一次溶液和1.48g VTMS加入到纺丝助剂中,常温下搅拌30分钟,使得锆源和硅源得到充分的水解与缩聚,形成前驱体溶胶纺丝液;
前驱体凝胶纤维的制取:将配制好的前驱体溶胶纺丝液装入医用注射器中,采用静电纺丝技术,电压为20 kV,注射速率为1.5mL/hr,接收距离为15cm,纺丝环境温度为30℃,纺丝环境湿度为30%,在收集装置上获得均匀的前驱体凝胶纤维;
陶瓷纤维材料的获取:先将从收集装置上剥离下来的前驱体凝胶纤维放置在鼓风干燥箱中进行干燥,温度为60℃,烘干时间为1h;再对干燥后的纤维在惰性气体为Ar气氛下进行烧结,烧结温度为800℃,保温时间为1小时,升温速率为2℃/min,最后,降温速率为随炉冷,以获得最终产物。
实施例5:
前驱体溶胶纺丝液的制取:称取1.91g的锆酸丁酯溶于0.6g的乙酸溶液中,不断搅拌形成均匀的溶液,获得一次溶液;将0.25g的PVP放置在烧杯中,加入4.75g的无水乙醇和0.5g的1mol/L的稀硝酸,磁力搅拌1小时,并超声10分钟使得PVP充分分散均匀,获得纺丝助剂溶液;将一次溶液和1.48g VTMS加入到纺丝助剂中,常温下搅拌30分钟,使得锆源和硅源得到充分的水解与缩聚,形成前驱体溶胶纺丝液;
前驱体凝胶纤维的制取:将配制好的前驱体溶胶纺丝液装入医用注射器中,采用静电纺丝技术,电压为20kV,注射速率为 1.5mL/hr,接收距离为15cm,纺丝环境温度为30℃,纺丝环境湿度为30%,在收集装置上获得均匀的前驱体凝胶纤维;
陶瓷纤维材料的获取:先将从收集装置上剥离下来的前驱体凝胶纤维放置在鼓风干燥箱中进行干燥,温度为60℃,烘干时间为1h;再对干燥后的纤维在惰性气体为N2气氛下进行烧结,烧结温度为1000℃,保温时间为1小时,升温速率为2℃/min,最后,降温速率为随炉冷,以获得最终产物。
实施例6:
前驱体溶胶纺丝液的制取:称取1.91g的锆酸丁酯溶于0.6g的乙酸溶液中,不断搅拌形成均匀的溶液,获得一次溶液;将0.50g的PVP放置在烧杯中,加入4.50g的无水乙醇和0.5g的1mol/L的稀硝酸,磁力搅拌1小时,并超声10分钟使得PVP充分分散均匀,获得纺丝助剂溶液;将一次溶液和1.48g VTMS加入到纺丝助剂中,常温下搅拌30分钟,使得锆源和硅源得到充分的水解与缩聚,形成前驱体溶胶纺丝液;
前驱体凝胶纤维的制取:将配制好的前驱体溶胶纺丝液装入医用注射器中,采用静电纺丝技术,电压为20 kV,注射速率为1.5mL/hr,接收距离为15cm,纺丝环境温度为30℃,纺丝环境湿度为30%,在收集装置上获得均匀的前驱体凝胶纤维;
陶瓷纤维材料的获取:先将从收集装置上剥离下来的前驱体凝胶纤维放置在鼓风干燥箱中进行干燥,温度为60℃,烘干时间为1h;再对干燥后的纤维在惰性气体为Ar气氛下进行烧结,烧结温度为1000℃,保温时间为1小时,升温速率为2℃/min,最后,降温速率为随炉冷,以获得最终产物。
以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。

Claims (10)

1.一种Si-Zr-O-C基陶瓷纤维材料的制备方法,其特征在于:所述制备方法包括以下步骤:
前驱体溶胶纺丝液的制取:先将锆源溶于络合剂中以得到一次溶液,再将一次溶液、硅源、纺丝助剂溶液相混合以得到前驱体溶胶纺丝液;所述纺丝助剂溶液由助剂溶质、助剂溶剂、催化剂构成,所述助剂溶质为以下任意一种或任意混合:聚乙烯吡咯烷酮、聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯二醇、聚氧烯醇;
前驱体凝胶纤维的制取:对上述前驱体溶胶纺丝液进行静电纺丝,以获得前驱体凝胶纤维;
陶瓷纤维材料的获取:对上述前驱体凝胶纤维依次进行干燥处理、烧结处理,以获得所述的陶瓷纤维材料。
2.根据权利要求1所述的一种Si-Zr-O-C基陶瓷纤维材料的制备方法,其特征在于:所述前驱体溶胶纺丝液的制取中,所述锆源、硅源在助剂溶剂、催化剂的作用下进行水解与缩聚反应。
3.根据权利要求1或2所述的一种Si-Zr-O-C基陶瓷纤维材料的制备方法,其特征在于:所述锆源、络合剂、助剂溶剂、催化剂、硅源为以下任意组合:
锆源:锆酸丁酯、四正丙氧基锆、正丙醇锆、异丙醇锆、乙酸锆中的任意一种或任意混合;
络合剂:柠檬酸、醋酸、乙酸中的任意一种或任意混合;
助剂溶剂:乙醇、异丙醇、二甲基甲酰胺中的任意一种或任意混合;
催化剂:硝酸、盐酸、硼酸中的任意一种或任意混合;
硅源:正硅酸乙酯、乙烯基三甲氧基硅烷、甲基三乙氧基硅烷、二甲基二乙氧基硅烷、聚甲基苯基硅氧烷中的任意一种或任意混合。
4.根据权利要求1或2所述的一种Si-Zr-O-C基陶瓷纤维材料的制备方法,其特征在于:所述前驱体溶胶纺丝液中,纺丝助剂溶液的用量为5—10wt.%。
5.根据权利要求4所述的一种Si-Zr-O-C基陶瓷纤维材料的制备方法,其特征在于:所述纺丝助剂溶液的用量为7.5wt.%。
6.根据权利要求4所述的一种Si-Zr-O-C基陶瓷纤维材料的制备方法,其特征在于:所述锆源、络合剂、硅源、助剂溶剂、催化剂之间的用量比为:
锆源:络合剂的摩尔比为1:(2—3);
锆源:硅源的摩尔比为(0.5—2):1;
锆源:助剂溶剂的用量比为(0.01—0.04)mol:(20—25)mL;
催化剂:硅源的用量比为(0.01—0.04)mol:(0.8—2)mL。
7.根据权利要求1或2所述的一种Si-Zr-O-C基陶瓷纤维材料的制备方法,其特征在于:所述前驱体凝胶纤维的制取中,采用注射器盛装所述的前驱体溶胶纺丝液,采取铝箔、离型纸、无纺布或者硅油纸作为收集装置。
8.根据权利要求1或2所述的一种Si-Zr-O-C基陶瓷纤维材料的制备方法,其特征在于:所述陶瓷纤维材料的获取中,所述干燥处理、烧结处理的参数分别为:
干燥处理:温度为50—80℃,时间为1—2h;
烧结处理:烧结温度为800—1400℃,保温时间为1—2小时,升温速率为2—5℃/min,降温速率为随炉冷,烧结中应用的惰性气体为Ar 气氛或N2气氛。
9.一种产品,其特征在于:所述产品为依照权利要求1所述的一种Si-Zr-O-C基陶瓷纤维材料的制备方法所制取的最终产物。
10.一种产品的应用,其特征在于:所述产品的应用是指权利要求9所获取的最终产物在隔热领域中的应用。
CN202111255010.6A 2021-10-27 2021-10-27 一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用 Active CN113896536B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111255010.6A CN113896536B (zh) 2021-10-27 2021-10-27 一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111255010.6A CN113896536B (zh) 2021-10-27 2021-10-27 一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用

Publications (2)

Publication Number Publication Date
CN113896536A true CN113896536A (zh) 2022-01-07
CN113896536B CN113896536B (zh) 2023-03-21

Family

ID=79027068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111255010.6A Active CN113896536B (zh) 2021-10-27 2021-10-27 一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用

Country Status (1)

Country Link
CN (1) CN113896536B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751738A (zh) * 2022-03-08 2022-07-15 东华大学 一种带状陶瓷纤维及其制备方法与应用
CN116003136A (zh) * 2023-01-04 2023-04-25 厦门理工学院 一种Si-Zr-O-C陶瓷材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2958184A1 (fr) * 2010-04-06 2011-10-07 Commissariat Energie Atomique Nanofibres hybrides organiques-inorganiques a phase inorganique mesoporeuse, leur preparation par extrusion electro-assistee, membrane, electrode, et pile a combustible.
CN103898633A (zh) * 2014-02-27 2014-07-02 天津大学 含第ⅳb族金属的硅氧碳高温陶瓷纤维及其制备方法
CN104291812A (zh) * 2014-08-28 2015-01-21 天津大学 一种硅氧碳/金属氧化物连续复相陶瓷纤维的制备方法
CN110846741A (zh) * 2019-10-09 2020-02-28 清华大学 柔性莫来石纤维气凝胶材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2958184A1 (fr) * 2010-04-06 2011-10-07 Commissariat Energie Atomique Nanofibres hybrides organiques-inorganiques a phase inorganique mesoporeuse, leur preparation par extrusion electro-assistee, membrane, electrode, et pile a combustible.
CN103898633A (zh) * 2014-02-27 2014-07-02 天津大学 含第ⅳb族金属的硅氧碳高温陶瓷纤维及其制备方法
CN104291812A (zh) * 2014-08-28 2015-01-21 天津大学 一种硅氧碳/金属氧化物连续复相陶瓷纤维的制备方法
CN110846741A (zh) * 2019-10-09 2020-02-28 清华大学 柔性莫来石纤维气凝胶材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751738A (zh) * 2022-03-08 2022-07-15 东华大学 一种带状陶瓷纤维及其制备方法与应用
CN116003136A (zh) * 2023-01-04 2023-04-25 厦门理工学院 一种Si-Zr-O-C陶瓷材料及其制备方法
CN116003136B (zh) * 2023-01-04 2023-10-27 厦门理工学院 一种Si-Zr-O-C陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN113896536B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
CN113896536B (zh) 一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用
CN101698592B (zh) 一种硅铝气凝胶复合材料及其制备方法
WO2022148460A1 (zh) 纤维复合气凝胶材料及其制备方法和应用
CN106929927B (zh) 聚乙酰丙酮合锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法
CN109265879B (zh) 一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法
CN108315838B (zh) 一种钇聚合物前驱体制备氧化钇纳米纤维的方法
CN113957567B (zh) 一种TiO2-SiO2前驱体溶胶纺丝液及钛硅复合氧化物纳米纤维的制备方法
CN113502599A (zh) 一种柔性Y2Mo3O12/Al2O3高温隔热纳米纤维膜及其制备方法
CN104451957A (zh) 低密度SiC纳米纤维及其制备方法
CN104018295A (zh) 一种红外-可见光兼容隐身复合纤维膜及其制备方法
CN106192078B (zh) 一种采用空气不熔化进行低氧含量连续SiC纤维制备的方法
CN113480299A (zh) 一种低成本莫来石纤维的制备方法
CN104178846B (zh) 一种Si-M-O-C超细纤维的制备方法
CN101281806B (zh) 高分子辅助沉积制备高温超导涂层导体缓冲层的方法
CN110670171B (zh) 一种致密硅酸钇陶瓷纤维的制备方法
CN102180656B (zh) 无机铝盐制备氧化铝基连续纤维的工艺
CN101586270A (zh) 多晶钇铝石榴石纤维的制备方法
CN109750388B (zh) 一种缺陷型萤石相锆酸钆纤维的制备方法
CN101634056B (zh) 一种制备氧化铝基连续纤维的方法
CN113502597B (zh) 一种柔性高红外反射率锰酸钇纳米纤维膜及其制备方法
CN114524680B (zh) 一种内部搭接有纳米薄膜的陶瓷纳米纤维材料及其制备方法
CN115368119B (zh) 亚晶氧化铝纳米纤维柔性气凝胶及制备方法
CN114804894A (zh) 一种多元复相微纳陶瓷纤维及其制备方法、应用
CN105803579A (zh) 一种钛酸铜钙微纳米纤维及其制造方法
CN115477546A (zh) 一种中熵陶瓷纳米纤维气凝胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant