CN108962523A - 一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法 - Google Patents

一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法 Download PDF

Info

Publication number
CN108962523A
CN108962523A CN201810920259.6A CN201810920259A CN108962523A CN 108962523 A CN108962523 A CN 108962523A CN 201810920259 A CN201810920259 A CN 201810920259A CN 108962523 A CN108962523 A CN 108962523A
Authority
CN
China
Prior art keywords
alloy
smcu
permanent magnets
powder
smco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810920259.6A
Other languages
English (en)
Other versions
CN108962523B (zh
Inventor
泮敏翔
吴琼
葛洪良
张朋越
俞能君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Zhongke magnetic Co., Ltd
Original Assignee
徐靖才
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐靖才 filed Critical 徐靖才
Priority to CN201810920259.6A priority Critical patent/CN108962523B/zh
Publication of CN108962523A publication Critical patent/CN108962523A/zh
Application granted granted Critical
Publication of CN108962523B publication Critical patent/CN108962523B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F2003/145Both compacting and sintering simultaneously by warm compacting, below debindering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法,属于磁性材料技术领域。本发明以1:5型SmCo纳米磁体和纳米晶α‑Fe粉复合磁体为基体,采用磁控溅射和放电等离子烧结技术,将低熔点Sm6Cu4合金作为界面相,改善晶界并扩散至硬磁相内,从而提高了磁体的矫顽力,获得了具有良好磁性能的钐钴基纳米晶复合永磁体。同时,本发明工艺简单,成本低,有利于钐钴基纳米复合永磁体在更多永磁器件中的应用。

Description

一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法
技术领域
本发明涉及磁性材料技术领域,尤其涉及一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法。
背景技术
近年来,由于在高技术领域,比如计算机、信息存储、生物医学和微纳机械等领域的潜在应用,纳米晶永磁材料的研究越来越引起了人们的重视。然而由于超顺磁效应,到了纳米尺度,一般的永磁材料的矫顽力都明显下降,只有钐钴这种高磁晶各向异性的材料才能保持一定的矫顽力。特别像SmCo5材料具有永磁材料中磁晶各向异性常数K u(2.3×108erg/cm3),因此其超顺磁极限也是最小的,达到2.2 nm,是制备纳米晶永磁材料的理想材料。
虽然SmCo5纳米晶永磁体具有较高的矫顽力,高的居里温度,但是其磁性能和钕铁硼还是有较大的差距。α-Fe铁粉为软磁相,有高剩磁的特性。本发明采用将纳米Fe粉和高能球磨后的(Sm, Ce)1(Co, Fe, Cu, Zr)5纳米粉有效复合,同时,通过磁控溅射将非磁性和低熔点的SmCu合金有效沉积在(Sm, Ce)1(Co, Fe, Cu, Zr)5纳米粉上,使纳米Fe粉和SmCo5粉在放电等离子液相烧结中,在晶界处位置形成了厚的和非磁性的边界层,有效降低了反磁化畴的形核,并使SmCu合金中的Sm形成更多的SmCo5主相,实现掺杂SmCu合金的高矫顽力和高磁性能钐钴基纳米复合永磁体的制备。
发明内容
针对现有技术中存在的问题,本发明目的在于提供一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法。
本发明的掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法,包括如下步骤:
1)按照(Sm, Ce)1(Co, Fe, Cu, Zr)5合金成分称量各原料并进行混合,将混合原料进行真空熔炼,然后高能球磨制成合金粉体;
2)按照Sm6Cu4合金成分称量各原料并进行混合,将混合原料进行真空熔炼,然后将熔炼好的Sm6Cu4合金锭熔化后倒入磁控溅射靶材模具中,冷却后打磨、切割,得到Sm6Cu4合金溅射靶材;
3)利用磁控溅射技术使步骤(2)制得的Sm6Cu4合金靶材镀在步骤(1)制得的(Sm, Ce)1(Co, Fe, Cu, Zr)5合金粉体上得到混合粉体;
4)将步骤(3)制得的混合粉体与纳米晶α-Fe粉按一定比例混合后,在2.0T的磁场下取向并压制成型坯件;
5)将步骤(4)制得的成型坯件进行放电等离子烧结制得掺杂SmCu合金的钐钴基纳米复合永磁体。
进一步的,步骤(1)中所述(Sm, Ce)1(Co, Fe, Cu, Zr)5合金中各元素的重量百分比为:Sm和Ce:25~35%,其中Sm与Ce的重量比为1:0.1~0.3;Co:50~65%,Fe:10~20%,Cu:5~10%,Zr:2~6%。
进一步的,步骤(1)中高能球磨的时间为2~4小时。
进一步的,步骤(3)中磁控溅射Sm6Cu4合金的工艺条件为:溅射过程中真空室真空度为5×10-3~5×10-2Pa,磁控溅射电流为15~25A,磁控溅射时间为1~2小时。
进一步的,步骤(4)中混合粉体与纳米晶α-Fe粉的重量比为1:0.01~0.1。
进一步的,步骤(5)中放电等离子烧结的具体工艺参数为:热压温度为550~700℃,压力为50~250MPa,升温速率为50~80℃/min,烧结保温时间2~8min。
与现有的技术相比,本发明具有如下优点和有益效果:本发明采用磁控溅射和放电等离子烧结技术结合,将低熔点Sm6Cu4合金扩散至1:5型SmCo纳米磁体和纳米晶α-Fe粉复合磁体内,改善晶界并扩散至硬磁相内,同时,有效促进SmCo/α-Fe纳米复合磁体在热变形过程中获得良好的织构,从而提高了磁体的矫顽力,获得了具有良好磁性能的钐钴基纳米晶复合永磁体。
具体实施方式
下面结合具体实施方式及对比例对本发明作进一步阐述。
实施例1
1)先准备原料,按以下重量比称取原料:Sm:20%,Ce:6%,Co:56%,Fe:10%,Cu:5%,Zr:3%,将原料混合后进行真空熔炼,然后进行高能球磨2小时制成合金粉体;
2)按照Sm6Cu4合金成分称量各原料并进行混合,将混合原料进行真空熔炼,然后将熔炼好的Sm6Cu4合金锭熔化后倒入磁控溅射靶材模具中,冷却后打磨、切割,得到Sm6Cu4合金溅射靶材;
3)利用磁控溅射技术使步骤(2)制得的Sm6Cu4合金靶材镀在步骤(1)制得的(Sm, Ce)1(Co, Fe, Cu, Zr)5合金粉体上得到混合粉体;所述的溅射过程中真空室真空度为8×10- 2Pa,磁控溅射电流为20A,磁控溅射时间为1小时;
4)将步骤(3)制得的混合粉体与纳米晶α-Fe粉按1:0.02的重量比混合后,在2.0T的磁场下取向并压制成型坯件;
5)将步骤(4)制得的成型坯件进行放电等离子烧结,热压温度为550℃,压力为100MPa,升温速率为50℃/min,烧结保温时间3min,制得掺杂SmCu合金的钐钴基纳米复合永磁体。
比较例1
1)先准备原料,按以下重量比称取原料:Sm:20%,Ce:6%,Co:56%,Fe:10%,Cu:5%,Zr:3%,将原料混合后进行真空熔炼,然后进行高能球磨2小时制成合金粉体;
2)将步骤(1)制得的粉体与纳米晶α-Fe粉按1:0.02的重量比混合后,在2.0T的磁场下取向并压制成型坯件;
3)将步骤(2)制得的成型坯件进行放电等离子烧结,热压温度为550℃,压力为100MPa,升温速率为50℃/min,烧结保温时间3min,制得钐钴基纳米复合永磁体。
实施例2
1)先准备原料,按以下重量比称取原料:Sm:25%,Ce:2.5%,Co:53.5%,Fe:11%,Cu:6%,Zr:2%,将原料混合后进行真空熔炼,然后进行高能球磨3小时制成合金粉体;
2)按照Sm6Cu4合金成分称量各原料并进行混合,将混合原料进行真空熔炼,然后将熔炼好的Sm6Cu4合金锭熔化后倒入磁控溅射靶材模具中,冷却后打磨、切割,得到Sm6Cu4合金溅射靶材;
3)利用磁控溅射技术使步骤(2)制得的Sm6Cu4合金靶材镀在步骤(1)制得的(Sm, Ce)1(Co, Fe, Cu, Zr)5合金粉体上得到混合粉体;所述的溅射过程中真空室真空度为8×10- 2Pa,磁控溅射电流为20A,磁控溅射时间为1.5小时;
4)将步骤(3)制得的混合粉体与纳米晶α-Fe粉按1:0.04的重量比混合后,在2.0T的磁场下取向并压制成型坯件;
5)将步骤(4)制得的成型坯件进行放电等离子烧结,热压温度为570℃,压力为125MPa,升温速率为50℃/min,烧结保温时间3min,制得掺杂SmCu合金的钐钴基纳米复合永磁体。
比较例2
1)先准备原料,按以下重量比称取原料:Sm:25%,Ce:2.5%,Co:53.5%,Fe:11%,Cu:6%,Zr:2%,将原料混合后进行真空熔炼,然后进行高能球磨3小时制成合金粉体;
2)将步骤(1)制得的粉体与纳米晶α-Fe粉按1:0.04的重量比混合后,在2.0T的磁场下取向并压制成型坯件;
3)将步骤(2)制得的成型坯件进行放电等离子烧结,热压温度为570℃,压力为125MPa,升温速率为50℃/min,烧结保温时间3min,制得钐钴基纳米复合永磁体。
实施例3
1)先准备原料,按以下重量比称取原料:Sm:27%,Ce:2.7%,Co:50.8%,Fe:11%,Cu:5.5%,Zr:3%,将原料混合后进行真空熔炼,然后进行高能球磨4小时制成合金粉体;
2)按照Sm6Cu4合金成分称量各原料并进行混合,将混合原料进行真空熔炼,然后将熔炼好的Sm6Cu4合金锭熔化后倒入磁控溅射靶材模具中,冷却后打磨、切割,得到Sm6Cu4合金溅射靶材;
3)利用磁控溅射技术使步骤(2)制得的Sm6Cu4合金靶材镀在步骤(1)制得的(Sm, Ce)1(Co, Fe, Cu, Zr)5合金粉体上得到混合粉体;所述的溅射过程中真空室真空度为8×10- 2Pa,磁控溅射电流为20A,磁控溅射时间为2小时;
4)将步骤(3)制得的混合粉体与纳米晶α-Fe粉按1:0.06的重量比混合后,在2.0T的磁场下取向并压制成型坯件;
5)将步骤(4)制得的成型坯件进行放电等离子烧结,热压温度为600℃,压力为150MPa,升温速率为50℃/min,烧结保温时间3min,制得掺杂SmCu合金的钐钴基纳米复合永磁体。
比较例3
1)先准备原料,按以下重量比称取原料:Sm:27%,Ce:2.7%,Co:50.8%,Fe:11%,Cu:5.5%,Zr:3%,将原料混合后进行真空熔炼,然后进行高能球磨4小时制成合金粉体;
2)将步骤(1)制得的粉体与纳米晶α-Fe粉按1:0.06的重量比混合后,在2.0T的磁场下取向并压制成型坯件;
3)将步骤(2)制得的成型坯件进行放电等离子烧结,热压温度为600℃,压力为150MPa,升温速率为50℃/min,烧结保温时间3min,制得钐钴基纳米复合永磁体。
将上述实施例和比较例制备的样品,经磁性能测试,对比结果如表1所示。
总结:
本发明采用掺杂SmCu低熔点合金制备了高矫顽力的钐钴基纳米复合永磁体。相对于未掺杂SmCu低熔点合金,添加了SmCu低熔点合金的钐钴基纳米复合永磁体,虽然对磁体的剩磁影响不明显,但是矫顽力和密度都得到了明显的提升。这主要是由于低熔点SmCu合金通过磁控溅射和热压技术,有效的扩散至SmCo纳米磁体和纳米晶α-Fe粉复合磁体内,改善晶界并扩散至硬磁相内,同时,改善了扩散后磁体的晶界特性,增强了软/硬磁相之间的交换耦合作用,使磁体的矫顽力和密度都得到了明显的提升。
表1:

Claims (6)

1.一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法,其特征在于包括如下步骤:
1)按照(Sm, Ce)1(Co, Fe, Cu, Zr)5合金成分称量各原料并进行混合,将混合原料进行真空熔炼,然后高能球磨制成合金粉体;
2)按照Sm6Cu4合金成分称量各原料并进行混合,将混合原料进行真空熔炼,然后将熔炼好的Sm6Cu4合金锭熔化后倒入磁控溅射靶材模具中,冷却后打磨、切割,得到Sm6Cu4合金溅射靶材;
3)利用磁控溅射技术使步骤(2)制得的Sm6Cu4合金靶材镀在步骤(1)制得的(Sm, Ce)1(Co, Fe, Cu, Zr)5合金粉体上得到混合粉体;
4)将步骤(3)制得的混合粉体与纳米晶α-Fe粉按一定比例混合后,在2.0T的磁场下取向并压制成型坯件;
5)将步骤(4)制得的成型坯件进行放电等离子烧结制得掺杂SmCu合金的钐钴基纳米复合永磁体。
2.根据权利要求1 所述的掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法,其特征在于:步骤(1)中所述(Sm, Ce)1(Co, Fe, Cu, Zr)5合金中各元素的重量百分比为:Sm和Ce:25~35%,其中Sm与Ce的重量比为1:0.1~0.3;Co:50~65%,Fe:10~20%,Cu:5~10%,Zr:2~6%。
3.根据权利要求1 所述的掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法,其特征在于:步骤(1)中高能球磨的时间为2~4小时。
4.根据权利要求1 所述的掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法,其特征在于:步骤(3)中磁控溅射Sm6Cu4合金的工艺条件为:溅射过程中真空室真空度为5×10-3~5×10-2Pa,磁控溅射电流为15~25A,磁控溅射时间为1~2小时。
5.根据权利要求1 所述的掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法,其特征在于:步骤(4)中混合粉体与纳米晶α-Fe粉的重量比为1:0.01~0.1。
6.根据权利要求1 所述的掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法,其特征在于:步骤(5)中放电等离子烧结的具体工艺参数为:热压温度为550~700℃,压力为50~250MPa,升温速率为50~80℃/min,烧结保温时间2~8min。
CN201810920259.6A 2018-08-14 2018-08-14 一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法 Active CN108962523B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810920259.6A CN108962523B (zh) 2018-08-14 2018-08-14 一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810920259.6A CN108962523B (zh) 2018-08-14 2018-08-14 一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法

Publications (2)

Publication Number Publication Date
CN108962523A true CN108962523A (zh) 2018-12-07
CN108962523B CN108962523B (zh) 2020-05-12

Family

ID=64470300

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810920259.6A Active CN108962523B (zh) 2018-08-14 2018-08-14 一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法

Country Status (1)

Country Link
CN (1) CN108962523B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109448983A (zh) * 2018-12-21 2019-03-08 中国计量大学 一种高矫顽力各向异性片状钐钴纳米晶磁体的制备方法
CN110246644A (zh) * 2019-08-01 2019-09-17 泮敏翔 一种高性能多主相Ce基纳米晶磁体的制备方法
CN111261351A (zh) * 2020-03-02 2020-06-09 河南科技大学 一种高矫顽力SmCo5/FeCo纳米复合永磁材料及其制备方法
CN111627631A (zh) * 2020-03-19 2020-09-04 中国科学院宁波材料技术与工程研究所 一种纳米复合永磁材料的制备方法
CN112038083A (zh) * 2020-08-31 2020-12-04 中国科学院宁波材料技术与工程研究所 一种提高钐钴永磁材料磁性能的方法
CN113106406A (zh) * 2021-03-22 2021-07-13 华南理工大学 一种SmCo永磁薄膜的制备方法
CN113205955A (zh) * 2021-04-30 2021-08-03 太原科技大学 一种高性能烧结钐钴磁体的制备方法
CN113421763A (zh) * 2021-07-02 2021-09-21 泮敏翔 一种高性能纳米晶磁体的制备方法
CN113744987A (zh) * 2021-08-25 2021-12-03 北京航空航天大学 晶界组织重构制备高性能钐钴磁体的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078175A (zh) * 2014-06-12 2014-10-01 嘉兴市鹏程磁钢有限公司 一种钐钴基纳米晶永磁体材料及其制备方法
CN106298132A (zh) * 2016-10-10 2017-01-04 北京工业大学 一种热变形法制备掺杂PrCu合金的SmCo5永磁体的方法
CN106898450A (zh) * 2015-12-18 2017-06-27 丰田自动车株式会社 稀土磁体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078175A (zh) * 2014-06-12 2014-10-01 嘉兴市鹏程磁钢有限公司 一种钐钴基纳米晶永磁体材料及其制备方法
CN106898450A (zh) * 2015-12-18 2017-06-27 丰田自动车株式会社 稀土磁体
CN106298132A (zh) * 2016-10-10 2017-01-04 北京工业大学 一种热变形法制备掺杂PrCu合金的SmCo5永磁体的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUAN-BING RONG,ET AL: "Correlation between microstructure and first-order magnetization reversal in the SmCo5/α-Fe nanocomposite magnets", 《PHYSICS LETTERS A》 *
P. SARAVANAN,ET AL: "Effect of sintering temperature on the structure and magnetic properties of SmCo5/Fe nanocomposite magnets prepared by spark plasma sintering", 《INTERMETALLICS》 *
胡晨宇等: "高能球磨法制备的SmCo5/α-Fe纳米双相复合磁粉的结构和磁性能", 《磁性材料及器件》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109448983A (zh) * 2018-12-21 2019-03-08 中国计量大学 一种高矫顽力各向异性片状钐钴纳米晶磁体的制备方法
CN110246644A (zh) * 2019-08-01 2019-09-17 泮敏翔 一种高性能多主相Ce基纳米晶磁体的制备方法
CN110246644B (zh) * 2019-08-01 2020-08-07 中国计量大学 一种高性能多主相Ce基纳米晶磁体的制备方法
CN111261351A (zh) * 2020-03-02 2020-06-09 河南科技大学 一种高矫顽力SmCo5/FeCo纳米复合永磁材料及其制备方法
CN111627631B (zh) * 2020-03-19 2022-07-05 中国科学院宁波材料技术与工程研究所 一种纳米复合永磁材料的制备方法
CN111627631A (zh) * 2020-03-19 2020-09-04 中国科学院宁波材料技术与工程研究所 一种纳米复合永磁材料的制备方法
CN112038083A (zh) * 2020-08-31 2020-12-04 中国科学院宁波材料技术与工程研究所 一种提高钐钴永磁材料磁性能的方法
CN112038083B (zh) * 2020-08-31 2022-09-20 中国科学院宁波材料技术与工程研究所 一种提高钐钴永磁材料磁性能的方法
CN113106406A (zh) * 2021-03-22 2021-07-13 华南理工大学 一种SmCo永磁薄膜的制备方法
CN113205955B (zh) * 2021-04-30 2022-07-19 太原科技大学 一种高性能烧结钐钴磁体的制备方法
CN113205955A (zh) * 2021-04-30 2021-08-03 太原科技大学 一种高性能烧结钐钴磁体的制备方法
CN113421763A (zh) * 2021-07-02 2021-09-21 泮敏翔 一种高性能纳米晶磁体的制备方法
CN113421763B (zh) * 2021-07-02 2023-02-03 中国计量大学 一种高性能纳米晶磁体的制备方法
CN113744987A (zh) * 2021-08-25 2021-12-03 北京航空航天大学 晶界组织重构制备高性能钐钴磁体的方法

Also Published As

Publication number Publication date
CN108962523B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
CN108962523A (zh) 一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法
JP7220330B2 (ja) R-t-b系永久磁石材料、製造方法、並びに応用
JP6606044B2 (ja) ネオジム鉄ホウ素磁石およびその調製法
CN100365745C (zh) 稀土铁系双相纳米晶复合永磁材料的制备方法
JP2017226910A (ja) 焼結Nd−Fe−B系磁性体及びその製造方法
JP2017128793A (ja) 重希土類元素を含まない焼結Nd−Fe−B磁性体の製造方法
JP2014500611A (ja) 高耐食性焼結NdFeB磁石およびその調製方法
US11984258B2 (en) Rare earth permanent magnet material and preparation method thereof
CN107424695B (zh) 一种双合金纳米晶稀土永磁体及其制备方法
WO2016201944A1 (zh) 晶界为低熔点轻稀土-铜合金的钕铁硼磁体的制备方法
CN104841927A (zh) 高耐蚀性、高耐候性稀土永磁材料的制备方法
CN104575920B (zh) 稀土永磁体及其制备方法
CN111834118B (zh) 一种提高烧结钕铁硼磁体矫顽力的方法及烧结钕铁硼磁体
CN106252009A (zh) 一种基于稀土氢化物添加的高性能富La/Ce/Y稀土永磁体及其制备方法
CN111916285A (zh) 一种低重稀土高矫顽力烧结钕铁硼磁体的制备方法
EP3667685A1 (en) Heat-resistant neodymium iron boron magnet and preparation method therefor
CN106384637A (zh) 一种改善边界结构制备高性能钕铁硼磁体的方法
CN103680919A (zh) 一种高矫顽力高强韧高耐蚀烧结钕铁硼永磁体的制备方法
CN108154986A (zh) 一种含y高丰度稀土永磁体及其制备方法
CN111916284B (zh) 一种高矫顽力烧结钕铁硼磁体的制备方法
CN106601401A (zh) 晶界多层结构调控的高丰度稀土烧结钕铁硼磁体的制备方法及其产品
CN106601403A (zh) 提高烧结钕铁硼磁体矫顽力的方法
CN104599802A (zh) 稀土永磁材料及其制备方法
JPWO2017164312A1 (ja) 希土類永久磁石
WO2024114167A1 (zh) 一种烧结钕铁硼磁体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200410

Address after: 322118 Hengdian Industrial Park, Dongyang, Zhejiang, Jinhua

Applicant after: Zhejiang Zhongke magnetic Co., Ltd

Address before: Hangzhou City, Zhejiang Province, Jianggan District Xiasha 310018 source Street No. 258

Applicant before: Xu Jingcai

GR01 Patent grant
GR01 Patent grant