CN108671935A - 一种表面酸性增强的负载型铜基催化剂的制备方法及应用 - Google Patents

一种表面酸性增强的负载型铜基催化剂的制备方法及应用 Download PDF

Info

Publication number
CN108671935A
CN108671935A CN201810411804.9A CN201810411804A CN108671935A CN 108671935 A CN108671935 A CN 108671935A CN 201810411804 A CN201810411804 A CN 201810411804A CN 108671935 A CN108671935 A CN 108671935A
Authority
CN
China
Prior art keywords
catalyst
surface acidity
copper
carried copper
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810411804.9A
Other languages
English (en)
Other versions
CN108671935B (zh
Inventor
李峰
张贻凤
范国利
杨兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201810411804.9A priority Critical patent/CN108671935B/zh
Publication of CN108671935A publication Critical patent/CN108671935A/zh
Application granted granted Critical
Publication of CN108671935B publication Critical patent/CN108671935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/885Molybdenum and copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/56Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds
    • C07C45/57Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom
    • C07C45/59Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom in five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种表面酸性增强的负载型铜基催化剂的制备方法及应用。本发明通过简单的成核/晶化隔离法并结合氯化钾在制备过程中的结构调控合成催化剂前体,再经过焙烧还原得到表面酸性增强的负载型铜基催化剂,并将其应用于高效糠醛选择性加氢重排制备环戊酮反应,其糠醛的转化率可达到95%~99%,环戊酮的选择性可达到80%~90%。该负载型铜基纳米催化剂,表面酸性位丰富,催化性能好,结构稳定,重复利用率高,具有广泛的应用前景。

Description

一种表面酸性增强的负载型铜基催化剂的制备方法及应用
技术领域
本发明属于催化剂技术领域,具体来说,涉及一种表面酸性增强的负载型铜基催化剂的制备方法及应用。
背景技术
环戊酮是一种重要的有机分子中间体,在农药、医药、香料、橡胶合成等领域具有重要的应用价值,也可以用于制备生物燃料及燃料添加剂,同时由于其对有机物具有良好的溶解性,也常被用作有机溶剂。目前工业上制备环戊酮的主要方法有己二酸及其衍生物热解法和环戊烯直接氧化法。但这两种方法均存在原料资源不足,价格昂贵,而且原料利用率低,反应所需温度压力较高,副产物对环境污染较大等缺点。因此,开发新的环戊酮合成路线,提高环戊酮产率,降低生产成本极为重要。Hronec等通过研究发现,糠醛在水溶剂中可以通过加氢重排反应直接合成环戊酮[Hronec M,FulajtarováK.Selectivetransformation of furfural to cyclopentanone[J].Catal.Commun.,2012,24:100-104]。该反应以糠醛为原料,来源丰富,而且以水为溶剂绿色环保,因此具有重要的研究意义。近年来,负载型贵金属催化剂用于糠醛加氢生成环戊酮取得了一定成果,但考虑到贵金属资源稀少,价格较贵,因此对于非贵金属催化剂的开发更有意义。目前制备的铜基催化剂虽然表现了较好的催化活性,但是反应温度压力普遍较高,而且催化剂稳定性较差。因此,开发一种更高效、稳定的负载型铜基纳米催化剂具有很大的实用价值。
氧化锆(ZrO2)是一种表面同时拥有酸碱性位及氧化还原性的金属氧化物,由于其独特的物理、化学性质,可作为催化剂、助催化剂和催化剂载体用于催化氧化、催化加氢等多种催化反应中。在ZrO2制备过程中,可以通过调节不同的制备方法以及掺杂其它金属元素控制ZrO2表面结构性能。同时ZrO2还能与金属Cu之间形成相互作用,提高催化性能。
发明内容
本发明提供了一种表面酸性增强的负载型铜基催化剂的制备方法及应用,解决了传统的负载型铜基纳米催化剂易团聚、颗粒大、金属Cu与载体间相互作用小、表面酸性位难以控制、稳定性较差和重复利用率低等问题,并将其应用于高效糠醛选择性加氢重排制备环戊酮反应。
技术方案如下:
本发明所述的表面酸性增强的负载型铜基催化剂的制备方法:将含铜、钼、锆和钾的四种盐的混合水溶液与碳酸钠溶液倒入全返混旋转液膜反应器中,通过高速搅拌使其迅速成核,然后进行水热晶化,最后经焙烧还原得到表面酸性增强的ZrO2负载的铜基纳米催化剂。
进一步的,通过调变Cu的负载量和Mo的掺杂量,调控催化剂表面活性Cu含量,金属Cu粒径及表面酸量,同时通过Mo的掺杂有效稳定四方相ZrO2。以上技术特征可提高载体与金属间的强相互作用,提高催化剂催化性能和稳定性。
进一步的,Cu的负载量为20~40%,Cu平均粒径为8~15nm,催化剂的比表面积为130~180m2/g,表面酸含量为0.4~0.8mmol/g。
进一步的,上述表面酸性增强的负载型铜基催化剂的制备方法的具体步骤如下:
1)称取硝酸铜、硝酸锆、钼酸铵和氯化钾,溶于去离子水中配制盐溶液,其中Cu2+的浓度为0.1~0.2mol/L,MoO4 2-的浓度为0.005~0.02mol/L,Zr4+的浓度为0.05~0.1mol/L,K+浓度为0.01~0.05mmol/L,MoO4 2-和Zr4+的总浓度为0.05~0.15mol/L,MoO4 2-/Zr4+摩尔浓度比为0.05~0.15;称取碳酸钠溶于去离子水中配制碱溶液,控制碳酸钠的摩尔数为金属离子总摩尔数的2~4倍;
2)将以上配好的盐溶液和碱溶液同时置于全返混旋转液膜反应器,在转速3000~6000rpm下充分搅拌3~6min,将得到的悬浊液60~90℃水热晶化48~72h,将所得沉淀使用去离子水洗涤离心至上层清液为中性,干燥;
3)将所得到的固体置于马弗炉中焙烧,升温速率为2~5℃ min-1,从室温升温到400~600℃,之后在恒温温度下保温4~6h,焙烧得到催化剂前体;用氢气和氮气混合气在气氛炉中还原催化剂前体,以2~5℃ min-1的升温速率从室温升温到250~375℃,并在恒温温度下保温3~5h,得到表面酸性增强的ZrO2负载型铜纳米催化剂。
对得到的催化剂前体及催化剂进行结构表征。由X射线衍射(XRD)谱图可以看出四方相ZrO2的特征衍射峰,催化剂前体中CuO的衍射峰,催化剂中金属Cu的衍射峰;由扫描电镜(SEM)图可以发现催化剂粒径一致,分布均匀;由透射电镜(TEM)可以看出催化剂表面金属Cu颗粒大小一致,分布均匀。催化剂的N2吸附脱附曲线属于典型IV型的吸附等温线,滞后环属于H2型,为介孔结构。由X射线光电子能谱(XPS)谱图可以看出,Cu2+物种已被完全还原为Cu0或Cu+物种。该负载型铜基纳米催化剂,表面酸性位丰富,催化性能好,结构稳定,重复利用率高,具有广泛的应用前景。
将上述制备好的表面酸性增强的ZrO2负载型铜纳米催化剂应用于糠醛水相加氢反应的方法为:将糠醛、超纯水、催化剂同时加入到高压反应釜中,氢气气氛下100-200℃下反应3-10h。上述反应完成后,糠醛的转化率达到95~99%,环戊酮选择性可达80~90%。
本发明的优点在于:
(1)通过成核/晶化隔离法结合焙烧还原法,并结合氯化钾在制备过程中的结构调控,简单有效的制备了一种表面酸性增强的负载型铜基催化剂,工艺简单绿色,催化剂稳定性强;
(2)通过调变Cu的负载量和Mo的掺杂量,有效的调控催化剂表面活性Cu含量,金属Cu粒径及表面酸量;
(3)Mo的掺杂能够有效地稳定四方相ZrO2,提高载体与金属间的强相互作用,从而提高催化剂催化性能和稳定性;
(4)基于此方法制备的负载型纳米铜催化剂具有高活性、高稳定的特点,在催化糠醛转化为环戊酮的过程中体现出优异的催化性能,糠醛的转化率达到95~99%,环戊酮选择性可达80~90%,具有重要的实用价值。
附图说明
图1为实施例1制备的催化剂前体及催化剂的XRD谱图,具体是催化剂前体(CuO/Mo-ZrO2)及催化剂(Cu/Mo-ZrO2)的XRD谱图。
图2为实施例1制备的催化剂的SEM和TEM谱图,具体是催化剂(Cu/Mo-ZrO2)的扫描电镜(SEM)(A)及透射电镜(TEM)(B)图。
图3为实施例1制备的催化剂的N2吸附脱附曲线图,具体是:催化剂(Cu/Mo-ZrO2)的低温氮气吸脱附曲线,插图为相应的孔径分布(B)。
图4为实施例1制备的催化剂的Cu 2p XPS和Cu LMM谱图,具体是催化剂(Cu/Mo-ZrO2)的Cu 2p XPS表征,插图为Cu LMM XAES表征。
图5为实施例1糠醛加氢转化率和对环戊酮选择性随时间变化的曲线图。
具体实施方式
下面结合具体的实施例对本发明所述的一种表面酸性增强的负载型铜基催化剂的制备方法及催化剂的使用方法做进一步说明,但是本发明的保护范围并不限于此。
实施例1
称取3.86g硝酸锆Zr(NO3)4·5H2O,0.18g钼酸铵(NH4)6Mo7O24·4H2O,2.03g硝酸铜Cu(NO3)2·3H2O,0.30g氯化钾KCl,溶于100ml的去离子水中配制成盐溶液。称取4.75g碳酸钠Na2CO3溶于100ml去离子水中配制成碱溶液。将以上配制好的盐溶液和碱溶液同时置于全返混旋转液膜反应器,在转速4000rpm下充分搅拌4min,将得到的悬浊液70℃水热晶化48h,将所得沉淀使用去离子水洗涤至上层清液为中性,然后于70℃干燥12h。将所得到的固体置于马弗炉中焙烧,升温速率为5℃ min-1,从室温升温到500℃,之后在恒温温度下保温6h,焙烧得到催化剂前体。用10%H2/N2混合气在气氛炉中还原催化剂前体,以5℃ min-1的升温速率从室温升温到300℃,并在恒温温度下保温3h,得到表面酸性增强的ZrO2负载型铜纳米催化剂。催化剂中,ZrO2为纯四方相,Cu的负载量为31.2%,Cu平均粒径为11.2nm,催化剂的比表面积为163m2/g,表面酸含量为0.67mmol/g。
对得到的催化剂前体及催化剂进行结构表征测试。图1为实施例1催化剂前体及催化剂的X射线衍射(XRD)谱图,由图中可以看出,在2θ=30.2°,35.2°,50.4°和60.2°处的衍射峰对应于四方相ZrO2的(011),(110),(020)和(121)晶面衍射峰,说明该方法能够合成晶型完整、结晶度良好的纯四方相ZrO2。还原后的催化剂在2θ=43.5°处出现了Cu(111)晶面衍射峰,而CuO(111)晶面衍射峰完全消失,证明CuO已被还原。图2(A)为实施例1中所制备催化剂的扫描电镜(SEM)照片,可以看出催化剂的粒径一致,分布均匀;图2(B)的透射电镜(TEM)照片,可以发现催化剂表面金属Cu颗粒大小一致,分布均匀,平均粒径为11.2nm。图3为所制备催化剂的N2吸脱附曲线图,可以看出该曲线属于IV型吸附曲线,滞后环属于H2型,说明材料具有丰富的介孔结构。图4为实施例1的催化剂Cu 2p XPS和Cu LMM谱图,从图中可以看出,在935~945eV处没有Cu2+卫星峰出现,进一步证明Cu2+被还原为了Cu0或Cu+物种。图5为实施例1的催化剂加氢催化过程中糠醛的转化率和环戊酮选择性随时间变化的曲线。
催化剂用于糠醛水相加氢反应。将5mmol糠醛,15ml超纯水,0.2g催化剂同时加入到高压反应釜中,通入3MPa的H2,在160℃反应6h后糠醛的转化率达到99%,环戊酮选择性达到87.3%。
实施例2
称取3.86g硝酸锆Zr(NO3)4·5H2O,0.18g钼酸铵(NH4)6Mo7O24·4H2O,3.14g硝酸铜Cu(NO3)2·3H2O,0.30g氯化钾KCl,溶于100ml的去离子水中配制成盐溶液。称取5.73g碳酸钠溶Na2CO3于100ml去离子水中配制成碱溶液。将以上配制好的盐溶液和碱溶液同时置于全返混旋转液膜反应器,在转速4000rpm下充分搅拌4min,将得到的悬浊液70℃水热晶化60h,将所得沉淀使用去离子水洗涤至上层清液为中性,然后于70℃干燥12h。将所得到的固体置于马弗炉中焙烧,升温速率为5℃ min-1,从室温升温到450℃,之后在恒温温度下保温5h,焙烧得到催化剂前体。用10%H2/N2混合气在气氛炉中还原催化剂前体,以3℃ min-1的升温速率从室温升温到325℃,并在恒温温度下保温4h,得到表面酸性增强的ZrO2负载型铜纳米催化剂。催化剂中,ZrO2为纯四方相,Cu的负载量为38.5%,Cu平均粒径为14.3nm,催化剂的比表面积为147m2/g,表面酸含量为0.58mmol/g。
催化剂用于糠醛水相加氢反应。将5mmol糠醛,15ml超纯水,0.2g催化剂同时加入到高压反应釜中,通入3MPa的H2,在160℃反应6h后糠醛的转化率达到99%,环戊酮选择性达到83.4%。
实施例3
称取3.86g硝酸锆Zr(NO3)4·5H2O,0.18g钼酸铵(NH4)6Mo7O24·4H2O,1.20g硝酸铜Cu(NO3)2·3H2O,0.30g氯化钾KCl,溶于100ml的去离子水中配制成盐溶液。称取4.03g碳酸钠Na2CO3溶于100ml去离子水中配制成碱溶液。将以上配制好的盐溶液和碱溶液同时置于全返混旋转液膜反应器,在转速5000rpm下充分搅拌3min,将得到的悬浊液70℃水热晶化72h,将所得沉淀使用去离子水洗涤至上层清液为中性,然后于70℃干燥12h。将所得到的固体置于马弗炉中焙烧,升温速率为3℃ min-1,从室温升温到600℃,之后在恒温温度下保温5h,焙烧得到催化剂前体。用10%H2/N2混合气在气氛炉中还原催化剂前体,以5℃ min-1的升温速率从室温升温到350℃,并在恒温温度下保温4h,得到表面酸性增强的ZrO2负载型铜纳米催化剂。催化剂中,ZrO2为纯四方相,Cu的负载量为20.7%,Cu平均粒径为9.6nm,催化剂的比表面积为155m2/g,表面酸含量为0.61mmol/g。
催化剂用于糠醛水相加氢反应。将5mmol糠醛,15ml超纯水,0.2g催化剂同时加入到高压反应釜中,通入3MPa的H2,在160℃反应6h后糠醛的转化率达到99%,环戊酮选择性达到85.5%。
实施例4
称取3.86g硝酸锆Zr(NO3)4·5H2O,0.09g钼酸铵(NH4)6Mo7O24·4H2O,1.91g硝酸铜Cu(NO3)2·3H2O,0.30g氯化钾KCl,溶于100ml的去离子水中配制成盐溶液。称取4.67g碳酸钠Na2CO3溶于100ml去离子水中配制成碱溶液。将以上配制好的盐溶液和碱溶液同时置于全返混旋转液膜反应器,在转速6000rpm下充分搅拌3min,将得到的悬浊液70℃水热晶化64h,将所得沉淀使用去离子水洗涤至上层清液为中性,然后于70℃干燥12h。将所得到的固体置于马弗炉中焙烧,升温速率为5℃ min-1,从室温升温到550℃,之后在恒温温度下保温5h,焙烧得到催化剂前体。用10%H2/N2混合气在气氛炉中还原催化剂前体,以5℃ min-1的升温速率从室温升温到290℃,并在恒温温度下保温5h,得到表面酸性增强的ZrO2负载型铜纳米催化剂。催化剂中,ZrO2为纯四方相,Cu的负载量为29.6%,Cu平均粒径为12.5nm,催化剂的比表面积为143m2/g,表面酸含量为0.48mmol/g。
催化剂用于糠醛水相加氢反应。将5mmol糠醛,15ml超纯水,0.2g催化剂同时加入到高压反应釜中,通入3MPa的H2,在160℃反应6h后糠醛的转化率达到97%,环戊酮选择性达到81.7%。

Claims (6)

1.一种表面酸性增强的负载型铜基催化剂的制备方法,其特征在于,将含铜、钼、锆和钾的四种盐的混合水溶液与碳酸钠溶液倒入全返混旋转液膜反应器中,通过高速搅拌使其迅速成核,然后进行水热晶化,最后经焙烧还原得到表面酸性增强的ZrO2负载的铜基纳米催化剂。
2.根据权利要求1所述的表面酸性增强的负载型铜基催化剂的制备方法,其特征在于,通过调变Cu的负载量和Mo的掺杂量,调控催化剂表面活性Cu含量,金属Cu粒径及表面酸量,同时通过Mo的掺杂有效稳定四方相ZrO2
3.根据权利要求1或2所述的表面酸性增强的负载型铜基催化剂的制备方法,其特征在于,Cu的负载量为20~40%,Cu平均粒径为8~15nm,催化剂的比表面积为130~180m2/g,表面酸含量为0.4~0.8mmol/g。
4.根据权利要求3所述的表面酸性增强的负载型铜基催化剂的制备方法,其特征在于,具体步骤如下:
1)称取硝酸铜、硝酸锆、钼酸铵和氯化钾,溶于去离子水中配制盐溶液,其中Cu2+的浓度为0.1~0.2mol/L,MoO4 2-的浓度为0.005~0.02mol/L,Zr4+的浓度为0.05~0.1mol/L,K+浓度为0.01~0.05mmol/L,MoO4 2-和Zr4+的总浓度为0.05~0.15mol/L,MoO4 2-/Zr4+摩尔浓度比为0.05~0.15;称取碳酸钠溶于去离子水中配制碱溶液,控制碳酸钠的摩尔数为金属离子总摩尔数的2~4倍;
2)将以上配好的盐溶液和碱溶液同时置于全返混旋转液膜反应器,在转速3000~6000rpm下充分搅拌3~6min,将得到的悬浊液60~90℃水热晶化48~72h,将所得沉淀使用去离子水洗涤离心至上层清液为中性,干燥;
3)将所得到的固体置于马弗炉中焙烧,升温速率为2~5℃min-1,从室温升温到400~600℃,之后在恒温温度下保温4~6h,焙烧得到催化剂前体;用氢气和氮气混合气在气氛炉中还原催化剂前体,以2~5℃min-1的升温速率从室温升温到250~375℃,并在恒温温度下保温3~5h,得到表面酸性增强的ZrO2负载型铜纳米催化剂。
5.一种表面酸性增强的ZrO2负载型铜纳米催化剂催化糠醛水相加氢反应的应用。
6.根据权利要求5所述的应用,其特征在于,所述的催化糠醛水相加氢反应的条件为:将权利要求1、2或4中任意一条制备得到的催化剂、糠醛、超纯水同时加入到高压反应釜中,氢气气氛下100-200℃反应3-10h。
CN201810411804.9A 2018-05-02 2018-05-02 一种表面酸性增强的负载型铜基催化剂的制备方法及应用 Active CN108671935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810411804.9A CN108671935B (zh) 2018-05-02 2018-05-02 一种表面酸性增强的负载型铜基催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810411804.9A CN108671935B (zh) 2018-05-02 2018-05-02 一种表面酸性增强的负载型铜基催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN108671935A true CN108671935A (zh) 2018-10-19
CN108671935B CN108671935B (zh) 2021-01-12

Family

ID=63802799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810411804.9A Active CN108671935B (zh) 2018-05-02 2018-05-02 一种表面酸性增强的负载型铜基催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN108671935B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152680A (zh) * 2019-06-25 2019-08-23 运城晋腾化学科技有限公司临猗分公司 用于合成橡胶防老剂6ppd的铜基催化剂、制备及使用方法
CN112830871A (zh) * 2019-11-22 2021-05-25 中国科学院大连化学物理研究所 一种呋喃衍生物催化转化制备环戊酮的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080216391A1 (en) * 2007-03-08 2008-09-11 Cortright Randy D Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
CN101423239A (zh) * 2008-11-21 2009-05-06 北京化工大学 一种粒径分布可控的纳米硫酸钡制备方法
CN103159606A (zh) * 2011-12-12 2013-06-19 中国科学院大连化学物理研究所 一种以糠醛为原料制备环戊酮的方法
CN103301843A (zh) * 2012-03-15 2013-09-18 北京化工大学 一种高分散负载型铜基催化剂及其制备方法和应用
CN106984314A (zh) * 2017-01-13 2017-07-28 北京化工大学 一种高分散负载型铜基纳米催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080216391A1 (en) * 2007-03-08 2008-09-11 Cortright Randy D Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
CN101423239A (zh) * 2008-11-21 2009-05-06 北京化工大学 一种粒径分布可控的纳米硫酸钡制备方法
CN103159606A (zh) * 2011-12-12 2013-06-19 中国科学院大连化学物理研究所 一种以糠醛为原料制备环戊酮的方法
CN103301843A (zh) * 2012-03-15 2013-09-18 北京化工大学 一种高分散负载型铜基催化剂及其制备方法和应用
CN106984314A (zh) * 2017-01-13 2017-07-28 北京化工大学 一种高分散负载型铜基纳米催化剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHAOYAN ZHANG等: "The relationship between the structure and catalytic performance Cu/ZnO/ZrO2 catalysts for hydrogenation of dimethyl 1,4-cyclohexane dicarboxylate", 《CATALYSIS COMMUNICATIONS》 *
伍君等: "二乙醇胺脱氢制备亚氨基二乙酸Cu-MoO3-ZrO2催化剂的研究", 《分子催化》 *
汪多仁编著: "《绿色净水处理剂》", 30 November 2006, 科学技术文献出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152680A (zh) * 2019-06-25 2019-08-23 运城晋腾化学科技有限公司临猗分公司 用于合成橡胶防老剂6ppd的铜基催化剂、制备及使用方法
CN110152680B (zh) * 2019-06-25 2021-02-12 运城晋腾化学科技有限公司临猗分公司 用于合成橡胶防老剂6ppd的铜基催化剂、制备及使用方法
CN112830871A (zh) * 2019-11-22 2021-05-25 中国科学院大连化学物理研究所 一种呋喃衍生物催化转化制备环戊酮的方法
CN112830871B (zh) * 2019-11-22 2022-03-08 中国科学院大连化学物理研究所 一种呋喃衍生物催化转化制备环戊酮的方法

Also Published As

Publication number Publication date
CN108671935B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
CN109569695B (zh) 一种用于二氧化碳加氢的核壳结构催化剂的制备方法及其使用方法
CN112791721B (zh) 负载型催化剂前体、负载型催化剂及制备方法和活化方法
CN105013527B (zh) 一种核壳结构Beta分子筛及其制备方法
CN109331859A (zh) 一种氮化碳负载四氧化三钴催化剂的制备方法及其在催化氧化环己烷氧化反应中的应用
CN110064423A (zh) 超小多元合金复合材料、其制备方法及其应用
CN102416325B (zh) 一种异丁基酮合成催化剂的制备方法
CN108654618B (zh) 金属氧化物催化剂、其制备方法及使用其的醇的制备方法
CN114768859B (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
CN101966460A (zh) 用于合成碳酸二甲酯的负载型催化剂及其制备和使用方法
CN108671935A (zh) 一种表面酸性增强的负载型铜基催化剂的制备方法及应用
CN113198518A (zh) 一种外延晶粒分子筛封装亚纳米金属催化剂、其制备方法及用途
CN110586094A (zh) 碳酸乙烯酯加氢生产甲醇和乙二醇的铜基纳米花催化剂及其制备方法
CN112246273B (zh) 一种用于二氧化碳转化制备低碳醇的催化剂、制备方法及应用
To et al. Nitrogen-doped Co catalyst derived from carbothermal reduction of cobalt phyllosilicate and its application in levulinic acid hydrogenation to γ-valerolactone
CN100569366C (zh) 全微波法耐硫型钼基催化剂的制备方法
CN115254171B (zh) 一种具有空心核壳结构的高分散铜基酯加氢催化剂及其制备方法和应用
CN110871075B (zh) 负载铁钴钾的二氧化锆催化剂、制备方法及其应用
CN110788346A (zh) 半金属结构二碲化钨/氧化还原石墨烯复合物及其铜掺杂复合物粉体的制备方法
CN108043412A (zh) 一种用于二氧化碳加氢合成甲醇催化剂的制备方法
CN115487826A (zh) 银掺杂锰钴水滑石催化剂及其制备方法与降解甲醛的方法
CN111790392A (zh) 一种二氧化碳加氢合成甲醇的催化剂及其制备方法
CN112871193A (zh) 用于异丁烯氧化制备甲基丙烯醛的催化剂及制备和应用
CN113731422A (zh) 一种浆态床甲烷合成催化剂的制备方法
CN110152669A (zh) 一种应用于合成气直接制取低碳醇的碳硅复合载体负载的钴基催化剂及其制备方法
CN111729669B (zh) 负载金属的铈锆固溶体材料、其制备方法及用于催化合成香芹酮的用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant