CN108220732A - 合金材料、粘结磁体以及稀土永磁粉的改性方法 - Google Patents

合金材料、粘结磁体以及稀土永磁粉的改性方法 Download PDF

Info

Publication number
CN108220732A
CN108220732A CN201611199983.1A CN201611199983A CN108220732A CN 108220732 A CN108220732 A CN 108220732A CN 201611199983 A CN201611199983 A CN 201611199983A CN 108220732 A CN108220732 A CN 108220732A
Authority
CN
China
Prior art keywords
powder
rare earth
permanent magnet
alloy
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611199983.1A
Other languages
English (en)
Other versions
CN108220732B (zh
Inventor
袁超
罗阳
门阔
权宁涛
张洪滨
闫文龙
于敦波
杨远飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grirem Advanced Materials Co Ltd
Original Assignee
Grirem Advanced Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grirem Advanced Materials Co Ltd filed Critical Grirem Advanced Materials Co Ltd
Priority to CN201611199983.1A priority Critical patent/CN108220732B/zh
Priority to US15/796,153 priority patent/US10811175B2/en
Priority to MYPI2017704093A priority patent/MY183116A/en
Priority to KR1020170157049A priority patent/KR102068232B1/ko
Priority to DE102017222815.6A priority patent/DE102017222815A1/de
Priority to ZA201708586A priority patent/ZA201708586B/en
Priority to JP2017245749A priority patent/JP6586451B2/ja
Publication of CN108220732A publication Critical patent/CN108220732A/zh
Application granted granted Critical
Publication of CN108220732B publication Critical patent/CN108220732B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/048Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising a quenched ribbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明提供了一种合金材料、粘结磁体以及稀土永磁粉的改性方法。该合金材料的熔点低于600℃,合金材料的组成按原子份数计为RE100‑x‑ yMxNy,其中,RE为非重稀土Nd、Pr、Sm、La、Ce的一种或多种,M为Cu、Al、Zn、Mg的一种或多种,N为Ga、In、Sn的一种或多种,x=10~35,y=1~15。本申请的合金材料成本较低,可以形成低熔点的共晶合金,可在较低温度进行液相扩散,从而改善低温下其中的元素向稀土永磁粉扩散的均匀性。同时,Ga、In、Sn在钕铁硼合金中还具有显著的晶界偏聚特征,能够增强晶界扩散提高矫顽力的效果,使所改性的稀土永磁粉形成的磁体高温性能较好。

Description

合金材料、粘结磁体以及稀土永磁粉的改性方法
技术领域
本发明涉及稀土材料制备领域,具体而言,涉及一种合金材料、粘结磁体以及稀土永磁粉的改性方法。
背景技术
稀土永磁材料是稀土金属与过渡金属形成的合金通过一定加工工艺制备而成,是支撑现代工业社会发展的重要基础材料,以钕铁硼为代表的稀土永磁是目前应用性能最高的永磁合金,并已发展出烧结、粘结和热压三大类稀土永磁合金材料。随着钕铁硼应用范围的扩大和其需求量的增加,对钕铁硼合金性能的期望持续提高。磁能积和矫顽力是永磁材料最重要的两个评价指标,目前,取得应用的钕铁硼合金材料的磁能积已接近其理论最大磁能积,而矫顽力还远未达到其理论最大值。永磁材料矫顽力低,磁体稳定性变差,尤其是在一些存在变温的特殊应用环境,磁体的磁性能将快速衰减。因此,提高矫顽力,是一种有效的提高磁体高温性能并改善其温度稳定性的方法。
对于Nd2Fe14B或Pr2Fe14B稀土永磁合金,提高其矫顽力,一方面是从主相晶粒的各向异性场入手,例如,在合金熔炼过程中加入重稀土Dy、Tb取代Nd或Pr可以增加矫顽力,这是由于形成的(Dy,Tb)2Fe14B相具有更大的各向异性场,但重稀土Dy、Tb取代Nd或Pr的方法,会导致磁能积的显著降低。另一方面就是重稀土Dy、Tb晶界扩散,通过增加晶界附近的反磁化畴形核场,或通过减少晶界铁磁性来降低相邻晶粒的磁交换耦合,实现矫顽力的提高。例如,日本的爱知制钢在各向异性HDDR钕铁硼磁粉表面(CN1345073A)利用氢化物扩散Dy,提高了磁粉的矫顽力,并提高了其使用温度和磁粉的热稳定性。尽管利用重稀土Dy、Tb等,通过替代或晶界扩散的方法来提高矫顽力效果显著,但上述方法存在重稀土资源短缺、成本高等问题。
非重稀土晶界扩散是通过利用非重稀土和其它合金元素组成的低熔点合金,渗透进入钕铁硼主相晶粒晶界区域,降低或阻断磁交换耦合,达到提高磁粉矫顽力的目的。非重稀土晶界扩散,例如PrCu、NdCu合金在热压、烧结等块状磁体表面扩散等,可以显著提高矫顽力,实现无重稀土添加的高矫顽力磁体,改善磁体服役性能。粘结磁体在一些特殊应用环境下,也存在磁性能衰减的问题,提高矫顽力同样是改善其磁性稳定性的重要方法。但晶界扩散还较少在粘结磁体上应用,主要原因在于,晶界扩散作用于粘结磁粉,磁粉在矫顽力提高的同时,另一指标磁能积降低明显(Zhong Lin,Jingzhi Han,Shunquan Liu,etal.Journal of Applied Physics 2012,111:07A722),另一方面,粘结磁体对磁粉的均匀性要求较高,而晶界扩散存在扩散不均匀等问题,不利于推广。此外,高性能的磁粉通常还要求具有细小晶粒组织特征,而现有技术在较低温度下扩散效果不理想,而在高温下长时间处理又易导致晶粒生长,也会降低磁粉磁性能。
发明内容
本发明的主要目的在于提供一种合金材料、粘结磁体以及稀土永磁粉的改性方法,以解决现有技术中的磁体高温性能较差的方法问题。
为了实现上述目的,根据本发明的一个方面,提供了一种合金材料,合金材料的熔点低于600℃,合金材料的组成按原子份数计为RE100-x-yMxNy,其中,RE为非重稀土Nd、Pr、Sm、La、Ce的一种或多种,M为Cu、Al、Zn、Mg的一种或多种,N为Ga、In、Sn的一种或多种,x=10~35,y=1~15。
进一步地,上述合金材料为合金粉末,优选合金粉末的粒度在160~40μm之间。
根据本发明的另一方面,提供了一种稀土永磁粉的改性方法,该改性方法包括:步骤S1,将上述任一种合金材料与稀土永磁粉混合获得混合粉末,其中混合粉末中合金材料的质量比例为1~10%,优选2~5%;步骤S2,在第一惰性气氛或真空状态下,将混合粉末进行热处理,得到改性稀土永磁粉。
进一步地,上述步骤S2包括:步骤S21,在第一惰性气氛或真空状态下,将混合粉末在675~900℃下处理5~30min,得到预处理粉末;步骤S22,将预处理粉末在500~600℃下处理时间2~12h,得到改性稀土永磁粉。
进一步地,上述合金材料为粒度在160~40μm之间的合金粉末,优选稀土永磁粉的粒度在400~50μm之间。
进一步地,上述真空状态的真空度为10-2~10-4Pa,优选惰性气氛为氩气气氛。
进一步地,在上述步骤S21之前,步骤S2还包括以不小于15℃/min的升温速率升温至675~900℃。
进一步地,在上述步骤S21之后以及步骤S22之前,步骤S2还包括以不小于15℃/min的降温速率降温至500~600℃。
进一步地,上述稀土永磁粉的磁性主相具有RE’2Fe14B结构,其中RE’为Nd和/或Pr,且其中的部分Nd或Pr可被Dy、Tb、La、Ce取代,稀土永磁粉中稀土的总原子比为9~12.0%。
进一步地,上述改性方法还包括合金材料的制备方法,制备方法包括:按照合金材料的组成称取各原料,利用感应熔炼或电弧熔炼将各原料制备成母合金;利用速凝铸片法或高速旋淬法将母合金制备成合金薄片;以及在第二惰性气氛下采用机械破碎或氢破碎将合金薄片破碎成合金粉末,合金粉末的粒度在160~40μm之间,优选第二惰性气氛为氩气气氛。
根据本发明的又一方面,提供了一种粘结磁体,采用稀土永磁粉制备而成,该稀土永磁粉为上述任一种改性方法得到改性稀土永磁粉。
应用本发明的技术方案,在合金材料使用非重稀土或高丰度的Nd、Pr、Sm、La、Ce稀土元素中的任意一种或多种,成本较低,并加入Cu、Al、Zn、Mg中的一种或多种非稀土金属元素,同时通过含量的配合可以形成低熔点的共晶合金,该共晶合金可在较低温度进行液相扩散;此外低熔点金属Ga、In、Sn中的一种或多种元素的适当加入,能够进一步降低合金材料的熔点,并增加合金材料与稀土永磁粉之间的润湿性,从而改善其中的元素向稀土永磁粉扩散的均匀性并实现低温扩散,可避免由于高温长时间热处理对磁粉磁性能的破坏。同时,Ga、In、Sn在钕铁硼合金中还具有显著的晶界偏聚特征,能够增强晶界扩散提高矫顽力的效果。由此可见,将本申请上述的合金材料应用于对稀土永磁粉的改性时,能够在低温下进行扩散,且能够增强稀土永磁粉的矫顽力,使所改性的稀土永磁粉形成的磁体高温性能较好。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
如背景技术所分析的,现有技术中的对稀土永磁粉的各种改性方法均存在一定缺陷,难以达到以低成本提高稀土永磁粉的高温性能的目的,为了解决该问题,本申请提供给了一种合金材料、粘结磁体以及稀土永磁粉的改性方法。
在本申请一种典型的实施方式中,提供了一种合金材料,该合金材料的熔点低于600℃,合金材料的组成按原子份数计为RE100-x-yMxNy,其中,RE为非重稀土Nd、Pr、Sm、La、Ce的一种或多种,M为Cu、Al、Zn、Mg的一种或多种,N为Ga、In、Sn的一种或多种,x=10~35,y=1~15。
本申请上述合金材料使用非重稀土或高丰度的Nd、Pr、Sm、La、Ce稀土元素中的任意一种或多种,成本较低,并加入Cu、Al、Zn、Mg中的一种或多种非稀土金属元素,同时通过含量的配合可以形成低熔点的共晶合金,该共晶合金可在较低温度进行液相扩散;此外低熔点金属Ga、In、Sn中的一种或多种元素的适当加入,能够进一步降低合金材料的熔点,并增加合金材料与稀土永磁粉之间的润湿性,从而改善其中的元素向稀土永磁粉扩散的均匀性并实现低温扩散,可避免由于高温长时间热处理对磁粉磁性能的破坏。同时,Ga、In、Sn在钕铁硼合金中还具有显著的晶界偏聚特征,能够增强晶界扩散提高矫顽力的效果。由此可见,将本申请上述的合金材料应用于对稀土永磁粉的改性时,能够在低温下进行扩散,且能够增强稀土永磁粉的矫顽力,使所改性的稀土永磁粉形成的磁体高温性能较好。
上述合金材料可以为片材保存,为了便于其使用,优选上述合金材料为合金粉末,更优选合金粉末的粒度在160~40μm之间。采用上述合金粉末有利于其直接应用于稀土永磁粉的改性中。
在本申请另一种典型的实施方式中,提供了一种稀土永磁粉的改性方法,该改性方法包括:步骤S1,将上述任一种合金材料与稀土永磁粉混合获得混合粉末,其中混合粉末中合金材料的质量比例为1~10%,优选2~5%;步骤S2,在第一惰性气氛或真空状态下,将混合粉末进行热处理,得到改性稀土永磁粉。
如前所述,本申请提供的合金材料具有低熔点的特点,与稀土永磁粉之间具有较好的润湿性,因此可在较低温度进行液相扩散,避免由于高温长时间热处理对磁粉磁性能的破坏;此外,由于上述合金材料中具有Ga、In和/或Sn,在钕铁硼合金中还具有显著的晶界偏聚特征,能够增强晶界扩散提高矫顽力的效果,因此,所得到的改性稀土永磁粉形成的磁体高温性能较好。
上述热处理的目的是使合金材料中的元素向稀土永磁粉中扩散,因此其处理温度至少为合金材料的熔点,为了更好地促进合金材料中元素的扩散,且避免热处理温度对稀土永磁粉的性能的影响,优选上述步骤S2包括:步骤S21,在第一惰性气氛或真空状态下,将混合粉末在675~900℃下处理5~30min,得到预处理粉末;步骤S22,将预处理粉末在500~600℃下处理时间2~12h,得到改性稀土永磁粉。
上述高低温两段扩散热处理工艺的具体条件在上述范围内可配合扩散合金成分进行调整,首先在较高温度下短时间热处理实现扩散合金对稀土永磁粉的液相均匀包覆,然后在低温下长时间热处理使合金均匀扩散进入磁粉内部晶粒边界区域。因此,既可避免由于高温长时间热处理对磁粉磁性能的破坏,又可实现均匀扩散的目的,最终达到提高矫顽力和改善温度稳定性的目的,获得均匀扩散的改性稀土永磁粉。
合金材料在高温阶段熔化,为了达到均匀扩散改性的目的,优选上述合金材料为粒度在160~40μm之间的合金粉末,同时,合金材料的粒度过粗容易导致扩散不均匀,粒度过小极易吸氧而氧化。进一步优选稀土永磁粉的粒度在400~50μm之间,以实现和合金材料的均匀混合。
如前所述,合金材料粒度过小,容易被氧化,为了避免其被氧化,优选上述真空状态的真空度为10-2~10-4Pa,或优选惰性气氛为氩气气氛。
在本申请一种优选的实施例中,在步骤S21之前,上述步骤S2还包括以不小于15℃/min的升温速率升温至675~900℃。通过控制升温速率,既可以使反应物在短时间内达到预定温度,避免长时间高温导致稀土永磁粉结构受到影响。上述升温速率的最大值在现有技术能够实现的前提下越大越好,以实现快速升温。
在本申请另一种优选的实施例中,在步骤S21之后以及步骤S22之前,步骤S2还包括以不小于15℃/min的降温速率降温至500~600℃。利用上述降温速率使得预处理粉末快速降至低温,避免高温的过长时间影响。上述降温速率的最大值在现有技术能够实现的前提下越大越好,以实现快速降温。
本申请的改性方法理论上可以适用于所有类型的稀土永磁粉,尤其是对于总稀土含量低于或略高于硬磁主相RE’2Fe14B中的稀土总原子比11.8%的钕铁硼类稀土永磁粉,稀土永磁粉的磁性主相具有RE’2Fe14B结构,其中RE’为Nd和/或Pr,且其中的部分Nd或Pr可被Dy、Tb、La、Ce取代,优选上述稀土永磁粉中稀土的总原子比为9~12.0%。该稀土永磁粉材料内部具有细小纳米晶粒组织,通过材料内部纳米晶粒之间的耦合,实现具有较高的剩磁和磁能积,其磁性能与晶粒组织密切相关。但其稀土含量较低,晶粒组织极易受热处理工艺影响,长时间高温处理容易导致晶粒生长,导致磁性能显著降低。而利用上述合金材料对其进行改性,可在较低温下实现均匀扩散提高其矫顽力的目的,同时还可以避免其由于高温长时间热处理而导致的磁性能降低的问题。
为了便于实施本申请的改性方法,优选上述改性方法还包括合金材料的制备方法,该制备方法包括:按照合金材料的组成称取各原料,利用感应熔炼或电弧熔炼将各原料制备成母合金;利用速凝铸片法或高速旋淬法将母合金制备成合金薄片;以及在第二惰性气氛下采用机械破碎或氢破碎将合金薄片破碎成合金粉末,合金粉末的粒度在160~40μm之间,优选第二惰性气氛为氩气气氛。上述感应熔炼、电弧熔炼、速凝铸片和高速旋淬均是本领域常用的方法,应用在本申请中时,其条件也可以参考现有技术,在此不再赘述。
在本申请再一种典型的实施方式中,提供了一种粘结磁体,采用稀土永磁粉制备而成,该稀土永磁粉为上述任一种改性方法得到改性稀土永磁粉。基于本申请的稀土永磁粉的优点,所得到的粘结磁体的矫顽力等磁性能在高温下也较为优异,弥补了现有技术中得到的稀土永磁粉形成的粘结磁体高温性能差的问题。
以下将结合实施例和对比例,进一步说明本申请的有益效果。
以下实施例中,磁粉扩散前后的磁性能(最大磁能积BHm及矫顽力Hcj)采用振动样品磁强计(VSM)检测。热稳定性表征是通过测量粘结磁体磁通衰减来进行,利用扩散前后的磁粉制作粘结磁体,磁体在大气环境下120℃保温100h,测量表面磁通量的衰减。
实施例1
根据下述步骤对钕镨系Nd7.6Pr2.5Fe84.1B5.8永磁粉进行处理:
1)按设计成分配比原料,采用真空感应熔炼制备Nd66Cu28Ga6低熔点合金的母合金,所获得母合金利用高速单辊旋淬的方法,在快淬速度25m/s下制备扩散合金快淬带,在Ar气保护气氛下采用机械研磨的方法破碎制粉,得到粉末粒度为160~40μm的Nd66Cu28Ga6合金粉末;
2)将粒度400~50μm的稀土永磁粉(总稀土RE原子比为10.1%,磁性主相具有RE’2Fe14B结构)与Nd66Cu28Ga6合金粉末机械均匀混合形成混合物,混合物中合金粉末质量分数为3%;
3)将混合物在真空5×10-3Pa条件下进行两段扩散热处理,热处理工艺为,以25℃/min的升温速率快速升温至725℃保温25min,然后以约20℃/min的降温速率快冷至600℃,继续在600℃保温5h,扩散热处理结束后,样品空冷至室温,得到实施例1的改性稀土永磁粉。
实施例2
根据下述步骤对含Ce的镨钕系Nd3.2Pr7.6Ce1.2Fe81.8B6.2永磁粉进行处理:
1)采用真空感应熔炼制备Ce85Al9Mg3Sn3低熔点合金母合金,在Ar保护气氛下利用速凝铸片SC技术,在8m/s下制备扩散合金薄片,在Ar气保护气氛下采用气流磨的方法机械破碎制粉,得到粉末粒度120~50μm的Ce85Al9Mg3Sn3合金粉末;
2)将粒度400~80μm的稀土永磁粉(总稀土RE原子比为12.0%,磁性主相具有RE’2Fe14B结构)与Ce85Al9Mg3Sn3合金粉末机械均匀混合形成混合物,混合物中扩散合金粉末质量分数为4%;
3)将混合物在真空2×10-3Pa条件下进行扩散热处理,热处理工艺为,以25℃/min升温速率快速升温至775℃保温30min,然后以约20℃/min快冷至580℃,继续在580℃保温6h,扩散热处理结束后,样品空冷至室温,得到实施例2的改性稀土永磁粉。
实施例3
根据下述步骤对含Ce、La钕系Nd7.2La1.5Ce0.3Fe84Nb1.2B5.8永磁粉进行处理:
1)采用感应熔炼制备La70Cu29Sn1低熔点合金,利用单辊高速旋淬的方法,在快淬速度20m/s下制备扩散合金快淬带,在Ar气保护气氛下采用机械研磨的方法破碎制粉,得到粉末粒度为160~60μm的La70Cu29Sn1合金粉末;
2)将粒度300~70μm的稀土永磁粉(总稀土RE原子比为9.0%,磁性主相具有RE’2Fe14B结构)与La70Cu29Sn1合金粉末机械均匀混合得到混合物,混合物中扩散合金粉末质量分数为2%;
3)将混合物在真空1×10-3Pa条件下进行扩散热处理,热处理工艺为,以25℃/min升温速率快速升温至675℃保温30min,然后以约20℃/min快冷至500℃,继续在500℃保温12h,扩散热处理结束后,样品空冷至室温,得到实施例3的改性稀土永磁粉。
实施例4
根据下述步骤对钕系Nd11.3Fe80.8Co2.0B5.9稀土永磁粉进行处理:
1)采用感应熔炼制备Nd78Al12Cu2In8低熔点合金,利用高速旋淬的方法,在快淬速度30m/s下制备扩散合金快淬带,然后在Ar保护气氛下采用机械研磨的方法破碎制粉,得到粉末粒度100~40μm的Nd78Al12Cu2In8合金粉末;
2)将粒度200~80μm的稀土永磁粉(总稀土RE原子比为11.3%)与Nd78Al12Cu2In8合金粉末机械均匀混合形成混合物,混合物中扩散合金粉末质量分数为3%;
3)将混合物在真空条件下进行扩散热处理,真空度小于5×10-3Pa,热处理工艺为,以30℃/min快速升温至850℃保温10min,然后以约18℃/min快速快冷至560℃,继续在560℃保温5h,扩散热处理结束后,样品空冷至室温,得到实施例4的改性稀土永磁粉。
实施例5
根据下述步骤对镨系Pr9.3Fe85.2Nb0.2B5.3稀土永磁粉进行处理:
1)采用感应熔炼制备Pr66Zn19Ga15低熔点合金母合金锭,合金锭经Ar保护气氛下均匀化处理后,利用氢破碎的方法制备扩散合金粉,得到粉末粒度为120~50μm的Pr66Zn19Ga15合金粉末;
2)将粒度300~100μm的稀土永磁粉(总稀土RE原子比为9.3%,磁性主相具有RE’2Fe14B结构)与Pr66Zn19Ga15合金粉末机械均匀混合形成混合物,混合物中扩散合金粉末质量分数为5%;
3)将混合物在高纯Ar保护气氛下进行扩散热处理,热处理工艺为以35℃/min快速升温至为900℃保温5min,然后以约30℃/min快速快冷至600℃,继续在600℃保温2h,热处理结束后,样品空冷至室温,得到实施例5的改性稀土永磁粉。
实施例6
根据下述步骤对钕镨系Pr8.2Nd2.5Fe81.9Co1.5B5.9永磁粉进行处理:
1)采用感应熔炼制备Pr62Cu28Al7Ga3低熔点合金,利用速凝铸片技术,在10m/s下制备扩散合金薄片,在Ar气保护气氛下采用气流磨的方法机械破碎制粉,得到粉末粒度120~50μm的Pr62Cu28Al7Ga3合金粉末。
2)将粒度300~50μm的稀土永磁粉(总稀土RE原子比为10.7%,磁性主相具有RE’2Fe14B结构)与Pr62Cu28Al7Ga3合金粉末机械均匀混合形成混合物,混合物中合金粉末质量分数为3%;
3)将混合物在真空5×10-3Pa条件下进行两段扩散热处理,热处理工艺为,以25℃/min的升温速率快速升温至725℃保温15min,然后以约30℃/min的降温速率快冷至520℃,继续在520℃保温8h,扩散热处理结束后,样品空冷至室温,得到实施例6的改性稀土永磁粉。
实施例7
与实施例1的区别在于,稀土永磁粉Nd7.6Pr2.5Fe84.1B5.8的粒度为300~500μm。
实施例8
与实施例1的区别在于,Nd66Cu28Ga6合金粉末的粒度为100~200μm。
实施例9
与实施例1的区别在于,两段扩散热处理的真空0.02Pa条件下进行。
实施例10
与实施例1的区别在于,热处理工艺为,以12℃/min的升温速率快速升温至725℃保温25min,然后以约20℃/min的降温速率快冷至600℃,继续在600℃保温5h,扩散热处理结束后,样品空冷至室温。
实施例11
与实施例1的区别在于,热处理工艺为,以25℃/min的升温速率快速升温至650℃保温25min,然后以约20℃/min的降温速率快冷至600℃,继续在600℃保温5h,扩散热处理结束后,样品空冷至室温。
实施例12
与实施例1的区别在于,热处理工艺为,以25℃/min的升温速率快速升温至725℃保温35min,然后以约20℃/min的降温速率快冷至600℃,继续在600℃保温5h,扩散热处理结束后,样品空冷至室温。
实施例13
与实施例1的区别在于,热处理工艺为,以25℃/min的升温速率快速升温至725℃保温25min,然后以约12℃/min的降温速率快冷至600℃,继续在600℃保温5h,扩散热处理结束后,样品空冷至室温。
实施例14
与实施例1的区别在于,热处理工艺为,以25℃/min的升温速率快速升温至725℃保温25min,然后以约20℃/min的降温速率快冷至650℃,继续在650℃保温5h,扩散热处理结束后,样品空冷至室温。
实施例15
与实施例1的区别在于,热处理工艺为,以25℃/min的升温速率快速升温至725℃保温25min,然后以约20℃/min的降温速率快冷至600℃,继续在600℃保温15h,扩散热处理结束后,样品空冷至室温。
对比例1
与实施例1的区别在于,混合物中合金粉末质量分数为12%。
采用前述方法检测各实施例和对比例的稀土永磁粉改性前后的磁能积和矫顽力,以及所得到的粘结磁体的磁通衰减,检测结果见表1。
表1
从上表实施例1~15可以看出,利用本发明方法所提供的低熔点合金粉末,采用所提供的热处理工艺,对对应的稀土永磁粉进行扩散热处理,磁能积仅小幅降低,而矫顽力则明显提高,扩散处理后粉末制作的粘结磁体,磁体高温环境下,磁通衰减显著降低。另外,与实施例1相比:实施例7和8的结果说明通过控制粒度配比,可以使扩散更均匀,矫顽力和磁能积的大小更合适,对应扩散后磁粉热稳定性也有利;实施例9的结果说明提高真空度,可以控制磁粉和扩散源的氧化,而进一步提高磁性能;实施例10至15的结果说明通过对扩散热处理过程中的升降温速率、热处理温度和时间的进一步控制,能够更好地避免热处理过程中的扩散源团聚、晶粒生长等,进而进一步提高磁性能;对比例1的结果由于过量合金粉末的添加,尽管矫顽力和热稳定性提高明显,但显著降低了磁粉磁能积,还明显增加稀土含量而提高原材料成本,而不利于磁粉的应用。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
本申请上述合金材料使用非重稀土或高丰度的Nd、Pr、Sm、La、Ce稀土元素中的任意一种或多种,成本较低,并加入Cu、Al、Zn、Mg中的一种或多种非稀土金属元素,同时通过含量的配合可以形成低熔点的共晶合金,该共晶合金可在较低温度进行液相扩散;此外低熔点金属Ga、In、Sn中的一种或多种元素的适当加入,能够进一步降低合金材料的熔点,并增加合金材料与稀土永磁粉之间的润湿性,从而改善其中的元素向稀土永磁粉扩散的均匀性并实现低温扩散,可避免由于高温长时间热处理对磁粉磁性能的破坏。同时,Ga、In、Sn在钕铁硼合金中还具有显著的晶界偏聚特征,能够增强晶界扩散提高矫顽力的效果。由此可见,将本申请上述的合金材料应用于对稀土永磁粉的改性时,能够在低温下进行扩散,且能够增强稀土永磁粉的矫顽力,使所改性的稀土永磁粉形成的磁体高温性能较好。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

1.一种合金材料,其特征在于,所述合金材料的熔点低于600℃,所述合金材料的组成按原子份数计为RE100-x-yMxNy,其中,RE为非重稀土Nd、Pr、Sm、La、Ce的一种或多种,M为Cu、Al、Zn、Mg的一种或多种,N为Ga、In、Sn的一种或多种,x=10~35,y=1~15。
2.根据权利要求1所述的合金材料,其特征在于,所述合金材料为合金粉末,优选所述合金粉末的粒度在160~40μm之间。
3.一种稀土永磁粉的改性方法,其特征在于,所述改性方法包括:
步骤S1,将权利要求1或2所述的合金材料与稀土永磁粉混合获得混合粉末,其中所述混合粉末中所述合金材料的质量比例为1~10%,优选2~5%;
步骤S2,在第一惰性气氛或真空状态下,将所述混合粉末进行热处理,得到改性稀土永磁粉。
4.根据权利要求3所述的改性方法,其特征在于,所述步骤S2包括:
步骤S21,在第一惰性气氛或真空状态下,将所述混合粉末在675~900℃下处理5~30min,得到预处理粉末;
步骤S22,将所述预处理粉末在500~600℃下处理时间2~12h,得到所述改性稀土永磁粉。
5.根据权利要求3所述的改性方法,其特征在于,所述合金材料为粒度在160~40μm之间的合金粉末,优选所述稀土永磁粉的粒度在400~50μm之间。
6.根据权利要求3所述的改性方法,其特征在于,所述真空状态的真空度为10-2~10- 4Pa,优选所述惰性气氛为氩气气氛。
7.根据权利要求4所述的改性方法,其特征在于,在所述步骤S21之前,所述步骤S2还包括以不小于15℃/min的升温速率升温至675~900℃。
8.根据权利要求4所述的改性方法,其特征在于,在所述步骤S21之后以及步骤S22之前,所述步骤S2还包括以不小于15℃/min的降温速率降温至500~600℃。
9.根据权利要求3所述的改性方法,其特征在于,所述稀土永磁粉的磁性主相具有RE’2Fe14B结构,其中RE’为Nd和/或Pr,且其中的部分Nd或Pr可被Dy、Tb、La、Ce取代,所述稀土永磁粉中稀土的总原子比为9~12.0%。
10.根据权利要求3所述的改性方法,其特征在于,所述改性方法还包括所述合金材料的制备方法,所述制备方法包括:
按照所述合金材料的组成称取各原料,利用感应熔炼或电弧熔炼将所述各原料制备成母合金;
利用速凝铸片法或高速旋淬法将所述母合金制备成合金薄片;以及
在第二惰性气氛下采用机械破碎或氢破碎将所述合金薄片破碎成合金粉末,所述合金粉末的粒度在160~40μm之间,优选所述第二惰性气氛为氩气气氛。
11.一种粘结磁体,采用稀土永磁粉制备而成,其特征在于,所述稀土永磁粉为权利要求3至10任一项所述的改性方法得到改性稀土永磁粉。
CN201611199983.1A 2016-12-22 2016-12-22 合金材料、粘结磁体以及稀土永磁粉的改性方法 Active CN108220732B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201611199983.1A CN108220732B (zh) 2016-12-22 2016-12-22 合金材料、粘结磁体以及稀土永磁粉的改性方法
US15/796,153 US10811175B2 (en) 2016-12-22 2017-10-27 Alloy material, bonded magnet, and modification method of rare-earth permanent magnetic powder
MYPI2017704093A MY183116A (en) 2016-12-22 2017-10-30 Alloy material, bonded magnet, and modification method of rare-earth permanent magnetic powder
KR1020170157049A KR102068232B1 (ko) 2016-12-22 2017-11-23 합금 재료, 본드 자석 및 희토류 영구자석 분말의 개질 방법
DE102017222815.6A DE102017222815A1 (de) 2016-12-22 2017-12-14 Legierungsmaterial, Verbundmagnet und Modifikationsverfahren eines Seltenerd-Permanentmagnetpulvers
ZA201708586A ZA201708586B (en) 2016-12-22 2017-12-18 Alloy material, bonded magnet, and modification method of rare-earth permanent magnetic powder
JP2017245749A JP6586451B2 (ja) 2016-12-22 2017-12-22 合金材料、ボンド磁石および希土類永久磁石粉末の変性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611199983.1A CN108220732B (zh) 2016-12-22 2016-12-22 合金材料、粘结磁体以及稀土永磁粉的改性方法

Publications (2)

Publication Number Publication Date
CN108220732A true CN108220732A (zh) 2018-06-29
CN108220732B CN108220732B (zh) 2019-12-31

Family

ID=62510458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611199983.1A Active CN108220732B (zh) 2016-12-22 2016-12-22 合金材料、粘结磁体以及稀土永磁粉的改性方法

Country Status (7)

Country Link
US (1) US10811175B2 (zh)
JP (1) JP6586451B2 (zh)
KR (1) KR102068232B1 (zh)
CN (1) CN108220732B (zh)
DE (1) DE102017222815A1 (zh)
MY (1) MY183116A (zh)
ZA (1) ZA201708586B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585113A (zh) * 2018-11-30 2019-04-05 宁波韵升股份有限公司 一种烧结钕铁硼磁体的制备方法
CN109786097A (zh) * 2018-12-26 2019-05-21 湖北永磁磁材科技有限公司 一种驱动电机专用高性能钕铁硼永磁体的制备方法
CN111261351A (zh) * 2020-03-02 2020-06-09 河南科技大学 一种高矫顽力SmCo5/FeCo纳米复合永磁材料及其制备方法
CN111863369A (zh) * 2019-04-29 2020-10-30 广东省稀有金属研究所 一种磁性粘结剂及其制备方法、复合永磁材料的制备方法
CN113039618A (zh) * 2019-10-16 2021-06-25 株式会社Lg化学 烧结磁体的制造方法
CN113798488A (zh) * 2021-09-16 2021-12-17 湖南金天铝业高科技股份有限公司 铝基粉末冶金材料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102632582B1 (ko) * 2019-10-07 2024-01-31 주식회사 엘지화학 소결 자석의 제조 방법
CN110931197B (zh) * 2019-11-22 2022-12-27 宁波同创强磁材料有限公司 一种用于高丰度稀土永磁体的扩散源
CN112017835B (zh) * 2020-08-20 2023-03-17 合肥工业大学 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法
CN112133512B (zh) * 2020-08-24 2024-04-19 宁波晨洋磁材科技有限公司 一种稀土铁基永磁材料、制备方法以及真空热压机
CN113871123A (zh) * 2021-09-24 2021-12-31 烟台东星磁性材料股份有限公司 低成本稀土磁体及制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276291A (ja) * 1995-02-07 1996-10-22 Honda Motor Co Ltd 希土類合金ろう材
CN104178705A (zh) * 2014-09-10 2014-12-03 合肥工业大学 Ce-Ga-Cu-Al系大块非晶合金
WO2016133071A1 (ja) * 2015-02-18 2016-08-25 日立金属株式会社 R-t-b系焼結磁石の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US992A (en) * 1838-10-26 Improved cotton-press
US736A (en) * 1838-05-10 Thomas addison
JP3275882B2 (ja) 1999-07-22 2002-04-22 セイコーエプソン株式会社 磁石粉末および等方性ボンド磁石
JP3452254B2 (ja) 2000-09-20 2003-09-29 愛知製鋼株式会社 異方性磁石粉末の製造方法、異方性磁石粉末の原料粉末およびボンド磁石
CN107424694A (zh) * 2009-12-09 2017-12-01 爱知制钢株式会社 稀土类各向异性磁铁粉末及其制造方法和粘结磁铁
WO2011145674A1 (ja) * 2010-05-20 2011-11-24 独立行政法人物質・材料研究機構 希土類永久磁石の製造方法および希土類永久磁石
JP2014132599A (ja) * 2011-03-23 2014-07-17 Aichi Steel Works Ltd 希土類磁石粉末、その製造方法、そのコンパウンドおよびそのボンド磁石
JP5982567B2 (ja) * 2012-07-02 2016-08-31 グリレム アドヴァンスド マテリアルズ カンパニー リミテッドGrirem Advanced Materials Co.,Ltd. 希土類永久磁石粉末、ボンド磁石及び当該ボンド磁石を応用するデバイス
JP5915637B2 (ja) * 2013-12-19 2016-05-11 トヨタ自動車株式会社 希土類磁石の製造方法
KR101534717B1 (ko) 2013-12-31 2015-07-24 현대자동차 주식회사 희토류계 자석 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276291A (ja) * 1995-02-07 1996-10-22 Honda Motor Co Ltd 希土類合金ろう材
CN104178705A (zh) * 2014-09-10 2014-12-03 合肥工业大学 Ce-Ga-Cu-Al系大块非晶合金
WO2016133071A1 (ja) * 2015-02-18 2016-08-25 日立金属株式会社 R-t-b系焼結磁石の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DHARMENDRA SINGH,ET AL.: "Glass forming ability,thermal stability and indentation characteristics of Ce75Al25-xGax metallic glasses", 《JOURNAL OF ALLOY AND COMPOUNDS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585113A (zh) * 2018-11-30 2019-04-05 宁波韵升股份有限公司 一种烧结钕铁硼磁体的制备方法
CN109786097A (zh) * 2018-12-26 2019-05-21 湖北永磁磁材科技有限公司 一种驱动电机专用高性能钕铁硼永磁体的制备方法
CN111863369A (zh) * 2019-04-29 2020-10-30 广东省稀有金属研究所 一种磁性粘结剂及其制备方法、复合永磁材料的制备方法
CN113039618A (zh) * 2019-10-16 2021-06-25 株式会社Lg化学 烧结磁体的制造方法
CN111261351A (zh) * 2020-03-02 2020-06-09 河南科技大学 一种高矫顽力SmCo5/FeCo纳米复合永磁材料及其制备方法
CN113798488A (zh) * 2021-09-16 2021-12-17 湖南金天铝业高科技股份有限公司 铝基粉末冶金材料及其制备方法

Also Published As

Publication number Publication date
KR102068232B1 (ko) 2020-01-20
KR20180073444A (ko) 2018-07-02
JP2018104818A (ja) 2018-07-05
US20180182517A1 (en) 2018-06-28
DE102017222815A1 (de) 2018-06-28
JP6586451B2 (ja) 2019-10-02
ZA201708586B (en) 2019-10-30
MY183116A (en) 2021-02-15
US10811175B2 (en) 2020-10-20
CN108220732B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN108220732A (zh) 合金材料、粘结磁体以及稀土永磁粉的改性方法
US10049797B2 (en) Low-neodymium, non-heavy-rare-earth and high performance magnet
CN106920617B (zh) 高性能钕铁硼稀土永磁材料及其制备方法
EP4020505B1 (en) Preparation method for a neodymium-iron-boron magnet
US11984258B2 (en) Rare earth permanent magnet material and preparation method thereof
CN107578870B (zh) 一种利用高丰度稀土元素制备永磁材料的方法
CN101620928B (zh) Sm(Co,Cu,Fe,Zr)z型合金薄带磁体的制备方法
CN102103917A (zh) 一种钕铁硼磁体、制备方法及应用该磁体的器件
CN102568807A (zh) 纳米Cu粉掺杂制备高矫顽力SmCoFeCuZr高温永磁体的方法
CN106128677A (zh) 一种钕铁硼磁体的多段烧结方法
CN107617737B (zh) 烧结钕铁硼永磁材料用粉体及其制备方法和应用
CN103714928A (zh) 一种铈铁基快淬永磁粉及其制备方法
CN108922714A (zh) 一种高矫顽力钕铈铁硼烧结磁体的制备方法
CN105931784A (zh) 一种耐腐蚀含铈稀土永磁材料及其制备方法
CN106328331B (zh) 烧结钕铁硼磁体用辅助合金铸片及其制备方法
CN111524672B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN106158214A (zh) 一种Re‑Fe‑B磁性材料的制备方法
CN107403675B (zh) 一种高热稳定性钕铁硼磁体的制备方法
JP7170377B2 (ja) Nd-Fe-B系焼結磁性体の製造方法
CN113096952B (zh) 一种钕铁硼磁材的制备方法
JP2023047306A (ja) 耐熱磁性体及びその製造方法
CN113539600A (zh) 一种高磁能积和高矫顽力的含Dy稀土永磁体及制备方法
CN111354525A (zh) 一种耐高温的钕铁硼磁体及其生产工艺
CN115747611B (zh) 一种辅合金铸片和高剩磁高矫顽力钕铁硼永磁体及制备方法
CN113782291B (zh) 由多个永磁主相功能基元组装的复合磁体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant