CN107919277A - 去除晶片上的二氧化硅的方法及制造工艺 - Google Patents

去除晶片上的二氧化硅的方法及制造工艺 Download PDF

Info

Publication number
CN107919277A
CN107919277A CN201610879096.2A CN201610879096A CN107919277A CN 107919277 A CN107919277 A CN 107919277A CN 201610879096 A CN201610879096 A CN 201610879096A CN 107919277 A CN107919277 A CN 107919277A
Authority
CN
China
Prior art keywords
silica
chip
gas
processing chamber
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610879096.2A
Other languages
English (en)
Inventor
马振国
张军
吴鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing North Microelectronics Co Ltd
Original Assignee
Beijing North Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing North Microelectronics Co Ltd filed Critical Beijing North Microelectronics Co Ltd
Priority to CN201610879096.2A priority Critical patent/CN107919277A/zh
Priority to CN202110786617.0A priority patent/CN113506731B/zh
Priority to KR1020197008822A priority patent/KR102287682B1/ko
Priority to SG11201902965XA priority patent/SG11201902965XA/en
Priority to JP2019518991A priority patent/JP6896849B2/ja
Priority to PCT/CN2017/105369 priority patent/WO2018064984A1/zh
Priority to TW106134821A priority patent/TWI652368B/zh
Publication of CN107919277A publication Critical patent/CN107919277A/zh
Priority to US16/372,849 priority patent/US10937661B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76229Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/42Simultaneous manufacture of periphery and memory cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

公开了一种去除晶片上的二氧化硅的方法及制造工艺。该方法可包括:向工艺腔室内通入脱水的氟化氢气体和脱水的醇类气体;使所述脱水的氟化氢气体和脱水的醇类气体混合,生成气态的刻蚀剂;使所述刻蚀剂与所述工艺腔室内的晶片反应,并使所述工艺腔室内保持高压状态以提高刻蚀选择比;以及将所述反应的副产物从所述工艺腔室内抽出。根据本发明的去除晶片上的二氧化硅的方法通过使气态的刻蚀剂在高压力下与二氧化硅直接反应,并在反应后将反应产物抽出,实现高选择比、高效率地去除二氧化硅。

Description

去除晶片上的二氧化硅的方法及制造工艺
技术领域
本发明涉及集成电路制造工艺领域,更具体地,涉及一种应用于集成电路制造工艺中去除晶片上的二氧化硅的方法以及应用该去除晶片上的二氧化硅的方法集成电路制造工艺。
背景技术
在集成电路制造工艺领域,目前通常使用硅基材料制造集成电路,硅(或者多晶硅)在空气中放置的情况下表面会自然氧化形成一层致密的二氧化硅(SiO2)层,如图1a所示。在有些工艺中,例如,在金属硅化物(Silicide)工艺中,金属镍铂(NiPt)薄膜要与硅衬底直接接触,如果衬底表面有一层SiO2,则会增加电阻率,影响器件性能,因此,制造后续工艺前需要去除这层SiO2。而在去除这层SiO2的同时,必须保护其他薄膜/结构不能被去除或者损伤,如图1a所示,隔离层(Spacer,由氮化硅(Si3N4)材料制成)的线宽尺寸会影响器件电性,如漏电(leakage)增加等。因此,需要在去除SiO2的同时尽量保持隔离层(Spacer,Si3N4)不被去除。
如图1b所示,现有工艺多采用湿法刻蚀、等离子体干法刻蚀等方法去除SiO2,其对Si3N4的刻蚀选择比低,对隔离层去除过多,造成隔离层尺寸缩小,增大漏电,从而影响器件性能。
因此,有必要开发一种应用于集成电路制造工艺中的高选择比、高效率的去除晶片上的二氧化硅的方法。
公开于本发明背景技术部分的信息仅仅旨在加深对本发明的一般背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本发明提出了一种应用于集成电路制造工艺中去除晶片上的二氧化硅的方法,其通过使气态的刻蚀剂在高压力下与二氧化硅直接反应,并在反应后将反应产物抽出,实现高选择比、高效率地去除二氧化硅。
根据本发明的一方面,提出了一种去除晶片上的二氧化硅的方法,所述方法包括:向工艺腔室内通入脱水的氟化氢气体和脱水的醇类气体;使所述脱水的氟化氢气体和脱水的醇类气体混合,生成气态的刻蚀剂;使所述刻蚀剂与所述工艺腔室内的晶片反应,并使所述工艺腔室内保持高压状态以提高刻蚀选择比;以及将所述反应的副产物从所述工艺腔室内抽出。
优选地,所述反应的条件可以包括:工艺腔室内的压力为50Torr-300Torr,工艺腔室内的温度为20℃-80℃。进一步优选地,所述反应的条件包括:工艺腔室内的压力为200Torr,工艺腔室内的温度为40℃。
优选地,所述氟化氢气体的流量可以为100sccm-500sccm,所述醇类气体的流量为100sccm-1000sccm。进一步优选地,所述氟化氢气体的流量为150sccm-225sccm,所述醇类气体的流量为200sccm-450sccm。
优选地,所述氟化氢气体与所述醇类气体的流量比可以为0.8~1.2:1。进一步优选地,所述氟化氢气体与所述醇类气体的流量比为1:1。
优选地,所述醇类气体可以为C1-C8一元醇气体中的至少一种。进一步优选地,所述醇类气体为甲醇、乙醇和异丙醇中的至少一种。
根据本发明的另一方面,提出了一种集成电路制造工艺,所述制造工艺包括如上所述的去除晶片上的二氧化硅的方法。
根据本发明的去除晶片上的二氧化硅的方法的优点在于:
1、采用气相刻蚀工艺,不同于湿法刻蚀工艺或等离子体干法刻蚀工艺,气相刻蚀工艺不容易形成其他副产物,对晶片不会造成电损伤,腔室内干净,颗粒少;同时降低设备成本。
2、采用高压工艺,提高了SiO2对Si3N4(或多晶硅、HARP等)的刻蚀选择比,还能够降低对衬底损伤。
3、通过气相刻蚀工艺的化学反应去除SiO2,无固态产物,反应物可以被泵抽出。
4、低温反应,反应过程简单,无需加热和/或冷却步骤,一步即可完成反应,产能高。
5、本工艺腔室可以与下一道工序的工艺腔室集成在一个真空平台,晶片在去除了其表面的SiO2后,无需破坏其所处的真空环境,即可进入其他工艺腔室进行下一道工序,防止晶片在空气中放置再次氧化,影响后续工艺。
本发明的方法具有其它的特性和优点,这些特性和优点从并入本文中的附图和随后的具体实施方式中将是显而易见的,或者将在并入本文中的附图和随后的具体实施方式中进行详细陈述,这些附图和具体实施方式共同用于解释本发明的特定原理。
附图说明
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,其中,在本发明示例性实施方式中,相同的参考标号通常代表相同部件。
图1a示出了具有自然氧化层的集成电路器件的示意图。
图1b示出了根据现有技术的方法去除二氧化硅的效果的示意图。
图2示出了根据本发明的去除晶片上的二氧化硅的方法的步骤的流程图。
图3示出了根据本发明的去除晶片上的二氧化硅的方法的效果的示意图。
图4a、4b和4c分别示出了根据现有技术的HARP填充浅沟道绝缘层轮廓调整的示意图。
图5a、5b、5c和5d分别示出了根据本发明的去除晶片上的二氧化硅的方法在HARP填充浅沟道绝缘层轮廓调整过程中的作用的示意图。
图6a和6b分别示出了具有自然氧化层的器件和根据本发明的方法去除自然氧化层后的器件的示意图。
图7a和7b分别示出了具有衬垫氧化层的器件和根据本发明的方法去除衬垫氧化层后的器件的示意图。
图8a和8b分别示出了具有自然氧化层的器件和根据本发明的方法去除自然氧化层后的器件的示意图。
图9a和9b分别示出了具有氧化物凹槽的集成电路器件和根据本发明的方法去除二氧化硅后的器件的效果的示意图。
具体实施方式
下面将参照附图更详细地描述本发明。虽然附图中显示了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
图2示出了根据本发明的去除晶片上的二氧化硅的方法的步骤的流程图。
在该实施方式中,根据本发明的去除晶片上的二氧化硅的方法包括:步骤201,向工艺腔室内通入脱水的氟化氢气体和脱水的醇类气体;步骤202,使所述脱水的氟化氢气体和脱水的醇类气体混合,生成气态的刻蚀剂;步骤203,使所述刻蚀剂与所述工艺腔室内的晶片反应,并使所述工艺腔室内保持高压状态以提高刻蚀选择比;以及步骤204,将所述反应的副产物从所述工艺腔室内抽出。
该实施方式通过使气态的刻蚀剂在高压力下与二氧化硅直接反应,并在反应后将反应产物抽出,实现高选择比、高效率地去除二氧化硅。
下面详细说明根据本发明的去除晶片上的二氧化硅的方法的具体步骤。
在一个示例中,根据本发明的去除晶片上的二氧化硅的方法可以包括:步骤201,向工艺腔室内通入脱水的氟化氢气体和脱水的醇类气体;步骤202,使所述脱水的氟化氢气体和脱水的醇类气体混合,生成气态的刻蚀剂;步骤203,使所述刻蚀剂与所述工艺腔室内的晶片反应,并使所述工艺腔室内保持高压状态以提高刻蚀选择比;以及步骤204,将所述反应的副产物从所述工艺腔室内抽出。
优选地,所述反应的条件可以包括:工艺腔室内的压力为50Torr-300Torr,工艺腔室内的温度为20℃-80℃。进一步优选地,所述反应的条件包括:工艺腔室内的压力为200Torr,工艺腔室内的温度为40℃。实验发现高压工艺反应气体更容易凝结在晶片表面并与SiO2发生反应,这时SiO2去除速率大大增加,而同时Si3N4的去除速率几乎不增加,这样就大大增加SiO2对Si3N4(或多晶硅、HARP等)的去除选择比。
优选地,所述氟化氢气体的流量可以为100sccm-500sccm,所述醇类气体的流量为100sccm-1000sccm。进一步优选地,所述氟化氢气体的流量为150sccm-225sccm,所述醇类气体的流量为200sccm-450sccm。
优选地,所述氟化氢气体与所述醇类气体的流量比可以为0.8~1.2:1。例如,所述氟化氢气体与所述醇类气体的流量比可以为0.8:1、1:1或1.2:1。进一步优选地,所述氟化氢气体与所述醇类气体的流量比为1:1。使氟化氢气体与醇类气体的流量接近,可以提高去除二氧化硅的均匀性。
优选地,所述醇类气体可以为C1-C8一元醇气体中的至少一种。进一步优选地,所述醇类气体为甲醇(CH3OH)、乙醇(C2H5OH)和异丙醇(IPA)中的至少一种。
在所述醇类气体为气化的甲醇的情况下;所述刻蚀剂为HF2-和CH3OH2 +;所述反应产物为四氟化硅、甲醇以及水。具体地,在采用甲醇(CH3OH)时,根据本发明的去除晶片上的二氧化硅的方法的反应式可以表示为:
HF+CH3OH→HF2-+CH3OH2 + (1)
HF2-+CH3OH2 ++SiO2→SiF4+CH3OH+H2O (2)
可以使用经过脱水的HF气体和脱水的CH3OH气体在腔室内部混合,生成气态的刻蚀剂HF2-和CH3OH2 +,工艺时腔室压力可以设定为200Torr,温度为40℃,HF2-和CH3OH2 +混合与SiO2反应生成SiF4、CH3OH和H2O。CH3OH有很强的吸水性,能够减少H2O在晶片表面的残留量,同时SiF4、CH3OH和H2O都可以在反应后用泵抽出。
根据本发明的去除晶片上的二氧化硅的方法的优点在于:
1、选择比高。图4示出了根据本发明的去除晶片上的二氧化硅的方法的效果的示意图。如图4所示,本发明通过高压工艺(工艺压力为200Torr)来提高选择比,实验发现高压工艺(200Torr)反应气体更容易凝结在晶片表面并与SiO2发生反应,这时SiO2去除速率大大增加,而同时Si3N4的去除速率几乎不增加,这样就大大增加SiO2对Si3N4(或多晶硅、HARP等)的去除选择比。同样,高选择比还降低对衬底损伤。
2、不使用等离子体,不容易形成其他副产物,对衬底不会造成电损伤,腔室内干净,颗粒少;同时降低设备成本。
3、无固态产物,反应物可以被泵抽出,通过化学反应去除SiO2。图5示出了根据本发明的去除晶片上的二氧化硅的方法的另一效果的示意图。如图5所示,由于反应物扩散好,所以对于密集区域的小孔洞中的SiO2和稀疏区域的SiO2去除量一致,反应生成物气态SiF4,被泵抽出,不会造成小孔洞堵塞,清洗效果好,对小孔洞清洗效果高,去除均匀性高。而且还可以改善衬垫氧化层移除(pad oxide removal)和STI凹槽(recess)刻蚀的负载作用(loading effect)(大,小的孔洞凹槽深刻蚀一致,STI高度一致)。另外CH3OH和H2O也很容易被抽走,不会凝结在腔室壁,颗粒少。
4、低温反应,反应过程简单,无需加热和/或冷却步骤,一步即可完成反应,产能高。
5、本工艺腔室可以与下一道工艺集成在一个真空平台,去除晶片表面SiO2后在不破真空情况下进行下一道工艺,防止在空气中放置再次氧化,影响下一工艺。例如,硅化(Silicide)工艺中铂镍(NiPt)沉积前;锗硅(SiGe)沉积前。
应用示例
根据本发明的另一方面,还可以提供一种集成电路制造工艺,所述制造工艺包括如上所述的去除晶片上的二氧化硅的方法。
为便于理解本发明实施方式的方案及其效果,以下给出几个具体应用示例。本领域技术人员应理解,该示例仅为了便于理解本发明,其任何具体细节并非意在以任何方式限制本发明。
示例1:HARP填充浅沟道绝缘层轮廓调整(STI HAPR deposition gap fill profile modified):
图4a、4b和4c分别示出了根据现有技术的HARP填充浅沟道绝缘层轮廓调整的示意图,其中,图4a为STI(浅沟道隔离)刻蚀之后的器件,图4b为STI HARP沉积过程中的器件,图4c为STI HARP沉积后产生空洞(void)的器件;图5a、5b、5c和5d分别示出了根据本发明的去除晶片上的二氧化硅的方法在HARP填充浅沟道绝缘层轮廓调整过程中的作用的示意图,其中,图5a为STI(浅沟道隔离)刻蚀之后的器件,图5b为STI HARP沉积过程中的器件,图5c为采用本发明的去除晶片上的二氧化硅的方法进行STI开口调整的器件,图5d为STI HARP沉积后的器件。
在该示例中,根据本发明的去除晶片上的二氧化硅的方法的步骤为:将脱水的氟化氢气体和脱水的甲醇混合,生成气态的刻蚀剂HF2 -和CH3OH2 +;然后,将刻蚀剂通入工艺腔室中,与所述工艺腔室内的晶片接触进行反应生成SiF4、CH3OH和H2O,其中,工艺腔室中的压力设定为200Torr,温度保持在40℃;反应完成后,用泵抽出SiF4、CH3OH和H2O。
如图4a、4b和4c所示,STI HAPR沉积是使用CVD方式沉积,由于28nm STI深宽比大,同时STI刻蚀的轮廓不好,造成STI HARP沉积时很容易产生空洞(void)。如图5a、5b、5c和5d所示,沉积一定厚度的HARP后就要刻蚀一下STI,让开口变大,这样才能不产生void。现有技术具有固态生成物,小孔洞清洗效率低,产能低。根据本发明的方法可以控制腐蚀速率,控制开口轮廓(profile),增加CVD HARP孔隙填充(gap fill)能力。
示例2:STI Si3N4自然氧化层去除:
图6a和6b分别示出了具有自然氧化层的器件和根据本发明的方法去除自然氧化层后的器件的示意图。
在该示例中,处理步骤与示例1相同。如图6a所示,集成电路制造工艺使用Si3N4作为STI的硬掩膜(Hard Mask)层,去除时使用H3PO4湿法去除,晶片在空气中放置一段时间后在Si3N4层表面会自然氧化一层致密的SiO2层,而H3PO4对SiO2去除速率非常慢,所以在去除Si3N4之前先要去除这层自然氧化层。另外STI的台阶高度(是指STI高出衬底表面的高度)会影响器件的电性性能,这个高度既不能厚,也不能薄,同时STI HARP是使用CVD方式沉积的SiO2层,薄膜致密性很低,所以去除自然氧化层时需要控制好STI HARP的去除量。图6b是去除Si3N4表面氧化层后的形貌。现有技术中刻蚀SiO2时对HARP的选择比低,不容易控制STI的台阶高度;或者具有固态生成物,小孔洞清洗效率低,产能低。根据本发明的方法采用高压工艺,提高刻蚀SiO2对HARP的选择比,可以很好控制STI台阶高度。
示例3:集成电路衬垫氧化层去除(IC Pad oxide remove):
图7a和7b分别示出了具有衬垫氧化层的器件和根据本发明的方法去除衬垫氧化层后的器件的示意图。
在该示例中,处理步骤与示例1相同。如图7a所示,衬垫氧化层(Pad oxide)作为STI的硬掩膜层Si3N4的缓冲层,是使用炉管方式在衬底表面热氧化一层SiO2层,28nm工艺厚度大约50A左右(根据不同的工艺选择不同厚度),在后续工艺制造前需要去除。另外STIHARP是使用CVD方式沉积的SiO2,密度低,致密性差,刻蚀速率高。现有技术中刻蚀SiO2对HARP的选择比低,不容易控制STI的台阶高度,同时产生凹陷(divot),影响电性能。如图7b所示,本发明采用高压工艺,提高刻蚀SiO2对HARP的选择比,控制好STI台阶高度,避免湿法刻蚀产生凹陷的问题。
示例4:沉积锗硅(SiGe)之前去除自然氧化层:
图8a和8b分别示出了具有自然氧化层的器件和根据本发明的方法去除自然氧化层后的器件的示意图。
在该示例中,处理步骤与示例1相同。如图8a所示,SiGe刻蚀后,衬底内部会暴露在空气中而自然氧化,这层氧化层会造成器件电性失效等问题,所以沉积SiGe之前必须先去除干净,同时去除这层SiO2过程不能损伤Si衬底。28nm SiGe线宽非常小,现有技术中刻蚀SiO2对多晶硅(Poly silicon)选择比低,容易对栅极和Si衬底有损伤;或者具有固态生成物残留,高温升华过程对Si衬底再次氧化,产能低。如图8b所示,本发明使用气相高压工艺,提高刻蚀SiO2对多晶硅的选择比,对栅极和衬底损伤小。
示例5:沉积硅化物(Silicide)之前去除自然氧化层:
图1a和图3分别示出了具有自然氧化层的器件和根据本发明的方法去除二氧化硅后的器件的示意图。
在该示例中,处理步骤与示例1相同。如图1a所示,晶片在空气中放置中Si衬底表面和多晶硅表面会自然氧化一层致密的SiO2层,沉积Ni或NiPt(5-10%)(在后续工艺中会形成NiPt硅化物)之前必须将这次自然氧化的SiO2层去除掉,不然会造成接触(contact)与衬底之间非常大的接触电阻,同时多晶硅栅极两侧有Si3N4作为绝缘隔离片(spacer),去除SiO2过程不能损伤Si3N4和Si衬底。现有技术中刻蚀SiO2对Si3N4选择比低,容易造成绝缘隔离片尺寸缩小,电漏率增大和Si衬底有损伤问题;或者具有固态生成物残留,孔洞底部SiO2去除效率低,高温升华过程对Si衬底再次氧化,产能低。如图3所示,本发明的方法使用高压工艺,提高SiO2对Si3N4的去除选择比,并且不会有再次氧化问题。
示例6:STI HARP氧化凹槽刻蚀(STI HARP oxide recess etch):
图9a和9b分别示出了具有氧化物凹槽的集成电路器件和根据本发明的方法去除二氧化硅后的器件的效果的示意图。
在该示例中,处理步骤与示例1相同。如图9a所示,STI凹槽(recess)工艺是2DNAND制造过程中工艺,由于NAND是存储器件,器件中存储单元(栅极和STI)是密集区域,控制区域(源极/漏极的选择性控制开关栅极)是稀疏区域,在STI凹槽工艺过程中需要器件密集区域和稀疏区域的STI去除量要一致。现有技术中刻蚀SiO2对多晶硅的选择比低,对控制栅极(Control gate)和浮置栅极(floating gate)有损伤;或者具有固态生成物残留,小孔洞清洗效率低,产能低。如图9b所示,本发明的方法使用高压工艺,提高SiO2对多晶硅的去除选择比,没有固态生成物,小孔洞清洗效率高。
本领域技术人员应理解,上面对本发明的实施方式的描述的目的仅为了示例性地说明本发明的实施方式的有益效果,并不意在将本发明的实施方式限制于所给出的任何示例。
以上已经描述了本发明的各实施方式,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施方式。在不偏离所说明的各实施方式的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施方式的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施方式。

Claims (12)

1.一种去除晶片上的二氧化硅的方法,其特征在于,包括:
向工艺腔室内通入脱水的氟化氢气体和脱水的醇类气体;
使所述脱水的氟化氢气体和脱水的醇类气体混合,生成气态的刻蚀剂;
使所述刻蚀剂与所述工艺腔室内的晶片反应,并使所述工艺腔室内保持高压状态以提高刻蚀选择比;以及
将所述反应的副产物从所述工艺腔室内抽出。
2.根据权利要求1所述的去除晶片上的二氧化硅的方法,其特征在于,所述工艺腔室内的压力为50Torr-300Torr。
3.根据权利要求2所述的去除晶片上的二氧化硅的方法,其特征在于,所述工艺腔室内的压力为200Torr。
4.根据权利要求1所述的去除晶片上的二氧化硅的方法,其特征在于,所述工艺腔室内的温度为20℃-80℃。
5.根据权利要求4所述的去除晶片上的二氧化硅的方法,其特征在于,所述工艺腔室内的温度为40℃。
6.根据权利要求1所述的去除晶片上的二氧化硅的方法,其特征在于,所述氟化氢气体的流量为100sccm-500sccm,所述醇类气体的流量为100sccm-1000sccm。
7.根据权利要求6所述的去除晶片上的二氧化硅的方法,其特征在于,所述氟化氢气体的流量为150sccm-225sccm,所述醇类气体的流量为200sccm-450sccm。
8.根据权利要求1所述的去除晶片上的二氧化硅的方法,其特征在于,所述氟化氢气体与所述醇类气体的流量比为0.8~1.2:1。
9.根据权利要求6所述的去除晶片上的二氧化硅的方法,其特征在于,所述氟化氢气体与所述醇类气体的流量比为1:1。
10.根据权利要求1所述的去除晶片上的二氧化硅的方法,其特征在于,所述醇类气体为C1-C8一元醇气体中的至少一种。
11.根据权利要求10所述的去除晶片上的二氧化硅的方法,其特征在于,所述醇类气体为甲醇、乙醇和异丙醇中的至少一种。
12.一种集成电路的制造工艺,其特征在于,所述制造工艺包括根据权利要求1-11中任意一项所述的去除晶片上的二氧化硅的方法。
CN201610879096.2A 2016-10-08 2016-10-08 去除晶片上的二氧化硅的方法及制造工艺 Pending CN107919277A (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201610879096.2A CN107919277A (zh) 2016-10-08 2016-10-08 去除晶片上的二氧化硅的方法及制造工艺
CN202110786617.0A CN113506731B (zh) 2016-10-08 2016-10-08 一种集成电路的制造工艺
KR1020197008822A KR102287682B1 (ko) 2016-10-08 2017-10-09 웨이퍼의 이산화규소 제거 방법 및 집적회로 제조 공정
SG11201902965XA SG11201902965XA (en) 2016-10-08 2017-10-09 Method for removing silicon dioxide from wafer and manufacturing process for integrated circuit
JP2019518991A JP6896849B2 (ja) 2016-10-08 2017-10-09 ウェハから二酸化ケイ素を除去する方法および集積回路の製造方法
PCT/CN2017/105369 WO2018064984A1 (zh) 2016-10-08 2017-10-09 去除晶片上的二氧化硅的方法及集成电路制造工艺
TW106134821A TWI652368B (zh) 2016-10-08 2017-10-11 去除晶片上的二氧化矽的方法及積體電路製造製程
US16/372,849 US10937661B2 (en) 2016-10-08 2019-04-02 Method for removing silicon oxide and integrated circuit manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610879096.2A CN107919277A (zh) 2016-10-08 2016-10-08 去除晶片上的二氧化硅的方法及制造工艺

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110786617.0A Division CN113506731B (zh) 2016-10-08 2016-10-08 一种集成电路的制造工艺

Publications (1)

Publication Number Publication Date
CN107919277A true CN107919277A (zh) 2018-04-17

Family

ID=61831314

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110786617.0A Active CN113506731B (zh) 2016-10-08 2016-10-08 一种集成电路的制造工艺
CN201610879096.2A Pending CN107919277A (zh) 2016-10-08 2016-10-08 去除晶片上的二氧化硅的方法及制造工艺

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110786617.0A Active CN113506731B (zh) 2016-10-08 2016-10-08 一种集成电路的制造工艺

Country Status (7)

Country Link
US (1) US10937661B2 (zh)
JP (1) JP6896849B2 (zh)
KR (1) KR102287682B1 (zh)
CN (2) CN113506731B (zh)
SG (1) SG11201902965XA (zh)
TW (1) TWI652368B (zh)
WO (1) WO2018064984A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847391A (zh) * 2018-06-01 2018-11-20 北京北方华创微电子装备有限公司 一种非等离子干法刻蚀方法
CN110942987A (zh) * 2018-09-21 2020-03-31 长鑫存储技术有限公司 一种半导体结构的形成方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204348B2 (ja) * 2018-06-08 2023-01-16 東京エレクトロン株式会社 エッチング方法およびエッチング装置
KR102352038B1 (ko) * 2018-09-13 2022-01-17 샌트랄 글래스 컴퍼니 리미티드 실리콘 산화물의 에칭 방법 및 에칭 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050073679A (ko) * 2004-01-09 2005-07-18 주식회사 하이닉스반도체 반도체소자의 제조방법
US20090127648A1 (en) * 2007-11-15 2009-05-21 Neng-Kuo Chen Hybrid Gap-fill Approach for STI Formation
CN103928387A (zh) * 2014-04-28 2014-07-16 上海集成电路研发中心有限公司 浅沟槽隔离结构的填充方法、半导体器件的制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5022961B1 (en) * 1989-07-26 1997-05-27 Dainippon Screen Mfg Method for removing a film on a silicon layer surface
JP2632262B2 (ja) * 1991-08-20 1997-07-23 大日本スクリーン製造株式会社 シリコンウエハ上のコンタクトホール内の自然酸化膜の除去方法
US5228206A (en) * 1992-01-15 1993-07-20 Submicron Systems, Inc. Cluster tool dry cleaning system
JPH06145262A (ja) * 1992-09-03 1994-05-24 Rohm & Haas Co 多段階ポリマーを含有する耐水性組成物
US5922624A (en) * 1993-05-13 1999-07-13 Imec Vzw Method for semiconductor processing using mixtures of HF and carboxylic acid
US5439553A (en) * 1994-03-30 1995-08-08 Penn State Research Foundation Controlled etching of oxides via gas phase reactions
US5814562A (en) * 1995-08-14 1998-09-29 Lucent Technologies Inc. Process for semiconductor device fabrication
AUPO850597A0 (en) * 1997-08-11 1997-09-04 Silverbrook Research Pty Ltd Image processing method and apparatus (art01a)
WO2000005749A2 (en) * 1998-07-23 2000-02-03 Surface Technology Systems Limited Method and apparatus for anisotropic etching
US20020025684A1 (en) * 2000-04-07 2002-02-28 Butterbaugh Jeffrey W. Gaseous process for surface preparation
KR100381011B1 (ko) * 2000-11-13 2003-04-26 한국전자통신연구원 멤즈소자 제조용 미세구조체를 고착없이 띄우는 방법
KR100450679B1 (ko) * 2002-07-25 2004-10-01 삼성전자주식회사 2단계 식각 공정을 사용하는 반도체 메모리 소자의스토리지 노드 제조방법
US7217658B1 (en) * 2004-09-07 2007-05-15 Novellus Systems, Inc. Process modulation to prevent structure erosion during gap fill
JP2006167849A (ja) * 2004-12-15 2006-06-29 Denso Corp マイクロ構造体の製造方法
US7365016B2 (en) * 2004-12-27 2008-04-29 Dalsa Semiconductor Inc. Anhydrous HF release of process for MEMS devices
US7482247B1 (en) * 2004-12-30 2009-01-27 Novellus Systems, Inc. Conformal nanolaminate dielectric deposition and etch bag gap fill process
KR100752642B1 (ko) * 2005-02-02 2007-08-29 삼성전자주식회사 반도체소자의 커패시터 제조방법
WO2008088300A2 (en) * 2005-03-08 2008-07-24 Primaxx, Inc. Selective etching of oxides from substrates
US8927390B2 (en) * 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
JP5859262B2 (ja) * 2011-09-29 2016-02-10 東京エレクトロン株式会社 堆積物除去方法
JP6113581B2 (ja) * 2013-06-12 2017-04-12 株式会社東芝 圧力センサ、音響マイク、血圧センサ及びタッチパネル
JP6223761B2 (ja) * 2013-09-20 2017-11-01 株式会社東芝 歪検知素子、圧力センサ、マイクロフォン、血圧センサおよびタッチパネル
US9773683B2 (en) * 2014-06-09 2017-09-26 American Air Liquide, Inc. Atomic layer or cyclic plasma etching chemistries and processes
US9431268B2 (en) * 2015-01-05 2016-08-30 Lam Research Corporation Isotropic atomic layer etch for silicon and germanium oxides
DE102016200506B4 (de) * 2016-01-17 2024-05-02 Robert Bosch Gmbh Ätzvorrichtung und Ätzverfahren
US11107699B2 (en) * 2016-10-08 2021-08-31 Beijing Naura Microelectronics Equipment Co., Ltd. Semiconductor manufacturing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050073679A (ko) * 2004-01-09 2005-07-18 주식회사 하이닉스반도체 반도체소자의 제조방법
US20090127648A1 (en) * 2007-11-15 2009-05-21 Neng-Kuo Chen Hybrid Gap-fill Approach for STI Formation
CN103928387A (zh) * 2014-04-28 2014-07-16 上海集成电路研发中心有限公司 浅沟槽隔离结构的填充方法、半导体器件的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847391A (zh) * 2018-06-01 2018-11-20 北京北方华创微电子装备有限公司 一种非等离子干法刻蚀方法
CN108847391B (zh) * 2018-06-01 2021-06-08 北京北方华创微电子装备有限公司 一种非等离子干法刻蚀方法
CN110942987A (zh) * 2018-09-21 2020-03-31 长鑫存储技术有限公司 一种半导体结构的形成方法

Also Published As

Publication number Publication date
CN113506731B (zh) 2024-07-23
US20190244828A1 (en) 2019-08-08
WO2018064984A1 (zh) 2018-04-12
TW201814079A (zh) 2018-04-16
SG11201902965XA (en) 2019-05-30
JP2019530983A (ja) 2019-10-24
JP6896849B2 (ja) 2021-06-30
KR102287682B1 (ko) 2021-08-09
CN113506731A (zh) 2021-10-15
KR20190041518A (ko) 2019-04-22
US10937661B2 (en) 2021-03-02
TWI652368B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
KR100878015B1 (ko) 산화물 제거 방법 및 이를 이용한 트렌치 매립 방법
KR100674971B1 (ko) U자형 부유 게이트를 가지는 플래시 메모리 제조방법
CN100541718C (zh) 形成半导体器件精细图形的方法及用其形成接触的方法
CN107919277A (zh) 去除晶片上的二氧化硅的方法及制造工艺
CN102024743A (zh) 半导体结构与在鳍状装置之鳍状结构之间形成隔离的方法
KR20090067576A (ko) 트렌치의 매립 방법 및 이를 이용한 소자 분리막 구조물의형성 방법
CN100539069C (zh) 浅沟槽隔离的制造方法
CN102148191B (zh) 接触孔形成方法
CN104347417B (zh) Mos晶体管的形成方法
CN103117216A (zh) 避免浅沟槽隔离结构产生缺角的半导体器件的制作方法
CN106206598A (zh) 分栅式闪存器件制造方法
CN106486365B (zh) 半导体器件的形成方法
CN114597172A (zh) 半导体装置的形成方法
Tezcan et al. Development of vertical and tapered via etch for 3D through wafer interconnect technology
CN101740458A (zh) 浅沟槽结构制作方法
JP2002343962A (ja) 半導体集積回路装置およびその製造方法
CN115101477B (zh) 一种半导体结构及其制造方法
CN114093806B (zh) 一种半导体结构的制作方法
CN101728307B (zh) 浅沟槽隔离结构的制作方法
TW201635378A (zh) 製造半導體元件的乾蝕刻氣體和方法
CN112864088A (zh) 浅沟槽隔离结构的制作方法
KR20070039645A (ko) 불 휘발성 메모리 장치의 플로팅 게이트 형성 방법
CN116072703B (zh) 一种半导体器件及其制造方法
CN116053298B (zh) 一种半导体器件的制作方法
CN113471285B (zh) 半导体结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination