CN107888200A - 一种利用近似环额外信息度与分割移位的低错误平层qc‑ldpc码构造方法 - Google Patents

一种利用近似环额外信息度与分割移位的低错误平层qc‑ldpc码构造方法 Download PDF

Info

Publication number
CN107888200A
CN107888200A CN201711226267.2A CN201711226267A CN107888200A CN 107888200 A CN107888200 A CN 107888200A CN 201711226267 A CN201711226267 A CN 201711226267A CN 107888200 A CN107888200 A CN 107888200A
Authority
CN
China
Prior art keywords
matrix
ace
code
check
ldpc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711226267.2A
Other languages
English (en)
Inventor
袁建国
郑德猛
孙乐乐
袁素真
庞宇
林金朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201711226267.2A priority Critical patent/CN107888200A/zh
Publication of CN107888200A publication Critical patent/CN107888200A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明涉及一种利用ACE与PS的低错误平层QC‑LDPC码构造方法。该方法的基本矩阵由PEG与ACE算法相结合搜索构造,目的是提升基本矩阵中环的连通性。然后将基于PS移位矩阵对基本矩阵循环扩展,以此得到校验矩阵。仿真结果表明,在误码率为10‑6时,所构造的码率为0.75的PAP‑QC‑LDPC(3600,2700)码与对比的同码率其他两码型的净编码增益分别提升约0.4dB和0.8dB;随着信噪比的升高,三条误码率性能曲线之间的差距将更大。此外,PAP‑QC‑LDPC(3600,2700)码在信噪比4dB以后并未出现明显的错误平层。因而该方法能满足通信系统对其码率可灵活选择和低错误平层的需求。

Description

一种利用近似环额外信息度与分割移位的低错误平层QC- LDPC码构造方法
技术领域
本发明属于信道处理中的信道编码领域,涉及一种利用ACE与PS的低错误平层QC-LDPC码构造新颖方法。
背景技术
近年来,低密度奇偶检验(Low-Density Parity-Check,LDPC)码的优越性得到国内外科研工作者关注,并且已成为现代通信系统不可或缺的部分,被用来检测和修正由信道效应如噪声、衰减和干扰等引起的信息传输错误。然而,其性能提高的同时,编码复杂度也同样提高了,进而导致实际应用中成本增加和资源浪费。为了解决该问题,国内外学者提出了QC-LDPC码,其校验矩阵由于具有准循环特性,因而在实际通信系统的应用中具有硬件容易实现的优点。
目前,QC-LDPC码的校验矩阵的构造有基于组合数学,有限域,欧氏几何等构造方法,每一种方法的深入研究都是为了使构造的LDPC码的纠错性能有一定地提高,同时降低硬件实现的复杂度。影响纠错性能的因素有很多,包括围长,陷阱集(trapping set),ACE等。
本发明方案利用基本矩阵由PEG与ACE算法相结合的算法搜索构造,目的是提升基本矩阵中环的连通性。然后将基于PS的循环移位系数矩阵对基本矩阵循环扩展,以此得到校验矩阵。该方法除了能够改善高信噪比区域的错误平层,还具有码长、码率的任意可设性。因而该方法能满足通信系统对纠错码具有高编码增益、码率可灵活选择以及低错误平层的需求。结果表明,该方案构造的QC-LDPC码的纠错性能要优于经典的PEG构造的LDPC码和PEG-PS(PP)-QC-LDPC(3600,2700)码。
发明内容
有鉴于此,本发明的目的在于提供一种基本矩阵由PEG与ACE算法相结合的算法搜索构造,目的是提升基本矩阵中环的连通性。然后将基于PS的循环移位系数矩阵对基本矩阵循环扩展,以此得到校验矩阵。该方法除了能够改善高信噪比区域的错误平层,还具有码长、码率的任意可设性。以及改善高信噪比区域错误平层问题。
为达到上述目的,本发明提供如下技术方案:
一种利用ACE与PS的低错误平层QC-LDPC码的新颖方案,包括:
首先,由PEG与ACE算法相结合的算法搜索构造出基本矩阵。
然后,将基于PS的循环移位系数矩阵对基本矩阵循环扩展,以此得到奇偶校验矩阵H。
最后,在相同的仿真环境下,将本专利所提出的码型构造方法与其他码型构造方法进行仿真分析。
本发明的有益效果在于:
利用基本矩阵由PEG与ACE算法相结合的算法搜索构造,目的是提升基本矩阵中环的连通性。然后将基于PS的循环移位系数矩阵对基本矩阵循环扩展,以此得到校验矩阵。该方法除了能够改善高信噪比区域的错误平层,还具有码长、码率的任意可设性。因而该方法能满足通信系统对纠错码具有高编码增益、码率可灵活选择以及低错误平层的需求。结果表明,该方案构造的QC-LDPC码的纠错性能要优于经典的PEG构造的LDPC码和PP-QC-LDPC(3600,2700)码。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明方法的技术路线图;
图2为PEG-ACE-PS(PAP)-QC-LDPC(3600,2700)码与其他码型的性能对比曲线图;
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
1.结合附图1说明,首先通过PEG算法与ACE算法相结合构造出基本矩阵。其中,PEG构造算法,该算法是一种经典随机构造法。其核心思想是利用贪心算法在满足度分布的条件下,在每添加一个变量节点都选取满足最大围长的校验节点,即度数最小的校验节点与其相连,以此方法不断添加变量节点与校验节点相连的边。在构造奇偶校验矩阵过程中,以密度进化算法来得到适合自己所需的度分布,构造不同码长与码率的LDPC码,其节点的度分布如式(1)所示:
式(1)中dv和dc分别表示变量节点与校验节点相连的最大边数,λi表示与度数大于2的变量节点相连的边数与总边数的比值,ρi表示与度数大于2的校验节点相连的边数与总边数的比值。虽然PEG构造在添加新边时能保证环的长度尽可能大,但不能从整体的角度考虑校验矩阵中环结构进行优化,所以会导致环结构比较复杂,特别是在长码长时,环存在严重的交织问题,有大量公共节点,在一定程度上会降低迭代译码性能。
在迭代译码的过程中,信息传递的路径就是环,只从消除短环的角度构造校验矩阵对LDPC码的纠错性能的改善有一定的限度,对环的结构做深入地研究会发现,包含于环中的变量节点与剩余Tanner图中校验节点的联通性是影响译码性能的关键因素。如果变量节点集合的ACE值越大,则构成陷阱集所包含的校验节点的数目就越多。A.Ramamoorthy在文献《Analysis of an algorithm for irregular LDPC code construction》中将ACE算法构造LDPC码型与随机构造进行了对比分析,并证明了ACE算法构造的校验矩阵可以有效减少小停止集的数量。因此,可以得出增大环的外部校验节点可以有效减少小陷阱集的结论,从而使译码过程中所出现的错误平层得到有效地改善。
定义1:大小为2d的环,其ACE值等于∑idi-2,其中di表示第i个变量节点的度数。
为了提升PEG算法所构造的基本矩阵的环ACE值,以此增大环的连通性,从而降低其在高信噪比区域所出现的错误平层,将ACE算法加入到PEG算法中,ACE算法的核心思想是在构造校验矩阵的过程中,确保所有小于一定长度的环的ACE值都大于某一阈值。对LDPC码校验矩阵构造的参数设定为(dACEACE),则表示任意环长不大于2dACE的环的ACE值都至少为ηACE。下面给出ACE算法的具体步骤:
Step1初始化校验矩阵大小m行n列,令i=n-1;
Step2根据度分布随机生成列向量vi,当满足i≥m时,执行步骤3,否则执行步骤4;
Step3判断vi与{vi+1,vi+2,…,vn-1}是否线性相关,满足条件执行步骤2,否则执行步骤4;
Step4对所有长度l≤2dACE且包含当前变量节点vi的环的ACE值进行检测,如果ACE≥ηACE,则执行步骤5,否则执行步骤2;
Step5令i=i-1,若i≥0,执行步骤2,否则结束。
将PEG算法与ACE算法想结合后构造基本矩阵的伪代码流程如下所示:
对改进后的基本矩阵搜索环长分析后,发现上述的ACE的算法使得具有高连接性的短环被保留,但低连接性的长环被消除。因此,基本矩阵中环的连通性得到了显著的改善。在算法运算复杂性上,计算环的ACE值要简单,而且构造的基本矩阵在扩展过程中不会存在过高的复杂性。
然后,将基于PS的循环移位系数矩阵对基本矩阵循环扩展,以此得到奇偶校验矩阵H。下面给出一种基于PS的循环移位系数矩阵构造方法。
定理1(2k-环):对于PS-LDPC码的Tanner图中包含至少一个2k环的条件是,当且仅当在移位矩阵S中存在一个闭合路径,其长度为2k,且其2k个顶点Sα1,β1…Sα2k,β2k,满足移位条件[10] 其中
在文献《Structured LDPC codes for high-density recording:large girthand low error floor》中已给出了详细的移位条件的证明。为了描述2k环定理及如何向循环移位系数矩阵S中添加移位系数,通过以下例子说明。
首先,建立一个3×6的移位矩阵S,如式(3),p值选取为基本矩阵的大小,举例时选取p值为150;
然后,随机从0到149之间选择数值填充到S矩阵的第一行与第一列,如式(4),接下来对S2,2值的确定是通过已经确定的移位系数S1,1,S1,2,S2,1,需要检测S1,1,S1,2,S2,1,S2,2这四个移位系数是否符合定理1的移位条件。例如,当S2,2=135,因此S2,2填充为135,只要从0到149之间选取的值进行移位条件运算的结果不等于0,即可填充至S矩阵中相应的位置。
最后,重复上述过程,直到S矩阵中的循环移位系数全部填充完毕,且S矩阵中所有的循环移位系数都不相同,如式(5)。
将得到的循环移位矩阵S对基本矩阵进行循环扩展,最终得到的检验矩阵H,其行的维数为基本矩阵的行与S矩阵的行相乘,其列的维数为基本矩阵的列与S矩阵的列相乘。
2.结合附图2说明,为了验证本专利所提出的构造方法具有优异的纠错性能,下面进行了仿真实验。仿真环境:信道为加性高斯白噪声信道(Additive White GaussianNoise Channel,AWGNC),采用二进制相移键控(Binary Phase Shift Keying,BPSK)调制,选择择置信传播(Belief Propagation,BP)算法,迭代次数为50次。下面将本专利所构造的码率为0.75的PAP-QC-LDPC(3600,2700)码与同码率同码长的PEG方法构造的PEG-QC-LDPC(3600,2700)码、利用PEG和PS结合的方法构造的PP-QC-LDPC(3600,2700)码进行仿真性能比较。仿真的环境均相同,仿真结果如图2所示。当BER=10-6时,本专利提出的构造方法构造的PAP-QC-LDPC(3600,2700)码的编码增益比PP-QC-LDPC(3600,2700)码和PEG-QC-LDPC(3600,2700)码提高了约0.40dB、0.8dB。综合上述分析可得出结论:本专利所提出的构造方法构造的码率为0.75的PAP-QC-LDPC(3600,2700)码比其他码型的纠错性能更优越;所构造的PAP-QC-LDPC(3600,2700)码在信噪比为4dB后未出现明显的错误平层现象;在信噪比为4.6dB时,PAP-QC-LDPC(3600,2700)码误码率为6.94×10-8,PP-QC-LDPC(3600,2700)码和PEG-LDPC(3600,2700)码的误码率分别为4.67×10-7和1.87×10-6。因此,利用本文方法所构造的码型能够有效的降低其错误平层。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (3)

1.本发明涉及一种利用近似环额外信息度(Approximate Cycle Extrinsic MessageDegree,ACE)与分割移位(Partition and Shift,PS)的低错误平层准循环低密度奇偶校验(Quasi-Cyclic Low-Density Parity-Check,QC-LDPC)码的新颖方法,基本矩阵由渐进边增长(Progressive Edge Growth,PEG)与ACE算法相结合的算法搜索构造,目的是提升基本矩阵中环的连通性。然后将基于PS的循环移位系数矩阵对基本矩阵循环扩展,以此得到校验矩阵。该方法除了能够改善高信噪比区域的错误平层,还具有码长、码率的任意可设性。因而该方法能满足通信系统对纠错码具有高编码增益、码率可灵活选择以及低错误平层的需求。
2.根据权利1要求所述的利用ACE与PS的低错误平层QC-LDPC码的新颖方法,其特征在于:首先利用ACE算法和PEG算法相结合,构造一个300×600的基本矩阵,其次利用PS的方法来构造一个3×6的循环移位矩阵S,从而通过循环移位矩阵S来扩展基本矩阵,以此得到奇偶校验矩阵H。该方案不仅构造简单,由于校验矩阵具有准循环的特性,因此能大幅降低编译码的复杂度。
3.根据权利2要求所述的利用ACE与PS的低错误平层QC-LDPC码的新颖方法,其特征在于:利用ACE算法提升基本矩阵中环的连通性,可以有效的减少小停止集的数量,因为小停止集是影响QC-LDPC码在高信噪比区域出现错误平层的重要因素,所以以此方法来改善QC-LDPC码的错误平层问题;通过PS矩阵对基本矩阵进行扩展,可以使码长、码率具有任意可设性。
CN201711226267.2A 2017-11-29 2017-11-29 一种利用近似环额外信息度与分割移位的低错误平层qc‑ldpc码构造方法 Pending CN107888200A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711226267.2A CN107888200A (zh) 2017-11-29 2017-11-29 一种利用近似环额外信息度与分割移位的低错误平层qc‑ldpc码构造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711226267.2A CN107888200A (zh) 2017-11-29 2017-11-29 一种利用近似环额外信息度与分割移位的低错误平层qc‑ldpc码构造方法

Publications (1)

Publication Number Publication Date
CN107888200A true CN107888200A (zh) 2018-04-06

Family

ID=61775990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711226267.2A Pending CN107888200A (zh) 2017-11-29 2017-11-29 一种利用近似环额外信息度与分割移位的低错误平层qc‑ldpc码构造方法

Country Status (1)

Country Link
CN (1) CN107888200A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832936A (zh) * 2018-05-30 2018-11-16 东南大学 一种ldpc码的构造方法及系统
CN109194445A (zh) * 2018-09-13 2019-01-11 中国电子科技集团公司第二十八研究所 一种适用于短码长喷泉码的编译码优化方法
CN109756233A (zh) * 2019-01-09 2019-05-14 重庆邮电大学 一种基于围长约束与emd的低错误平层ldpc码构造方法
CN112688695A (zh) * 2020-12-16 2021-04-20 清华大学 基于渐进提升构造的多码长qc-sc-ldpc码构造方法和装置
CN112865811A (zh) * 2021-01-11 2021-05-28 清华大学 基于渐进扩展和环分类排序评估准则的ldpc码构造方法
CN113055026A (zh) * 2021-03-16 2021-06-29 重庆邮电大学 一种适用于深空通信的基于原模图的ldpc码校验矩阵的构造方法
CN115885478A (zh) * 2020-08-27 2023-03-31 华为技术有限公司 构造ldpc码的方法和通信装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723957A (zh) * 2012-05-28 2012-10-10 北京大学 一种适用于层间并行译码器的qc-ldpc码构造方法
CN103152056A (zh) * 2013-01-30 2013-06-12 北京大学 一种基于原模图的准循环ldpc码构造方法及装置
CN103338044A (zh) * 2013-05-24 2013-10-02 东南大学 一种适用于深空光通信系统的原模图码
US9083383B1 (en) * 2013-01-29 2015-07-14 Xilinx, Inc. Parity check matrix
US9203440B1 (en) * 2013-01-29 2015-12-01 Xilinx, Inc. Matrix expansion
US9559722B1 (en) * 2013-10-21 2017-01-31 Marvell International Ltd. Network devices and methods of generating low-density parity-check codes and performing corresponding encoding of data

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723957A (zh) * 2012-05-28 2012-10-10 北京大学 一种适用于层间并行译码器的qc-ldpc码构造方法
US9083383B1 (en) * 2013-01-29 2015-07-14 Xilinx, Inc. Parity check matrix
US9203440B1 (en) * 2013-01-29 2015-12-01 Xilinx, Inc. Matrix expansion
CN103152056A (zh) * 2013-01-30 2013-06-12 北京大学 一种基于原模图的准循环ldpc码构造方法及装置
CN103338044A (zh) * 2013-05-24 2013-10-02 东南大学 一种适用于深空光通信系统的原模图码
US9559722B1 (en) * 2013-10-21 2017-01-31 Marvell International Ltd. Network devices and methods of generating low-density parity-check codes and performing corresponding encoding of data

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. RAMAMOORTHY AND R. D. WESEL: "Analysis of an algorithm for irregular LDPC code construction", 《INTERNATIONAL SYMPOSIUM ONINFORMATION THEORY, 2004. ISIT 2004. PROCEEDINGS》 *
J. LU AND J. M. F. MOURA: "Structured LDPC codes for high-density recording: large girth and low error floor", 《IEEE TRANSACTIONS ON MAGNETICS》 *
JIN LU ; J.M.F. MOURA: "Partition-and-shift LDPC codes", 《IEEE TRANSACTIONS ON MAGNETICS》 *
张丽佳: "面向无线协同MIMO通信系统的LDPC码构造算法的研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
袁建国 等: "一种低错误平层LDPC码构造方法", 《重庆邮电大学学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832936A (zh) * 2018-05-30 2018-11-16 东南大学 一种ldpc码的构造方法及系统
CN109194445A (zh) * 2018-09-13 2019-01-11 中国电子科技集团公司第二十八研究所 一种适用于短码长喷泉码的编译码优化方法
CN109194445B (zh) * 2018-09-13 2020-11-27 中国电子科技集团公司第二十八研究所 一种适用于短码长喷泉码的编译码优化方法
CN109756233A (zh) * 2019-01-09 2019-05-14 重庆邮电大学 一种基于围长约束与emd的低错误平层ldpc码构造方法
CN115885478A (zh) * 2020-08-27 2023-03-31 华为技术有限公司 构造ldpc码的方法和通信装置
CN112688695A (zh) * 2020-12-16 2021-04-20 清华大学 基于渐进提升构造的多码长qc-sc-ldpc码构造方法和装置
CN112688695B (zh) * 2020-12-16 2022-10-18 清华大学 基于渐进提升构造的多码长qc-sc-ldpc码构造方法和装置
CN112865811A (zh) * 2021-01-11 2021-05-28 清华大学 基于渐进扩展和环分类排序评估准则的ldpc码构造方法
CN113055026A (zh) * 2021-03-16 2021-06-29 重庆邮电大学 一种适用于深空通信的基于原模图的ldpc码校验矩阵的构造方法

Similar Documents

Publication Publication Date Title
CN107888200A (zh) 一种利用近似环额外信息度与分割移位的低错误平层qc‑ldpc码构造方法
CN103152056B (zh) 一种基于原模图的准循环ldpc码构造方法及装置
US8433972B2 (en) Systems and methods for constructing the base matrix of quasi-cyclic low-density parity-check codes
CN102394659B (zh) Ldpc码校验矩阵构造方法及对应矩阵乘法运算装置
US20190273511A1 (en) Generation of spatially-coupled quasi-cyclic ldpc codes
CN107370490A (zh) 结构化ldpc的编码、译码方法及装置
CN106992856B (zh) 基于gpu的大规模连续变量量子密钥分发的数据协调方法
CN106656210B (zh) 一种基于完备循环差集的可快速编码的type-II QC-LDPC码构造方法
CN108134610A (zh) 基于杨辉三角的特殊结构原模图qc-ldpc码的构造方法
CN101826878A (zh) Qc-ldpc码构建方法
CN107528596A (zh) 一种基于斐波那契‑卢卡斯序列的Type‑II QC‑LDPC码构造方法
CN110739976A (zh) 一种无短环qc-ldpc码的快速生成方法
CN106899310A (zh) 一种利用完备差集构造原模图qc‑ldpc码的方法
CN107689802A (zh) 一种基于消除基本陷阱集的ldpc码构造方法
CN103795424B (zh) 一种基于qc‑ldpc的通信方法
CN108390676A (zh) 一种结合等差数列与原模图的qc-ldpc码新颖构造方法
CN101159435A (zh) 基于移位矩阵分级扩展的低密度校验码校验矩阵构造方法
Esfahanizadeh et al. Multi-dimensional spatially-coupled code design: Enhancing the cycle properties
Liu et al. Design of binary LDPC codes with parallel vector message passing
CN108134611A (zh) 一种利用ACE与Zig-Zag的低错误平层QC-LDPC码构造方案
CN106656211A (zh) 一种基于Hoey序列的非规则Type‑II QC‑LDPC码构造方法
CN106685432A (zh) 一种基于完备循环差集的大围长Type‑II QC‑LDPC码构造方法
CN102130692A (zh) 基于外在信息度数的准循环低密度奇偶校验码的构造方法
CN111030705A (zh) 基于ap与消除ets的一种qc-ldpc码构造方案
CN101359914B (zh) 一种准循环ldpc码的逐块构造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180406

RJ01 Rejection of invention patent application after publication