CN107851777B - 负极及其制造方法 - Google Patents

负极及其制造方法 Download PDF

Info

Publication number
CN107851777B
CN107851777B CN201780002714.8A CN201780002714A CN107851777B CN 107851777 B CN107851777 B CN 107851777B CN 201780002714 A CN201780002714 A CN 201780002714A CN 107851777 B CN107851777 B CN 107851777B
Authority
CN
China
Prior art keywords
active material
material layer
anode
lithium
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780002714.8A
Other languages
English (en)
Other versions
CN107851777A (zh
Inventor
梁晋浩
吴松泽
崔宁根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lg Energy Solution
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of CN107851777A publication Critical patent/CN107851777A/zh
Application granted granted Critical
Publication of CN107851777B publication Critical patent/CN107851777B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及负极及其制造方法。具体地,本发明提供如下的负极,所述负极包含集电器、形成在所述集电器上的第一活性材料层以及形成在所述第一活性材料层上的第二活性材料层,其中所述第一活性材料层包含碳基负极活性材料粒子,并且所述第二活性材料层包含硅氮化物。根据本发明的负极包含在所述第一活性材料层上的包含硅氮化物的第二活性材料层。所述硅氮化物的氮可以与锂离子反应而形成锂氮化物。因此,对于使用碳基负极活性材料的电极,由于未反应的锂离子而在负极的表面上析出锂的问题可以通过形成所述第二活性材料层来解决。另外,所述硅氮化物层可以含有Si纳米粒子,由此显示高容量,并且由于优异的离子传导性而可以产生高输出特性,同时由于锂氮化物而抑制Si纳米粒子的膨胀。

Description

负极及其制造方法
技术领域
相关申请的交叉引用
本申请要求2016年3月24日提交的韩国专利申请10-2016-0035120号的优先权和权益,并通过引用的方式将其全部公开内容并入本文中。
技术领域
本发明涉及负极及其制造方法。
背景技术
随着化石燃料使用的迅速增加,使用替代能源或清洁能源的需求在不断增加。为了满足日益增长的需求,对使用电化学反应的发电和蓄电领域进行了最为积极的研究。
作为使用这样的电化学能的电化学装置的代表例,目前在使用二次电池,并且其应用领域逐渐增加。近来,随着对诸如便携式计算机、手机、照相机等便携式装置的技术开发和需求的增加,对作为能源的二次电池的需求正在迅速增加。在这样的二次电池之中,对具有高能量密度、高工作电压、长循环寿命和低自放电率的锂二次电池进行了大量的研究,并且这样的锂二次电池是市售并且被广泛使用的。
通常,二次电池由正极、负极和电解质组成。在二次电池中,从正极活性材料放出的锂离子通过第一次充电嵌入诸如碳粒子的负极活性材料中,并且锂离子通过放电而脱嵌。随着锂离子在相对的电极之间如此往复运动,它们传递能量。因此,可以对二次电池进行充放电。
例如,锂二次电池具有如下结构,其中锂电解质浸渍入由包含锂过渡金属氧化物作为电极活性材料的正极、包含碳基活性材料的负极和多孔隔膜组成的电极组件。正极通过用包含锂过渡金属氧化物的正极混合物涂布铝箔而制造,且负极通过用包含碳基活性材料的负极混合物涂布铜箔而制造。
同时,在充电期间,锂在包含诸如天然石墨的负极活性材料的负极中析出,由此电池性能可能劣化。而且,当将硅用作负极活性材料时,容量高,但是由于因充放电引起的反复膨胀和收缩而导致电池性能可能劣化。
因此,需要具有高容量和更长寿命特性的二次电池用负极。
[现有技术文献]
[专利文献]
(专利文献1)韩国未经审查的专利公布10-2010-0121874号
发明内容
【技术问题】
本发明的一个方面在于通过在活性材料层上额外地设置硅氮化物层来提供具有高容量和更长寿命的负极。
本发明的另一方面在于提供包含所述负极的二次电池、电池模块以及电池组。
【技术方案】
为了实现上述目的,根据本发明的一个实施方式,提供如下的负极,其包含:集电器;形成在集电器上的第一活性材料层;以及形成在第一活性材料层上的第二活性材料层,其中第一活性材料层包含碳基负极活性材料粒子,并且第二活性材料层包含硅氮化物。
此外,根据本发明的另一实施方式,提供所述负极的制造方法,该方法包括:通过使用包含碳基负极活性材料粒子、导电材料和粘合剂的负极浆料在集电器上形成第一活性材料层(步骤1);以及通过等离子体增强的化学气相沉积工序在第一活性材料层上形成硅氮化物层(步骤2)。
【有益效果】
根据本发明的负极包含在第一活性材料层上的包含硅氮化物的第二活性材料层,使得硅氮化物中的氮可以与锂离子反应而形成锂氮化物(lithium nitride)。因此,在使用碳基负极活性材料的电极中,由于未反应的锂离子而在负极的表面上析出锂的问题可以通过形成第二活性材料层而得到解决。
此外,硅氮化物层含有硅(Si)纳米粒子,从而可以显示高容量,并且由于优异的离子传导性,还可以显示高输出特性,同时由于锂氮化物而抑制Si纳米粒子的膨胀。
附图说明
图1示出通过用肉眼观察根据实施例1和比较例1的二次电池中锂是否析出而获得的结果的图像。
具体实施方式
下文中,为了促进对本发明的理解而对本发明进行了更详细的说明。
在本说明书和权利要求书中使用的术语或词语不应被解释为常用含义或词典中的含义,而是应基于本发明人为了最好地说明本发明而适当地定义术语的概念的原则以与本发明的技术范围相一致的含义和概念来进行解释。
在此提供的术语仅用于说明特定实施方式的目的,不是为了限制本发明。除非上下文另外清楚地指出,否则单数形式“一个”、“一种”和“该/所述”也旨在包括复数形式。
应当理解的是,当在本文中使用时,术语“包括”、“包含”和/或“具有”表明存在所述的特征、整数、步骤、操作、元素、组分和/或其组合,但并不排除存在或增加一个或更多个其他特征、整数、步骤、操作、元素、组分和/或其组合。
根据本发明的一个实施方式的负极可以包含:集电器;形成在集电器上的第一活性材料层;以及形成在第一活性材料层上的第二活性材料层,其中第一活性材料层可以包含碳基负极活性材料粒子,并且第二活性材料层可以包含硅氮化物。
第二活性材料层中的硅氮化物(SiNx)可以由氮和硅(Si)元素组成,并且一部分氮和Si元素可以彼此共价键合。在这种情况下,不与氮元素共价键合的一部分Si元素可以以Si纳米粒子的形式存在。因此,第二活性材料层中的活性材料可以包含Si纳米粒子。
氮元素可以与电解质中的锂离子积极地反应而形成锂氮化物(Li3N),并且该锂氮化物可以包围第二活性材料层中的Si纳米粒子。因此,可以解决在仅包含碳基活性材料层的电极中由于未被吸藏在活性材料粒子中的锂离子而导致锂金属在负极表面上析出的问题。也就是说,转移到第一活性材料层的锂离子之中,未被吸藏在碳基负极活性材料粒子中的锂离子可以与第二活性材料层中的氮反应,从而防止锂在负极的表面上析出。
另外,第二活性材料层中的硅氮化物包含Si纳米粒子,从而容量高,并且Si纳米粒子被锂氮化物包围,使得锂氮化物充当缓冲层,由此可以使因锂离子自硅的吸藏和放出而引起的体积膨胀最小化。而且,由于锂氮化物具有高离子传导性,所以锂离子容易地转移到Si纳米粒子,由此可以改善输出特性。
同时,集电器不受特别限制,只要其不会引起二次电池中的化学变化并且具有导电性即可。例如,可以使用铜、不锈钢、铝、镍、钛、煅烧碳,表面用碳、镍、钛、银等处理过的铝或不锈钢作为集电器。具体地,可以使用铜作为集电器,并且集电器可以具有6μm至25μm的厚度。
第一活性材料层形成在集电器上并且可以包含碳基负极活性材料粒子。在第一活性材料层中,在充电期间从正极放出的锂离子嵌入负极活性材料粒子中,并且在放电期间脱嵌,由此电流可以流动。
作为碳基负极活性材料粒子,可以使用能够通常吸藏并放出锂离子的碳材料,例如石墨如天然石墨、人造石墨等;碳基材料如炭黑、乙炔黑、科琴黑、槽黑、炉黑、灯黑、热裂解法炭黑等;导电纤维如碳纤维、金属纤维等;导电管如碳纳米管等;或者碳氟化合物。
具体地,作为碳基负极活性材料粒子,可以使用天然石墨、人造石墨、以及天然石墨与人造石墨的混合材料。该材料可能具有的问题在于,在负载高含量的该活性材料时,尽管显示高容量、但输出特性低,因此锂难以均匀地进行反应。
第一活性材料层还可以包含导电材料和粘合剂。在这种情况下,可以以93至97:1至3:2至4的重量比包含碳基负极活性材料粒子、导电材料和粘合剂。当在上述范围之外时,如果碳基负极活性材料粒子的比例大于97,则锂可能在负极的表面上析出,并且如果小于93,则电池容量可能劣化。
第二活性材料层可以包含硅氮化物。硅氮化物可以由SiNx表示,其中x可以满足0.73≤x≤0.90。当x小于0.73时,由于能够与锂离子反应的氮元素的量不足,锂可能在负极的表面上析出,并且由于充当缓冲剂的锂氮化物的量不足,减轻由硅引起的体积膨胀的效果可能劣化。另一方面,当x大于0.90时,由第二活性材料层中的硅引起的容量增加的效果可能不明显。
可以通过X射线光电子能谱(XPS)来测量第二活性材料层中的硅氮化物的组成。
第二活性材料层可以具有小于1μm、特别是小于0.5μm的厚度。当第二活性材料层具有大于1μm的厚度时,第二活性材料层的厚度因第二活性材料层中的Si纳米粒子的充放电而显著改变,由此寿命特性可能劣化。
第一活性材料层与第二活性材料层的厚度比可以为70:1至500:1。当厚度比小于70:1时,第二活性材料层的厚度因第二活性材料层中的Si纳米粒子的充放电而显著改变,由此寿命特性可能劣化。另一方面,当厚度比大于500:1时,第二活性材料层中的氮元素的量不足以与未反应的锂离子结合,由此锂可能在负极的表面上析出。
第二活性材料层可以含有Si纳米晶体。硅氮化物可以由SiNx表示,其中x可以满足0.73≤x≤0.90。不与氮结合的Si可以以纳米晶体的形式存在。
在这种情况下,来源于SiNx的氮在至少一次充放电循环之后可以与未吸藏在第一活性材料层的碳基负极活性材料中或第二活性材料层的Si纳米晶体中的锂离子结合而形成锂氮化物(Li3N),并且可以包围Si纳米晶体以形成包含Si纳米晶体作为核和锂氮化物作为壳的第一副产物粒子。
第一副产物粒子中的Si纳米晶体为能够吸藏和放出锂的负极活性材料并且可以吸藏锂粒子而形成锂硅化物(LixSi)。在此,x可以满足0<x≤3.75。因此,可以形成包含锂硅化物作为核和锂氮化物作为壳的第二副产物粒子。
锂氮化物可以充当关于Si纳米晶体的膨胀的缓冲层,并且由于高离子传导性而可以将离子快速转移到Si纳米晶体中从而有助于改善输出特性。
第一副产物粒子中的Si纳米晶体可以具有4nm至7nm的平均直径(D50),并且第二副产物粒子中的锂硅化物可以具有5nm至10nm的平均直径(D50)。另外,第一副产物粒子和第二副产物粒子中的锂氮化物壳可以具有8nm至15nm的厚度。
可以通过透射电子显微镜(TEM)测量Si纳米晶体、锂硅化物和锂氮化物的存在和含量。
根据本发明的一个实施方式的负极的制造方法可以包括通过使用包含碳基负极活性材料粒子、导电材料和粘合剂的负极浆料在集电器上形成第一活性材料层(步骤1);以及通过等离子体增强的化学气相沉积工序在第一活性材料层上形成硅氮化物层(步骤2)。
下文中,将针对各个步骤对根据本发明的负极的制造方法进行详细说明。
在根据本发明的负极的制造方法的步骤1中,通过使用包含碳基负极活性材料粒子、导电材料和粘合剂的负极浆料在集电器上形成第一活性材料层。
具体地,可以将通过将包含碳基负极活性材料粒子、导电材料和粘合剂的负极混合物与溶剂进行混合而制备的浆料施加在集电器上、进行干燥和辊压而形成第一活性材料层。
在这种情况下,可以以93至97:1至3:2至4的重量比包含碳基负极活性材料粒子、导电材料和粘合剂。
作为碳基负极活性材料粒子,可以使用能够通常吸藏并放出锂离子的碳材料,例如石墨如天然石墨、人造石墨等;碳基材料如炭黑、乙炔黑、科琴黑、槽黑、炉黑、灯黑、热裂解法炭黑等;导电纤维如碳纤维、金属纤维等;导电管如碳纳米管等;或者碳氟化合物。作为粘合剂,可以使用各种类型的粘合剂聚合物中的任一种,例如聚偏二氟乙烯-六氟丙烯共聚物(PVDF-共-HFP)、聚偏二氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乙烯醇、羧甲基纤维素(CMC)、淀粉、羟丙基纤维素、再生纤维素、聚乙烯吡咯烷酮、四氟乙烯、聚乙烯、聚丙烯、乙烯-丙烯-二烯单体(EPDM)、磺化的EPDM、丁苯橡胶(SBR)、氟橡胶、聚丙烯酸,上述聚合物的氢原子被Li、Na、Ca等取代的聚合物,各种共聚物等。
溶剂可以为本领域常用的有机溶剂或水性溶剂,并且可以使用二甲基甲酰胺(DMF)、二甲亚砜(DMSO)、异丙醇、N-甲基吡咯烷酮(NMP)、丙酮、水等中的一种或者两种以上的混合物作为溶剂。
在根据本发明的负极的制造方法的步骤2中,通过等离子体增强的化学气相沉积工序在第一活性材料层上形成硅氮化物层。
具体地,在步骤2中,使用以硅烷气体稀释的氮气作为原料而形成硅氮化物层。
在这种情况下,以硅烷气体稀释的氮气的流速可以为30sccm至70sccm,特别为50sccm,氮气与硅烷气体的摩尔比可以为97:3至99:1,特别为98:2,并且等离子体增强的化学气相沉积工序的条件可以设定成等离子体功率为25瓦至100瓦,沉积时间为0.5小时至2小时且温度为100℃至300℃。当在上述条件下实施等离子体增强的化学气相沉积工序时,可以制备具有小于1μm的厚度的硅氮化物(SiNx(0.73≤x≤0.90))薄膜。
根据本发明的一个实施方式的二次电池可以包含负极、正极、置于负极与正极之间的隔膜、以及电解质。
所述二次电池包含含有硅氮化物薄膜的负极,因此可以显示高容量和更长的寿命特性。
正极可以通过在正极集电器上施加通过将包含正极活性材料粒子、导电材料和粘合剂的正极混合物与有机溶剂进行混合而制备的浆料、接着进行干燥和辊压来制造。
正极活性材料不受特别限制,但特别地,可以使用锂过渡金属氧化物。作为锂过渡金属氧化物,例如可以使用Li·Co基复合氧化物如LiCoO2等、Li·Ni·Co·Mn基复合氧化物如LiNixCoyMnzO2等、Li·Ni基复合氧化物如LiNiO2等以及Li·Mn基复合氧化物如LiMn2O4等中的一种或者两种以上的混合物。
作为隔膜,可以使用通常用作隔膜的普通多孔聚合物膜,例如由聚烯烃系聚合物如乙烯均聚物、丙烯均聚物、乙烯/丁烯共聚物、乙烯/己烯共聚物、乙烯/甲基丙烯酸酯共聚物等制成的多孔聚合物膜,或者具有两个以上由它们制成的层的堆叠结构。或者,可以使用普通的多孔无纺布,例如由高熔点玻璃纤维、聚对苯二甲酸乙二醇酯纤维等制成的无纺布,但是本发明不限于此。
电解质可以包含非水有机溶剂和金属盐。
作为非水有机溶剂,例如可以使用非质子有机溶剂,例如N-甲基-2-吡咯烷酮、碳酸亚丙酯、碳酸亚乙酯、碳酸亚丁酯、碳酸二甲酯、碳酸二乙酯、γ-丁内酯、1,2-二甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃、二甲亚砜、1,3-二氧戊环、甲酰胺、二甲基甲酰胺、二氧戊环、乙腈、硝基甲烷、甲酸甲酯、乙酸甲酯、磷酸三酯、三甲氧基甲烷、二氧戊环衍生物、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑啉酮、碳酸亚丙酯衍生物、四氢呋喃衍生物、醚类、丙酸甲酯、丙酸乙酯等。
作为金属盐,可以使用锂盐。作为锂盐,可以使用易溶于非水电解质的材料,例如LiCl、LiBr、LiI、LiClO4、LiBF4、LiB10Cl10、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiAlCl4、CH3SO3Li、CF3SO3Li、(CF3SO2)2NLi、氯硼烷锂、低级脂族羧酸锂、四苯基硼酸锂、亚氨基锂等。
根据本发明的另一实施方式,提供包含所述二次电池作为单元电池的电池模块以及包含该电池模块的电池组。电池模块和电池组包含具有高容量和更长寿命特性的所述二次电池,由此可以用作用于选自由电动车辆、混合动力车辆、插电式混合动力车辆以及蓄电系统构成的组中的中至大型装置的电源。
【发明例】
下文中,将对本发明的示例性实施方式进行详细说明,使得本领域的普通技术人员可以实施本发明。然而,应该理解的是,本发明可以以各种形式来实现,而并非旨在限制于本发明的示例性实施方式。
<实施例1>
步骤1:第一活性材料层的形成
将作为负极活性材料的天然石墨、作为粘合剂的苯乙烯-丁二烯橡胶(SBR)、作为导电材料的炭黑分别以96重量%、3重量%和1重量%添加到作为溶剂的蒸馏水中以制备负极浆料。将负极浆料施加在作为负极集电器的具有20μm厚度的铜(Cu)薄膜上,进行干燥以制造负极,然后进行辊压以在集电器上形成具有80μm厚度的第一活性材料层。
步骤2:第二活性材料层的形成
将其上形成有第一活性材料层的集电器放置在反应室中。
在该反应室中,以50sccm的流速引入以硅烷气体稀释的氮气(N2:SiH4的摩尔比=98:2),同时施加25瓦的功率以形成等离子体,并且在100℃下反应30分钟以在第一活性材料层上形成具有0.5μm厚度的硅氮化物层(第一活性材料层的厚度:第二活性材料层的厚度=160:1),由此制造负极。在这种情况下,通过X射线光电子能谱(XPS)测量的硅氮化物的组成为SiNx(x=0.73)。
步骤3:正极和二次电池的制造
将96重量%的作为正极活性材料的锂钴复合氧化物、2重量%的作为导电材料的炭黑和2重量%的作为粘合剂的聚偏二氟乙烯(PVDF)添加到N-甲基-2-吡咯烷酮(NMP)中以制备正极浆料。将正极浆料施加在作为正极集电器的具有20μm厚度的铝(Al)薄膜上,进行干燥和辊压以制造正极。
使用堆叠法组装步骤2中制造的负极、正极和多孔聚乙烯隔膜,并将电解质(碳酸亚乙酯(EC)/碳酸甲乙酯(EMC)=3/7(体积比))和六氟磷酸锂(1M LiPF6)注入如此组装的电池中以制造锂二次电池。
<比较例1>仅包含碳基活性材料的负极的制造
将作为负极活性材料的天然石墨、作为粘合剂的苯乙烯-丁二烯橡胶(SBR)、作为导电材料的炭黑分别以96重量%、3重量%和1重量%添加到作为溶剂的蒸馏水中以制备负极浆料。将该负极浆料施加在作为负极集电器的具有20μm厚度的铜(Cu)薄膜上,进行干燥以制造负极,然后进行辊压以在集电器上形成具有80.5μm厚度的第一活性材料层,由此制造负极。
以与实施例1的步骤3中相同的方式制造二次电池。
<实验例1>寿命特性的观察
为了评价根据实施例1和比较例1的二次电池的寿命特性,如下实施实验。
在第一次循环中以0.1C且在后续循环中以1C对各个锂二次电池进行充放电。测量在第49次循环之后的放电容量对初始放电容量的比率,其结果示于表1中。
[表1]
Figure GDA0002615055660000121
-寿命特性:(第49次循环之后的放电容量/初始放电容量)×100
<实验例2>锂析出的观察
为了识别锂是否在根据实施例1和比较例1的二次电池中析出,使各个二次电池经受10次在1.5C下的充放电循环,然后在干燥气氛下将二次电池拆解。然后,用肉眼观察沿负极表面方向的隔膜表面,以识别锂是否析出,其结果示于图1中。
如图1中所示,可以确认在根据比较例1的隔膜的表面上观察到深褐色的析出物,但在根据实施例1的隔膜的表面上没有观察到析出物。
根据该结果,可以看出其中负极由集电器、第一活性材料层和包含硅氮化物的第二活性材料层组成的实施例1通过经由氮化物与锂离子的反应形成锂氮化物而显示了防止锂在负极的表面上析出的效果。
虽然上面已经对示例性实施方式进行了详细说明,但是本发明的范围不限于此,而是涵盖本领域技术人员使用由所附权利要求书限定的本发明的实施方式的基本概念所作出的若干修改和改进。

Claims (16)

1.一种负极,包含:
集电器;
形成在所述集电器上的第一活性材料层;和
形成在所述第一活性材料层上的第二活性材料层,
其中所述第一活性材料层包含碳基负极活性材料粒子,并且所述第二活性材料层包含硅氮化物,
其中所述硅氮化物由SiNx表示,其中x满足0.73≤x≤0.90,
其中所述第二活性材料层含有硅(Si)纳米晶体。
2.根据权利要求1所述的负极,其中所述第二活性材料层具有小于1μm的厚度。
3.根据权利要求1所述的负极,其中所述第一活性材料层与所述第二活性材料层的厚度比为70:1至500:1。
4.根据权利要求1所述的负极,其中所述第二活性材料层在至少一次充放电循环之后包含第一副产物粒子,所述第一副产物粒子包含Si纳米晶体核和包围所述Si纳米晶体核的锂氮化物(Li3N)壳。
5.根据权利要求1所述的负极,其中所述第二活性材料层在至少一次充放电循环之后包含第二副产物粒子,所述第二副产物粒子包含锂硅化物核和包围所述锂硅化物核的锂氮化物(Li3N)壳。
6.根据权利要求5所述的负极,其中所述锂硅化物由LixSi表示,其中x满足0<x≤3.75。
7.根据权利要求1所述的负极,其中所述第一活性材料层的所述碳基负极活性材料粒子为天然石墨。
8.根据权利要求1所述的负极,其中所述第一活性材料层还包含导电材料和粘合剂。
9.一种制造根据权利要求1所述的负极的方法,包括:
步骤1:通过使用包含碳基负极活性材料粒子、导电材料和粘合剂的负极浆料在集电器上形成第一活性材料层;以及
步骤2:通过等离子体增强的化学气相沉积工序在所述第一活性材料层上形成硅氮化物层。
10.根据权利要求9所述的方法,其中,在步骤2中的所述等离子体增强的化学气相沉积工序中,使用以硅烷气体稀释的氮气作为原料,以硅烷气体稀释的氮气的流速为30sccm至70sccm,且所述氮气与硅烷气体的摩尔比为97:3至99:1。
11.根据权利要求9所述的方法,其中步骤2中的所述等离子体增强的化学气相沉积工序在25瓦至100瓦的等离子体功率和0.5小时至2小时的沉积时间下实施。
12.根据权利要求9所述的方法,其中步骤2中的所述等离子体增强的化学气相沉积工序在100℃至300℃的温度下实施。
13.一种二次电池,包含根据权利要求1所述的负极、正极、置于所述负极与所述正极之间的隔膜、以及电解质。
14.一种电池模块,包含根据权利要求13所述的二次电池作为单元电池。
15.一种电池组,包含根据权利要求14所述的电池模块,并且作为中至大型装置的电源使用。
16.根据权利要求15所述的电池组,其中所述中至大型装置选自由电动车辆、混合动力车辆、插电式混合动力车辆以及蓄电系统构成的组。
CN201780002714.8A 2016-03-24 2017-03-24 负极及其制造方法 Active CN107851777B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0035120 2016-03-24
KR1020160035120A KR101991845B1 (ko) 2016-03-24 2016-03-24 음극 및 이의 제조방법
PCT/KR2017/003221 WO2017164702A1 (ko) 2016-03-24 2017-03-24 음극 및 이의 제조방법

Publications (2)

Publication Number Publication Date
CN107851777A CN107851777A (zh) 2018-03-27
CN107851777B true CN107851777B (zh) 2021-05-07

Family

ID=59900501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780002714.8A Active CN107851777B (zh) 2016-03-24 2017-03-24 负极及其制造方法

Country Status (5)

Country Link
US (1) US10700346B2 (zh)
EP (1) EP3324466A4 (zh)
KR (1) KR101991845B1 (zh)
CN (1) CN107851777B (zh)
WO (1) WO2017164702A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO344185B1 (en) * 2016-05-31 2019-09-30 Inst Energiteknik Electrode and Battery comprising a powder of Silicon Nitride particles
CN107946576B (zh) * 2017-11-21 2020-05-19 中航锂电(洛阳)有限公司 一种高倍率石墨负极材料及其制备方法、锂离子电池
KR102364480B1 (ko) 2018-05-15 2022-02-18 주식회사 엘지에너지솔루션 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 리튬 이차 전지
KR102530195B1 (ko) 2019-01-18 2023-05-10 주식회사 엘지에너지솔루션 이차전지용 음극의 제조방법
TW202044647A (zh) * 2019-02-22 2020-12-01 美商安普雷斯公司 用於鋰離子電池陽極之成分修改矽塗佈
KR20210006103A (ko) * 2019-07-08 2021-01-18 주식회사 엘지화학 음극의 제조방법
CN110993891A (zh) * 2019-11-11 2020-04-10 珠海冠宇电池有限公司 一种含硅负极片、其制备方法及锂离子电池
KR20210109692A (ko) 2020-02-27 2021-09-07 주식회사 엘피엔 신규한 복합 음극활물질, 이를 포함하는 리튬 전지, 및 상기 복합 음극활물질의 제조방법
CN113809285B (zh) * 2020-06-12 2023-08-08 比亚迪股份有限公司 硅基复合负极材料及其制备方法、全固态锂电池
CN113809309B (zh) * 2020-06-12 2023-08-08 比亚迪股份有限公司 硅基复合负极材料及其制备方法、全固态锂电池
CN113809330B (zh) * 2020-06-12 2023-08-08 比亚迪股份有限公司 硅基复合负极材料及其制备方法、全固态锂电池
KR102450634B1 (ko) 2021-06-09 2022-10-06 주식회사 엘피엔 신규한 복합 음극활물질, 이를 포함하는 리튬 전지, 및 상기 복합 음극활물질의 제조방법
US20230057285A1 (en) * 2021-08-13 2023-02-23 Global Graphene Group, Inc. Prelithiated Anode, Lithium-Ion Battery Containing Same, and Method of Producing Same
KR20230090829A (ko) * 2021-12-15 2023-06-22 에스케이온 주식회사 이차전지용 음극, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20240088002A (ko) 2022-12-13 2024-06-20 주식회사 엘피엔 리튬 이차전지용 금속 질화물 탄소 복합 음극활물질의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339799A (ja) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極材料およびその負極材料の製造方法ならびにその負極材料を用いた非水電解質二次電池
KR20040044352A (ko) * 2002-11-19 2004-05-28 소니 가부시키가이샤 음극 및 이를 사용한 전지
KR20050084075A (ko) * 2002-12-11 2005-08-26 어플라이드 머티어리얼스, 인코포레이티드 패시베이션 어플리케이션을 위한 저온 프로세스
CN1870327A (zh) * 2005-06-24 2006-11-29 松下电器产业株式会社 用于锂离子二次电池的负极及该负极的生产方法
KR20100121874A (ko) * 2009-05-11 2010-11-19 주식회사 이아이지 리튬이차전지 음극, 이를 이용한 리튬이차전지, 전지팩 및 자동차
CN103733388A (zh) * 2011-07-01 2014-04-16 安普雷斯股份有限公司 具有增强的黏附特性的模板电极结构
KR20150086288A (ko) * 2012-11-02 2015-07-27 넥세온 엘티디 장치 및 장치의 형성 방법
CN104919632A (zh) * 2013-06-20 2015-09-16 株式会社Lg化学 锂二次电池用高容量电极活性材料和使用其的锂二次电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101073619B1 (ko) * 2009-06-01 2011-10-14 재단법인 구미전자정보기술원 전기화학 셀용 유무기 복합 분리막 및 이를 포함하는 전기화학 셀
US20120264020A1 (en) * 2010-10-07 2012-10-18 Applied Sciences, Inc. Method of depositing silicon on carbon nanomaterials
PL2712009T3 (pl) * 2012-07-13 2020-03-31 Lg Chem, Ltd. Aktywny materiał anody typu bimodalnego i akumulator litowy zawierający ten materiał

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339799A (ja) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極材料およびその負極材料の製造方法ならびにその負極材料を用いた非水電解質二次電池
KR20040044352A (ko) * 2002-11-19 2004-05-28 소니 가부시키가이샤 음극 및 이를 사용한 전지
KR20050084075A (ko) * 2002-12-11 2005-08-26 어플라이드 머티어리얼스, 인코포레이티드 패시베이션 어플리케이션을 위한 저온 프로세스
CN1870327A (zh) * 2005-06-24 2006-11-29 松下电器产业株式会社 用于锂离子二次电池的负极及该负极的生产方法
JP2007005149A (ja) * 2005-06-24 2007-01-11 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
KR20100121874A (ko) * 2009-05-11 2010-11-19 주식회사 이아이지 리튬이차전지 음극, 이를 이용한 리튬이차전지, 전지팩 및 자동차
CN103733388A (zh) * 2011-07-01 2014-04-16 安普雷斯股份有限公司 具有增强的黏附特性的模板电极结构
KR20150086288A (ko) * 2012-11-02 2015-07-27 넥세온 엘티디 장치 및 장치의 형성 방법
CN104919632A (zh) * 2013-06-20 2015-09-16 株式会社Lg化学 锂二次电池用高容量电极活性材料和使用其的锂二次电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Determination of residual stress in low temperature PECVD silicon nitride thin films";Martyniuk, M et al.;《Proceedings of SPIE》;20031212;第5276卷;第456页,表1 *

Also Published As

Publication number Publication date
US20180226641A1 (en) 2018-08-09
WO2017164702A1 (ko) 2017-09-28
KR20170110840A (ko) 2017-10-12
EP3324466A1 (en) 2018-05-23
EP3324466A4 (en) 2018-07-04
KR101991845B1 (ko) 2019-06-24
CN107851777A (zh) 2018-03-27
US10700346B2 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
CN107851777B (zh) 负极及其制造方法
CN110582876B (zh) 负极活性材料、包含所述负极活性材料的负极、和包含所述负极的二次电池
CN111133613B (zh) 负极活性材料、包含所述负极活性材料的负极和包含所述负极的二次电池
CN112514116B (zh) 硅类复合材料、包含其的负极和锂二次电池
CN108886137B (zh) 负极和包含其的二次电池、电池模块及电池组
CN110679017B (zh) 负极活性材料、包含所述负极活性材料的负极和包含所述负极的二次电池
CN111357137B (zh) 锂二次电池用负极活性材料及其制备方法
CN107851778B (zh) 制造负极的方法和负极
US20210151742A1 (en) Negative electrode active material, negative electrode including the same, secondary battery including the negative electrode, and preparation method of the negative electrode active material
CN111095629B (zh) 正极活性材料、其制备方法以及包含其的锂二次电池用正极和锂二次电池
CN111316482B (zh) 负极活性材料、包含所述负极活性材料的负极和包含所述负极的二次电池
CN111316483B (zh) 负极活性材料、包含所述负极活性材料的负极和包含所述负极的二次电池
CN111542955A (zh) 二次电池
CN111095621B (zh) 负极活性材料、包含所述负极活性材料的负极和包含所述负极的二次电池
US20200212438A1 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
KR20170111288A (ko) 음극 및 이를 포함하는 이차 전지
CN108140825B (zh) 负极活性材料、包含其的负极以及锂二次电池
CN116885101A (zh) 包含直径不同的石墨和硅基材料的负极以及包含其的锂二次电池
US20240347700A1 (en) Anode composition, anode comprising same for lithium secondary battery, lithium secondary battery comprising anode, and method for preparing anode composition
CN117546314A (zh) 负极组合物、包含其的锂二次电池用负极、包含负极的锂二次电池以及制备负极组合物的方法
CN117397068A (zh) 负极预分散液、包含负极预分散液的负极组合物、包含负极组合物的锂二次电池用负极、包含负极的锂二次电池及负极组合物的制备方法
US20240234690A9 (en) Negative electrode composition, method for preparing same, negative electrode and lithium secondary battery comprising same
CN117716532A (zh) 负极组合物、包含其的锂二次电池用负极和包含该负极的锂二次电池
CN117413382A (zh) 负极活性材料、负极以及二次电池
CN117397054A (zh) 锂二次电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211207

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.

TR01 Transfer of patent right