CN107177828B - SiZrCN梯度复合涂层刀具及其制备方法 - Google Patents
SiZrCN梯度复合涂层刀具及其制备方法 Download PDFInfo
- Publication number
- CN107177828B CN107177828B CN201710532824.7A CN201710532824A CN107177828B CN 107177828 B CN107177828 B CN 107177828B CN 201710532824 A CN201710532824 A CN 201710532824A CN 107177828 B CN107177828 B CN 107177828B
- Authority
- CN
- China
- Prior art keywords
- coating
- sizrcn
- transition zone
- sizrc
- gradient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
- C23C14/025—Metallic sublayers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0635—Carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0664—Carbonitrides
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
本发明属于机械制造切削刀具领域,特别是涉及一种SiZrCN梯度复合涂层刀具及其制备方法,该涂层为采用非平衡磁控溅射和电弧镀的复合镀膜方法制备的SiZrCN梯度涂层刀具,涂层刀具表面为氮含量梯度渐变的SiZrCN梯度复合涂层,刀具基体与涂层间依次为Ti过渡层和SiZrC过渡层。该SiZrCN超硬碳氮化合物涂层由于在涂层中同时增加了Si、Zr等两种金属,且涂层结构成分氮含量梯度渐变,可提高刀具的切削加工性能。该涂层具有很高的硬度、热稳定性,同时具有良好的抗扩散磨损性能、抵抗塑性变形能力和优异的摩擦磨损特性。切削过程中该刀具可有效防止切削刃崩刃及热裂纹的产生,保证工件加工表面质量,同时提高刀具使用寿命70%以上。
Description
技术领域
本发明属于机械制造金属切削刀具领域,特别是涉及一种SiZrCN梯度复合涂层刀具及其制备方法。
背景技术
现代金属切削加工要求刀具具有高切削速度、高进给量、长寿命、高精度等优良特性。高速钢或硬质合金作为传统的刀具材料,越来越难以满足现代机械加工业的发展需要。因此,刀具表面涂层技术应运而生。刀具表面涂层技术是近几十年发展起来的材料表面处理技术。在适当的工艺技术条件下,涂层具有很高的硬度,较低的摩擦系数,并且与基体材料有良好的结合力,因此可以大大提高金属切削刀具的使用寿命。目前工业发达国家的涂层刀具使用量已占刀具总数的80%以上,数控机床上所用的刀具90%以上是涂层刀具。TiCN是目前最广泛使用的三元碳氮化合物涂层,TiCN涂层由于兼具TiC的高硬度和TiN的良好韧性,显著提高了其摩擦磨损性能(Jinlong Li,Shihong Zhang,Mingxi Li.Influenceof the C2H2flow rate on gradient TiCN films deposited by multi-arc ionplating[J].Applied Surface Science,2013(283):134-144.),已广泛应用于铣削、攻牙、冲压、成型及滚齿的加工,在高速切削时比普通硬质合金刀具的耐磨性高5-8倍。中国专利“汽轮机转子轮槽铣刀表面TiCN多层复合涂层制备方法”(专利号201510564738.5)利用Ti、氮气(N2)与乙炔气体(C2H2)在450℃沉积温度下合成了TiCN涂层铣刀,解决了26NiCrMov145材料转子加工难题。
TiCN涂层虽然具有高硬度、低摩擦系数的优点,但同时因其热稳定性和红硬性较差,仅适合应用于低速切削或具有良好冷却条件的场合,需要对传统TiCN涂层结构和制备方法进行改进。目前,多元化是材料改善力学性能、耐蚀性和耐磨性的有效途径,通过制备多元复合涂层,既可提高涂层与基体的结合强度,又兼顾多种单涂层的综合性能,显著提高涂层刀具的性能。
目前TiCN等碳氮化合物主要通过化学气相沉积技术(CVD)等技术制备,即通过TiCl4(或Ti靶)、CH4(或C2H2)以及N2等气体反应生成,沉积温度通常超过400-500℃,对基体产生不利影响,同时气体碳源容易对涂层设备造成污染,制约了其广泛应用。
发明内容
本发明的目的在于克服目前现有碳氮化合物涂层刀具性能及制备方法的不足,结合多元复合涂层结构的优点提供一种SiZrCN梯度复合涂层刀具及其制备方法。该刀具采用非平衡磁控溅射和电弧镀的复合镀膜方法,直接采用SiZrC复合靶提供碳源,且沉积温度控制在300℃以下,可在更为广泛的刀具或工具基体上制备。该涂层结构为涂层刀具表面为氮含量梯度渐变的SiZrCN梯度复合涂层,刀具基体与涂层间依次为Ti过渡层和SiZrC过渡层。该梯度复合涂层刀具中的Si元素改善了涂层硬度和抗化学扩散性能,Zr元素对涂层起到固溶强化作用,提高了涂层的硬度和抗磨损性能,使涂层刀具具有更优异的化学稳定性和红硬性,可显著提高刀具的切削寿命和加工效率。同时该多层梯度结构能够减缓涂层与基体之间的热膨胀系数和弹性模量差异,改善结构和性能上的匹配性,增大涂层与基体的结合力和涂层的耐冲击性能。
为了实现上述发明目的,本发明采用的技术方案为:
本发明SiZrCN梯度复合涂层刀具,刀具基体材料为高速钢、工具钢、模具钢、硬质合金、陶瓷或立方氮化硼中的一种,涂层刀具由内到外依次为刀具基体、Ti过渡层、SiZrC过渡层和氮含量梯度渐变的SiZrCN梯度复合涂层。
本发明所述的SiZrCN梯度复合涂层刀具的制备方法,沉积方式采用非平衡磁控溅射和电弧镀的复合镀膜方法,沉积时使用2个非平衡磁控溅射SiZrC复合靶,2个电弧镀Ti靶,首先采用电弧镀沉积Ti过渡层,然后采用非平衡磁控溅射方法沉积SiZrC过渡层和氮含量梯度渐变的SiZrCN梯度复合涂层,其制备方法的具体步骤如下:
(1)前处理:将刀具基体表面抛光,去除表面油污、锈迹等杂质,然后依次放入酒精和丙酮中,超声清洗各25min,去除刀具表面油污和其它附着物,电吹风干燥充分后迅速放入镀膜机,抽真空至6.0×10-3Pa,加热至250℃,保温20~25min;
(2)离子清洗:通Ar气,其压力为1.5Pa,开启偏压电源,电压600V,占空比0.4,辉光放电清洗20min;降低偏压至400V,占空比0.2,开启离子源离子清洗30min,开启电弧镀Ti靶电源,Ti靶电流60A,偏压300V,离子轰击2~3min;
(3)沉积Ti过渡层:Ar气压0.7~0.8Pa,偏压降至220V,Ti靶电流80A,沉积温度200℃,电弧镀Ti过渡层5~6min;
(4)沉积SiZrC过渡层:Ar气压0.6~0.7Pa,偏压调至200V,关闭电弧镀Ti靶电源,开启非平衡磁控溅射SiZrC靶电流40A,沉积SiZrC过渡层5~6min;
(5)沉积SiZrCN梯度复合层:开启N2,N2气压为0.9Pa,Ar气压0.7~0.8Pa,偏压180V,SiZrC靶电流40A,沉积温度220℃,沉积SiZrCN复合层14~15min,其它参数不变,升高N2气压,N2气压每次升高0.1Pa,沉积SiZrCN复合层14~15min,直至N2气压升至1.4Pa,再沉积SiZrCN复合层14~15min;
(6)后处理:关闭各电源、离子源及气体源,涂层结束。
通过上述工艺制备的SiZrCN梯度复合涂层刀具,刀具表面为氮含量梯度渐变的SiZrCN梯度复合涂层,刀具基体与涂层间依次为Ti过渡层和SiZrC过渡层,以减小残余应力,增加涂层与刀具基体间的结合强度。该梯度复合涂层刀具中的Si元素改善了涂层硬度和抗化学扩散性能,Zr元素Zr元素对涂层起到固溶强化作用,提高了涂层的硬度和抗磨损性能,使涂层刀具具有更优异的化学稳定性和可靠性,且涂层结构成分氮含量梯度渐变,可改善传统碳氮化合物涂层刀具的物理机械性能。同时该多层梯度结构能够减缓涂层与基体之间的热膨胀系数和弹性模量差异,改善结构和性能上的匹配性,增大涂层与基体的结合力和涂层的耐冲击性能。
该SiZrCN梯度复合涂层刀具具有很高的硬度、热稳定性,同时具有良好的抗扩散磨损性、抵抗塑性变形能力和优异的摩擦磨损特性。切削过程中该刀具可有效防止切削刃崩刃及热裂纹的产生,保证工件加工表面质量,同时提高刀具使用寿命70%以上,该SiZrCN梯度复合涂层刀具可广泛应用于铸铁、铁基P/M材料、耐热合金、钛合金等材料的高速、高精密切削加工。
附图说明
图1为本发明的SiZrCN梯度复合涂层刀具的截面示意图;
图中:1为刀具基体、2为Ti过渡层、3为SiZrC过渡层、4为SiZrCN梯度复合涂层。
具体实施方式:
下面给出本发明的二个最佳实施例:
实施例1:
本发明SiZrCN梯度复合涂层刀具及其制备方法,该刀具为普通的铣刀片,其基体材料为:硬质合金P20,涂层刀具由内到外依次为刀具基体、Ti过渡层、SiZrC过渡层和氮含量梯度渐变的SiZrCN梯度复合涂层。沉积时采用非平衡磁控溅射和电弧镀的复合镀膜方法,使用2个非平衡磁控溅射SiZrC复合靶,2个电弧镀Ti靶。首先采用电弧镀沉积Ti过渡层,然后采用非平衡磁控溅射方法沉积SiZrC过渡层和氮含量梯度渐变的SiZrCN梯度复合涂层,具体步骤如下:
(1)前处理:将刀具基体表面抛光,去除表面油污、锈迹等杂质,然后依次放入酒精和丙酮中,超声清洗各25min,去除刀具表面油污和其它附着物,电吹风干燥充分后迅速放入镀膜机,抽真空至6.0×10-3Pa,加热至250℃,保温20min;
(2)离子清洗:通Ar气,其压力为1.5Pa,开启偏压电源,电压600V,占空比0.4,辉光放电清洗20min;降低偏压至400V,占空比0.2,开启离子源离子清洗30min,开启电弧镀Ti靶电源,Ti靶电流60A,偏压300V,离子轰击2min;
(3)沉积Ti过渡层:Ar气压0.7Pa,偏压降至220V,Ti靶电流80A,沉积温度200℃,电弧镀Ti过渡层5min;
(4)沉积SiZrC过渡层:Ar气压0.6Pa,偏压调至200V,关闭电弧镀Ti靶电源,开启非平衡磁控溅射SiZrC靶电流40A,沉积SiZrC过渡层5min;
(5)沉积SiZrCN梯度复合层:开启N2,N2气压为0.9Pa,Ar气压0.7~0.8Pa,偏压180V,SiZrC靶电流40A,沉积温度220℃,沉积SiZrCN复合层14min,其它参数不变,升高N2气压,N2气压每次升高0.1Pa,沉积SiZrCN复合层14min,直至N2气压升至1.4Pa,再沉积SiZrCN复合层14min;
(6)后处理:关闭各电源、离子源及气体源,涂层结束。
实施例2:
本发明SiZrCN梯度复合涂层刀具及其制备方法,该刀具为普通面铣刀,其刀具基体材料为:高速钢W18Cr4V,涂层刀具由内到外依次为刀具基体、Ti过渡层、SiZrC过渡层和氮含量梯度渐变的SiZrCN梯度复合涂层。沉积方式为采用非平衡磁控溅射和电弧镀的复合镀膜方法,沉积时使用2个非平衡磁控溅射SiZrC复合靶,2个电弧镀Ti靶,首先采用电弧镀沉积Ti过渡层,然后采用非平衡磁控溅射方法沉积SiZrC过渡层和氮含量梯度渐变的SiZrCN梯度复合涂层,具体步骤如下:
(1)前处理:将刀具基体表面抛光,去除表面油污、锈迹等杂质,然后依次放入酒精和丙酮中,超声清洗各25min,去除刀具表面油污和其它附着物,电吹风干燥充分后迅速放入镀膜机,抽真空至6.0×10-3Pa,加热至250℃,保温25min;
(2)离子清洗:通Ar气,其压力为1.5Pa,开启偏压电源,电压600V,占空比0.4,辉光放电清洗20min;降低偏压至400V,占空比0.2,开启离子源离子清洗30min,开启电弧镀Ti靶电源,Ti靶电流60A,偏压300V,离子轰击3min;
(3)沉积Ti过渡层:Ar气压0.7~0.8Pa,偏压降至220V,Ti靶电流80A,沉积温度200℃,电弧镀Ti过渡层6min;
(4)沉积SiZrC过渡层:Ar气压0.7Pa,偏压调至200V,关闭电弧镀Ti靶电源,开启非平衡磁控溅射SiZrC靶电流40A,沉积SiZrC过渡层6min;
(5)沉积SiZrCN梯度复合层:开启N2,N2气压为0.9Pa,Ar气压0.7~0.8Pa,偏压180V,SiZrC靶电流40A,沉积温度220℃,沉积SiZrCN复合层15min,其它参数不变,升高N2气压,N2气压每次升高0.1Pa,沉积SiZrCN复合层15min,直至N2气压升至1.4Pa,再沉积SiZrCN复合层15min;
(6)后处理:关闭各电源、离子源及气体源,涂层结束。
Claims (1)
1.一种SiZrCN梯度复合涂层刀具的制备方法,刀具基体材料为高速钢、工具钢、模具钢、硬质合金、陶瓷或立方氮化硼中的一种,涂层刀具由内到外依次为刀具基体、Ti过渡层、SiZrC过渡层和氮含量梯度渐变的SiZrCN梯度复合涂层, 其特征在于,沉积方式采用非平衡磁控溅射和电弧镀的复合镀膜方法,沉积时使用2个非平衡磁控溅射SiZrC复合靶,2个电弧镀Ti靶,首先采用电弧镀沉积Ti过渡层,然后采用非平衡磁控溅射方法沉积SiZrC过渡层和氮含量梯度渐变的SiZrCN梯度复合涂层,其制备方法的具体步骤如下:
(1)前处理:将刀具基体表面抛光,去除表面油污、锈迹杂质,然后依次放入酒精和丙酮中,超声清洗各25min,去除刀具表面油污和其它附着物,电吹风干燥充分后迅速放入镀膜机,抽真空至6.0×10-3Pa,加热至250℃,保温20~25min;
(2)离子清洗:通Ar气,其压力为1.5Pa,开启偏压电源,电压600V,占空比0.4,辉光放电清洗20min;降低偏压至400V,占空比0.2,开启离子源离子清洗30min,开启电弧镀Ti靶电源,Ti靶电流60A,偏压300V,离子轰击2~3min;
(3)沉积Ti过渡层:Ar气压0.7~0.8Pa,偏压降至220V,Ti靶电流80A,沉积温度200℃,电弧镀Ti过渡层5~6min;
(4)沉积SiZrC过渡层:Ar气压0.6~0.7Pa,偏压调至200V,关闭电弧镀Ti靶电源,开启非平衡磁控溅射SiZrC靶电流40A,沉积SiZrC过渡层层5~6min;
(5)沉积SiZrCN梯度复合层:开启N2,N2气压为0.9Pa,Ar气压0.7~0.8Pa,偏压180V,SiZrC靶电流40A,沉积温度220℃,沉积SiZrCN复合层14~15min,其它参数不变,升高N2气压,N2气压每次升高0.1Pa,沉积SiZrCN复合层14~15min,直至N2气压升至1.4Pa,再沉积SiZrCN复合层14~15min;
(6)后处理:关闭各电源、离子源及气体源,涂层结束。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710532824.7A CN107177828B (zh) | 2017-07-03 | 2017-07-03 | SiZrCN梯度复合涂层刀具及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710532824.7A CN107177828B (zh) | 2017-07-03 | 2017-07-03 | SiZrCN梯度复合涂层刀具及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107177828A CN107177828A (zh) | 2017-09-19 |
CN107177828B true CN107177828B (zh) | 2019-08-06 |
Family
ID=59845108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710532824.7A Active CN107177828B (zh) | 2017-07-03 | 2017-07-03 | SiZrCN梯度复合涂层刀具及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107177828B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109518184B (zh) * | 2018-11-23 | 2020-07-31 | 东南大学 | 一种Hf-BHfN-BHfNC复合涂层刀具及其制备方法 |
CN110484696B (zh) * | 2019-09-26 | 2021-03-30 | 济宁学院 | 一种减摩抗磨液压泵零件的制备方法 |
CN110468259B (zh) * | 2019-09-26 | 2021-03-23 | 济宁学院 | 一种抗磨液压泵零件的制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105063554A (zh) * | 2015-07-31 | 2015-11-18 | 山东大学 | ZrSiCN纳米复合梯度涂层刀具及其制备工艺 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE530861C2 (sv) * | 2006-12-15 | 2008-09-30 | Sandvik Intellectual Property | Belagd hårdmetallpinnfräs för medel- och finbearbetning av härdade stål och förfarande för dess framställning |
CN106086787B (zh) * | 2016-06-15 | 2018-09-28 | 广东银鹰实业集团有限公司 | Ti-TiN+MoS2/Ti叠层复合涂层刀具及其制备工艺 |
-
2017
- 2017-07-03 CN CN201710532824.7A patent/CN107177828B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105063554A (zh) * | 2015-07-31 | 2015-11-18 | 山东大学 | ZrSiCN纳米复合梯度涂层刀具及其制备工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN107177828A (zh) | 2017-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105112858B (zh) | 一种多层结构的纳米复合刀具涂层 | |
CN107523790B (zh) | 一种AlCrSiCuN纳米多层涂层及其制备方法 | |
CN107177828B (zh) | SiZrCN梯度复合涂层刀具及其制备方法 | |
CN101831608B (zh) | 一种纳米复合钛铝硅氮化物刀具涂层及其制备方法 | |
CN105803393B (zh) | 一种强韧耐磨涂层及其制备方法 | |
CN106967954A (zh) | 一种高温耐磨涂层、凹模及其制备方法 | |
CN107338411B (zh) | AlNbCN多元梯度复合涂层刀具及其制备方法 | |
CN105088127A (zh) | 一种涂层及其制备方法 | |
CN104325738A (zh) | 一种冷轧圆盘飞剪的硬质涂层及其制备方法 | |
CN102766846A (zh) | AN/Cr1-xAlxN/Cr30(Al,Y)70N硬质梯度涂层及其制备方法 | |
CN107177827B (zh) | SiNbC/SiNbCN叠层复合涂层刀具及其制备工艺 | |
CN106893975B (zh) | AlC/AlCN叠层涂层刀具及其制备工艺 | |
CN105861997B (zh) | TiCrN/MoS2多元减摩润滑涂层刀具及其制备工艺 | |
CN107354431A (zh) | TiMoCN梯度复合涂层刀具及其制备方法 | |
CN107099778B (zh) | 一种铝合金干式加工用非晶刀具涂层及其制备方法 | |
CN107177825B (zh) | ZrNbC/ZrNbCN叠层涂层刀具及其制备工艺 | |
CN107058951B (zh) | ZrAlC/ZrAlCN叠层复合涂层刀具及其制备工艺 | |
CN107354432A (zh) | ZrCrCN梯度复合涂层刀具及其制备方法 | |
CN201971890U (zh) | 一种提高金属合金基体硬度和抗腐蚀性能的涂层结构 | |
CN107338417B (zh) | AlMoCN梯度复合涂层刀具及其制备方法 | |
CN107177826B (zh) | MoNbC/MoNbCN叠层复合涂层刀具及其制备工艺 | |
CN107400865A (zh) | ZrAlCN梯度复合涂层刀具及其制备方法 | |
CN107177829B (zh) | AlNbC/AlNbCN叠层复合涂层刀具及其制备工艺 | |
CN107338412A (zh) | CrNbC/CrNbCN叠层复合涂层刀具及其制备工艺 | |
CN107385401A (zh) | SiNbCN多元梯度复合涂层刀具及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |