CN110484696B - 一种减摩抗磨液压泵零件的制备方法 - Google Patents

一种减摩抗磨液压泵零件的制备方法 Download PDF

Info

Publication number
CN110484696B
CN110484696B CN201910917990.8A CN201910917990A CN110484696B CN 110484696 B CN110484696 B CN 110484696B CN 201910917990 A CN201910917990 A CN 201910917990A CN 110484696 B CN110484696 B CN 110484696B
Authority
CN
China
Prior art keywords
hydraulic pump
coating
target
magnetron sputtering
hfvtic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910917990.8A
Other languages
English (en)
Other versions
CN110484696A (zh
Inventor
张璇
宋文龙
韩冰
朱伟伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Xiangtan Sanxing Hydraulic Machinery Manufacture Co ltd
Original Assignee
Jining University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jining University filed Critical Jining University
Priority to CN201910917990.8A priority Critical patent/CN110484696B/zh
Publication of CN110484696A publication Critical patent/CN110484696A/zh
Application granted granted Critical
Publication of CN110484696B publication Critical patent/CN110484696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Abstract

本发明涉及一种减摩抗磨液压泵零件的制备方法,属于液压泵制造技术领域,液压泵零件基体材料经过淬火、高温回火、粗精加工后采用离子镀方法进行渗碳处理,然后再通过离子镀和磁控溅射复合方法沉积表面的HfVTiC碳化物涂层,能够减缓碳化物涂层与液压泵零件基体材料之间的物理性能差异,提高基体材料的表面硬度与支撑作用,具有很高的表面硬度和芯部韧性,表面摩擦系数较低,具有良好的减摩润滑及摩擦磨损性能;同时由于制备工艺温度低、表面光洁度好,表面尺寸和形状精度不受影响,可以作为最终处理工艺。

Description

一种减摩抗磨液压泵零件的制备方法
技术领域
本发明涉及一种减摩抗磨液压泵零件的制备方法,属于液压泵制造技术领域。
背景技术
液压泵是液压传动系统的动力元件,其作用是将动力机(如电机和内燃机等)的机械能转换成油液的液压能,并为整个液压系统提供动力。随着工业技术的快速发展,液压泵逐渐朝着高压、高速及大流量方向发展。由于液压泵在高速运转同时还要承受高而集中的交变载荷作用,泵内的零件磨损是国产液压泵尤其是高压液压泵的主要损坏形式,因此,提高液压泵零件材料的使用性能是发展高压、高速液压泵的关键技术之一。
由于碳化物涂层具备高硬度,高强度,化学性质稳定,耐热,耐磨损等优良特性,因此有望通过在零件表面制备碳化物涂层或通过金属表层的碳化处理来提高零件的耐磨性。
目前制备碳化物涂层的技术主要有喷涂、渗碳以及气相沉积等方法。其中,喷涂是指借助压力或离心力,将涂层材料喷射到工件的表面,该方法制备涂层虽然具有较高的喷涂效率,但是涂层与工件基体的结合力很差,而且涂层的表面非常粗糙,不适合高压高速的恶劣工况条件;渗碳是指使碳原子渗入到钢类工件表层的过程,从而使工件表面获得很高的表面硬度,提高其耐磨性能。但是由于渗碳温度达到800℃以上,渗碳后工件仍要进行淬火和回火,使得工件表面发生较大变形,无法保证零件的尺寸和形状精度,处理完的零件仍需修磨和再加工,而且渗碳及后续热处理时间通常达到30小时以上,效率低下;气相沉积法,尤其是物理气相沉积(PVD),制备的涂层表面具有极高的硬度、强度,以及良好的热稳定性和耐磨性,而且该制备工艺温度可控制在400℃以下,不会导致零件基体组织变化,表面尺寸和形状精度也不受影响。因此,物理气相沉积技术(PVD)在表面处理领域极具潜力。但是,直接在液压泵零件表面制备PVD碳化物涂层,会由于基体硬度、弹性模量、热膨胀系数等性能与涂层材料相差较大,无法获得较高结合力的PVD涂层,使得PVD涂层过早脱落和失效。中国专利CN101058870A模具表面采用单一的PVD涂层,涂层与基体的结合力差以及PVD涂层同基体的力学匹配差是限制PVD涂层高硬度及低摩擦系数等优势发挥的重要因素。中国专利CN103727180A直接在碳钢表面制备了耐磨陶瓷涂层和金刚石涂层,由于基体较软的硬度无法支撑涂层以及基体与涂层之间明显的性能差异导致制备的涂层使用性能无法满足诸多实际使用要求,尤其是高速、重载、交变载荷工况条件下涂层很快脱落和磨损。
发明内容
本发明目的在于提供一种减摩抗磨液压泵零件的制备方法,提高基体材料的硬度,增强涂层与基体的附着性能,从而改善液压泵零件的减摩抗磨等综合性能,有效提高表面处理效率和工件的使用寿命。
本发明所述的减摩抗磨液压泵零件的制备方法,液压泵零件基体材料经过淬火、高温回火、粗精加工后采用离子镀方法进行渗碳处理,然后再通过离子镀和磁控溅射复合方法沉积表面的HfVTiC碳化物涂层,沉积时采用2个C离子镀靶,1个Hf磁控溅射靶,1个V磁控溅射靶和1个Ti磁控溅射靶;具体包括以下步骤:
(1)零件基体加工:零件基体毛坯→淬火→高温回火→粗加工→半精加工→去应力回火→精加工,通过淬火及高温回火处理能够保证零件基体芯部足够的韧性和抗冲击变形能力;
(2)零件表面预处理:采用金属清洗剂去除工件表面油污,漂洗烘干;
(3)零件表面处理:将零件依次放入酒精和丙酮中,超声清洗各25min,去除表面杂质和其它附着物,干燥充分后迅速放入PVD复合镀膜机,抽真空至5.0×10-3Pa,加热至300℃,保温40min;
(4)表面辉光清洗:通Ar气,其压力为2.0-2.5Pa,温度280℃,打开偏压电源电压700V,占空比0.3,表面辉光放电清洗25min;
(5)表面离子清洗:偏压调至650V,占空比0.2,Ar气压1.2Pa,温度260℃,开启离子源,离子清洗25min,开启电弧C靶电源,C靶电流120A,离子轰击5~6min;
(6)离子镀渗碳:C靶离子镀电源调为110A,Ar气压0.9~1.0Pa,基体偏压调至500V,温度250℃,进行离子渗碳30-35min;
(7)沉积碳化物梯度涂层:Ar气压调为0.8~0.9Pa,偏压降为250V,沉积温度230℃,C靶电流调至55A,打开磁控溅射Hf靶电流85A,磁控溅射V靶电流70A,磁控溅射Ti靶电流55A,沉积HfVTiC复合层5~6min;其它参数不变,增加C靶电流,C靶电流每次增加5A,沉积HfVTiC复合层5~6min,直至C靶电流增至90A,再沉积HfVTiC复合层5~6min;
(8)后处理:关闭各靶电源、离子源及气体源,涂层结束。
零件基体材料为20Cr、20Cr2Mo、20Mn2TiB、20Cr2Ni4、20CrMnTi、32Cr2MoV、40Cr中低碳钢及合金钢中的一种。
本发明所制得的液压泵零件具有以下结构:在零件基体表面向外依次具有表面渗碳扩散层、HfVTiC碳化物涂层。
本发明通过物理气相沉积技术对液压泵基体材料进行表面渗碳及涂层,将PVD方法、碳化物涂层与渗碳技术相结合,对工件表面先通过离子溅射的方法进行表面渗碳处理,然后再采用离子镀和磁控溅射复合方法沉积成分梯度变化的HfVTiC碳化物涂层,以减缓涂层与基体材料的物理性能差异,提高基体材料的硬度,增强涂层与基体的附着性能,从而改善液压泵零件的综合性能,有效提高表面处理效率和工件的使用寿命。
本发明通过表面离子渗碳处理,使碳原子渗入到零件基体内部,并随着深度的增加,碳原子的浓度逐渐减小,有利于形成高硬度和强度的碳化物梯度扩散层,从而为后续HfVTiC碳化物涂层的制备提供强有力的支撑基体以及良好的结合性能;而通过离子镀和磁控溅射复合方法制备的成分渐变的HfVTiC碳化物梯度涂层,可以减缓涂层与基体材料之间的性能差异,改善结构和性能上的匹配性能,增大涂层与基体的结合力和涂层的耐冲击性能。同时,该HfVTiC碳化物梯度涂层中,C元素可降低涂层表面的摩擦系数,降低液压泵工作过程中的噪音和摩擦磨损,Hf和V元素提高了涂层的抗磨损性和耐蚀性能,Ti元素提高了涂层的硬度和强度,成分渐变的HfVTiC梯度碳化物涂层能够阻止涂层裂纹的扩展,可改善工件的物理机械性能。
本发明与现有技术相比,具有以下有益效果。
本发明制得的具有减摩抗磨涂层的液压泵零件,与原有零件基体材料相比,可增强涂层与基体的附着性能1倍以上,降低零件表面的摩擦系数,减小工作过程中零件之间的摩擦和磨损,表面硬度提高2倍以上,由于采用物理气相沉积技术进行渗碳和涂层处理,缩短工艺处理时间90%以上,延长液压泵的使用寿命一倍以上,降低液压泵的维护和保养成本50-70%。同时,由于该制备工艺温度可控制在300℃以下,不会导致零件基体组织性能退化,表面尺寸和形状精度不受影响,处理完后无需进行修磨和再加工,可作为零件的最终处理工艺。
附图说明
图1为图1为本发明制备的减摩抗磨液压泵零件的表面结构示意图。
图中:1、零件基体,2、表面渗碳扩散层,3、HfVTiC碳化物涂层。
具体实施方式
下面给出本发明的两个最佳实施例。
本发明所述的液压泵零件为可用于生产制造液压泵的所有金属零件。
实施例1
本发明所述的减摩抗磨液压泵零件的制备方法,液压泵零件基体的材料为32Cr2MoV,液压泵零件基体材料经过淬火、高温回火、粗精加工后采用离子镀方法进行渗碳处理,然后再通过离子镀和磁控溅射复合方法沉积表面的HfVTiC碳化物涂层,沉积时采用2个C离子镀靶,1个Hf磁控溅射靶,1个V磁控溅射靶和1个Ti磁控溅射靶;具体包括以下步骤:
(1)零件基体加工:零件基体毛坯→淬火(860~880℃,水冷)→高温回火(540~550℃,水冷)→粗加工→半精加工→去应力回火(500~530℃,空冷)→精加工(表面粗糙度Ra1.6μm,加工尺寸:公差下限);
(2)零件表面预处理:采用金属清洗剂去除工件表面油污,漂洗烘干;
(3)零件表面处理:将零件依次放入酒精和丙酮中,超声清洗各25min,去除表面杂质和其它附着物,干燥充分后迅速放入PVD复合镀膜机,抽真空至5.0×10-3Pa,加热至300℃,保温40min;
(4)表面辉光清洗:通Ar气,其压力为2.0-2.5Pa,温度280℃,打开偏压电源电压700V,占空比0.3,表面辉光放电清洗25min;
(5)表面离子清洗:偏压调至650V,占空比0.2,Ar气压1.2Pa,温度260℃,开启离子源,离子清洗25min,开启电弧C靶电源,C靶电流120A,离子轰击5~6min;
(6)离子镀渗碳:C靶离子镀电源调为110A,Ar气压0.9~1.0Pa,基体偏压调至500V,温度250℃,进行离子渗碳30min;
(7)沉积碳化物梯度涂层:Ar气压调为0.8~0.9Pa,偏压降为250V,沉积温度230℃,C靶电流调至55A,打开磁控溅射Hf靶电流85A,磁控溅射V靶电流70A,磁控溅射Ti靶电流55A,沉积HfVTiC复合层5min;其它参数不变,增加C靶电流,C靶电流每次增加5A,沉积HfVTiC复合层5min,直至C靶电流增至90A,再沉积HfVTiC复合层5min;
(8)后处理:关闭各靶电源、离子源及气体源,涂层结束。
本实施例所制得的具有减摩抗磨涂层的液压泵零件,如图1,在在零件基体1表面向外依次具有表面渗碳扩散层2、HfVTiC碳化物涂层3,所制得的液压泵零件表面显微硬度达到HV2540,相比单独传统渗碳工艺的表面硬度(HV650)提高了近3倍;结合强度为68-74N,相比单纯PVD涂层的结合强度(28-35N)提高了110-140%;涂层厚度为1.8μm,涂层表面粗糙度达到Ra75nm。整个有效渗碳及涂层时小于1.5h,只有传统渗碳工艺处理时间的5%,而且没有后续的修磨和再加工工序。
在相同的摩擦实验条件下(CETR UMT球盘摩擦磨损试验机,往复直线运动,对磨球为表面硬度HRC55-60的轴承钢,加载载荷80N,滑动速度10mm/s,对磨时间30min),本发明制备的减摩抗磨涂层的表面摩擦系数为0.34-0.365,磨损率为2.04-2.32×10-6mm3/N·m;与目前使用广泛的未加渗碳层的TiAlN氮化物涂层相比,表面摩擦系数降低了35%以上,磨损率降低了34-38%。
实施例2
本发明所述的减摩抗磨液压泵零件的制备方法,液压泵零件基体的材料为20CrMnTi,液压泵零件基体材料经过淬火、高温回火、粗精加工后采用离子镀方法进行渗碳处理,然后再通过离子镀和磁控溅射复合方法沉积表面的HfVTiC碳化物涂层,沉积时采用2个C离子镀靶,1个Hf磁控溅射靶,1个V磁控溅射靶和1个Ti磁控溅射靶;具体包括以下步骤:
(1)零件基体加工:零件基体毛坯→淬火(910~930℃,油淬)→高温回火(560~620℃,空冷)→粗加工→半精加工→去应力回火(550~600℃,油冷)→精加工(表面粗糙度Ra1.6μm,加工尺寸:公差下限);
(2)零件表面预处理:采用金属清洗剂去除工件表面油污,漂洗烘干;
(3)零件表面处理:将零件依次放入酒精和丙酮中,超声清洗各25min,去除表面杂质和其它附着物,干燥充分后迅速放入PVD复合镀膜机,抽真空至5.0×10-3Pa,加热至300℃,保温40min;
(4)表面辉光清洗:通Ar气,其压力为2.0-2.5Pa,温度280℃,打开偏压电源电压700V,占空比0.3,表面辉光放电清洗25min;
(5)表面离子清洗:偏压调至650V,占空比0.2,Ar气压1.2Pa,温度260℃,开启离子源,离子清洗25min,开启电弧C靶电源,C靶电流120A,离子轰击5~6min;
(6)离子镀渗碳:C靶离子镀电源调为110A,Ar气压0.9~1.0Pa,基体偏压调至500V,温度250℃,进行离子渗碳35min;
(7)沉积碳化物梯度涂层:Ar气压调为0.8~0.9Pa,偏压降为250V,沉积温度230℃,C靶电流调至55A,打开磁控溅射Hf靶电流85A,磁控溅射V靶电流70A,磁控溅射Ti靶电流55A,沉积HfVTiC复合层6min;其它参数不变,增加C靶电流,C靶电流每次增加5A,沉积HfVTiC复合层6min,直至C靶电流增至90A,再沉积HfVTiC复合层6min;
(8)后处理:关闭各靶电源、离子源及气体源,涂层结束。
本实施例制得的具有HfVTiC减摩抗磨涂层的液压泵零件表面显微硬度达到HV2340,结合强度为70-78N,涂层厚度为2.1μm,涂层表面粗糙度达到Ra 93nm,整个有效渗碳及涂层时间约为2h。

Claims (1)

1.一种减摩抗磨液压泵零件的制备方法,其特征在于:零件基体材料为20Cr、20Cr2Mo、20Mn2TiB、20Cr2Ni4、20CrMnTi、32Cr2MoV、40Cr中低碳钢及合金钢中的一种,所制得的液压泵零件基体表面由内向外依次为基体、表面渗碳扩散层、HfVTiC碳化物涂层;制备过程为:液压泵零件基体材料经过淬火、高温回火、粗精加工后采用离子镀方法进行渗碳处理,然后再通过离子镀和磁控溅射复合方法沉积表面的HfVTiC碳化物涂层,沉积时采用2个C离子镀靶,1个Hf磁控溅射靶,1个V磁控溅射靶和1个Ti磁控溅射靶;具体包括以下步骤:
(1)零件基体加工:零件基体毛坯→淬火→高温回火→粗加工→半精加工→去应力回火→精加工;
(2)零件表面预处理:采用金属清洗剂去除工件表面油污,漂洗烘干;
(3)零件表面处理:将零件依次放入酒精和丙酮中,超声清洗各25min,去除表面杂质和其它附着物,干燥充分后迅速放入PVD复合镀膜机,抽真空至5.0×10-3Pa,加热至300℃,保温40min;
(4)表面辉光清洗:通Ar气,其压力为2.0-2.5Pa,温度280℃,打开偏压电源电压700V,占空比0.3,表面辉光放电清洗25min;
(5)表面离子清洗:偏压调至650V,占空比0.2,Ar气压1.2Pa,温度260℃,开启离子源,离子清洗25min,开启电弧C靶电源,C靶电流120A,离子轰击5~6min;
(6)离子镀渗碳:C靶离子镀电源调为110A,Ar气压0.9~1.0Pa,基体偏压调至500V,温度250℃,进行离子渗碳30-35min;
(7)沉积碳化物梯度涂层:Ar气压调为0.8~0.9Pa,偏压降为250V,沉积温度230℃,C靶电流调至55A,打开磁控溅射Hf靶电流85A,磁控溅射V靶电流70A,磁控溅射Ti靶电流55A,沉积HfVTiC复合层5~6min;其它参数不变,增加C靶电流,C靶电流每次增加5A,沉积HfVTiC复合层5~6min,直至C靶电流增至90A,再沉积HfVTiC复合层5~6min;
(8)后处理:关闭各靶电源、离子源及气体源,涂层结束。
CN201910917990.8A 2019-09-26 2019-09-26 一种减摩抗磨液压泵零件的制备方法 Active CN110484696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910917990.8A CN110484696B (zh) 2019-09-26 2019-09-26 一种减摩抗磨液压泵零件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910917990.8A CN110484696B (zh) 2019-09-26 2019-09-26 一种减摩抗磨液压泵零件的制备方法

Publications (2)

Publication Number Publication Date
CN110484696A CN110484696A (zh) 2019-11-22
CN110484696B true CN110484696B (zh) 2021-03-30

Family

ID=68544438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910917990.8A Active CN110484696B (zh) 2019-09-26 2019-09-26 一种减摩抗磨液压泵零件的制备方法

Country Status (1)

Country Link
CN (1) CN110484696B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690794B (zh) * 2020-01-17 2022-05-20 济宁学院 一种工程机械终传动齿轮的制备方法
CN113265641B (zh) * 2021-03-25 2022-07-22 安徽工业大学 一种基于低温辉光等离子体的疏水减摩自润滑碳膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871434A (en) * 1986-04-05 1989-10-03 Leybold-Heraeus Gmbh Process for equipment to coat tools for machining and forming techniques with mechanically resistant layers
JP2003073808A (ja) * 2001-08-28 2003-03-12 Sumitomo Electric Ind Ltd 表面処理膜
CN100999822A (zh) * 2006-12-21 2007-07-18 武汉科技大学 一种高硅取向硅钢薄板的制备方法
CN103409722A (zh) * 2013-07-15 2013-11-27 北京航空航天大学 一种在航空发动机压气机叶片表面制备抗侵蚀涂层的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049522A (en) * 1976-02-26 1977-09-20 International Business Machines Corporation Low coercivity iron-silicon material, shields, and process
US5108846A (en) * 1990-07-12 1992-04-28 Helmut Steininger Protective layers of germanium ceramics
CN102444573A (zh) * 2010-10-11 2012-05-09 上海腾辉锻造有限公司 一种锻件泵轴的制造方法
CN102965571B (zh) * 2012-10-25 2014-06-11 安徽蓝博旺机械集团振邺机械有限公司 一种液压泵泵体粉末冶金方法
CN103737092A (zh) * 2013-11-13 2014-04-23 厦门金鹭特种合金有限公司 一种pcb用pvd涂层微型铣刀及其制备方法
EP3018233A1 (de) * 2014-11-05 2016-05-11 Walter Ag Schneidwerkzeug mit mehrlagiger PVD-Beschichtung
CN107177828B (zh) * 2017-07-03 2019-08-06 济宁学院 SiZrCN梯度复合涂层刀具及其制备方法
CN107338411B (zh) * 2017-07-03 2019-08-23 济宁学院 AlNbCN多元梯度复合涂层刀具及其制备方法
CN107617713B (zh) * 2017-09-12 2019-03-22 河南中原特钢装备制造有限公司 一种大规格结晶辊钢锻件锻造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871434A (en) * 1986-04-05 1989-10-03 Leybold-Heraeus Gmbh Process for equipment to coat tools for machining and forming techniques with mechanically resistant layers
JP2003073808A (ja) * 2001-08-28 2003-03-12 Sumitomo Electric Ind Ltd 表面処理膜
CN100999822A (zh) * 2006-12-21 2007-07-18 武汉科技大学 一种高硅取向硅钢薄板的制备方法
CN103409722A (zh) * 2013-07-15 2013-11-27 北京航空航天大学 一种在航空发动机压气机叶片表面制备抗侵蚀涂层的方法

Also Published As

Publication number Publication date
CN110484696A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN111690794B (zh) 一种工程机械终传动齿轮的制备方法
CN111485070B (zh) 一种减摩耐磨齿轮零件的制备工艺
CN110616401B (zh) 一种耐磨液压泵零件的制备方法
CN110468259B (zh) 一种抗磨液压泵零件的制备方法
CN108411244B (zh) 一种提高M50NiL轴承钢表面摩擦学性能的方法
CN104480478B (zh) 一种渗氮pvd复合涂层及其制备方法
CN110484696B (zh) 一种减摩抗磨液压泵零件的制备方法
CN102092166A (zh) 铝合金活塞多层梯度类金刚石纳米复合涂层及其制备方法
CN106893987B (zh) 一种物理气相沉积Ta-C涂层的制备方法及Ta-C涂层
KR20140019947A (ko) 알루미늄 다이캐스팅 금형용 코팅재 및 이의 제조방법
CN110629170B (zh) 一种提高高压液压泵零件耐磨性的方法
CN105220120B (zh) 一种多层复合类富勒烯薄膜在汽车发动机上产业化的方法
CN101665940A (zh) 活塞环表面类金刚石复合涂层的制备方法
CN113774315A (zh) 一种航空重载齿轮及其制备方法
CN113025966A (zh) 一种提高热锻模具寿命的Zr基高熵合金涂层及其制备方法
US20100078314A1 (en) Method for coating fuel system components
CN111254393B (zh) 一种耐磨推土机传动轴零件的制备方法
CN105154880A (zh) 汽轮机转子轮槽铣刀表面TiCN多层复合涂层制备工艺
KR101551963B1 (ko) 알루미늄 다이캐스팅용 코팅재 및 이의 코팅방법
CN105296940A (zh) 发动机正时链条销轴碳氮共渗加真空离子镀钒工艺
CN112030105A (zh) 一种空压机转子表面AlCrNx涂层的制备方法
CN114875401B (zh) 一种高压液压泵齿轮轴的表面改性方法
JP3954739B2 (ja) 窒素含有Cr被膜の製造方法
CN110607508A (zh) 用于齿轮泵齿轮表面的硬质硼碳复合薄膜及其制备方法
CN109252140A (zh) 一种冷作模具钢表面制备AlCrCN涂层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230928

Address after: 411100 Yunxiang South Road (Xiangtan Tianyi Demonstration Zone), Yiguhe Town, Xiangtan County, Xiangtan City, Hunan Province

Patentee after: XIANGTAN SANXING HYDRAULIC MACHINERY MANUFACTURE Co.,Ltd.

Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Dragon totem Technology (Hefei) Co.,Ltd.

Effective date of registration: 20230928

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: 273100 No.1 Xingtan Road, Qufu City, Jining City, Shandong Province

Patentee before: JINING University

TR01 Transfer of patent right