CN107064811A - 一种锂电池soc在线估计方法 - Google Patents

一种锂电池soc在线估计方法 Download PDF

Info

Publication number
CN107064811A
CN107064811A CN201710116581.9A CN201710116581A CN107064811A CN 107064811 A CN107064811 A CN 107064811A CN 201710116581 A CN201710116581 A CN 201710116581A CN 107064811 A CN107064811 A CN 107064811A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710116581.9A
Other languages
English (en)
Inventor
康龙云
王书彪
郭向伟
卢楚生
令狐金卿
王则沣
冯元彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710116581.9A priority Critical patent/CN107064811A/zh
Publication of CN107064811A publication Critical patent/CN107064811A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computer Hardware Design (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Operations Research (AREA)
  • Evolutionary Computation (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computing Systems (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种锂电池SOC在线估计方法,包括以下步骤:1)测量电池的开路电压,根据OCV‑SOC曲线得到电池荷电状态初值;2)建立电池的二阶RC等效模型,估算电池等效模型的参数初值;3)启动估算程序,根据电池荷电状态的初值和电池等效模型的参数初值,设定状态方程的匹配系数初值;4)利用自适应无迹卡尔曼滤波算法得到当前电池荷电状态值,根据OCV‑SOC曲线得到当前的开路电压;5)启动带遗忘因子的最小二乘法对当前电池等效模型的参数进行辨识,将辨识出来的参数更新状态方程的匹配系数,求出下一时刻电池荷电状态值;6)重复步骤4)和5),得到每个时刻的电池荷电状态值。所述方法相比于传统无迹卡尔曼滤波算法精度更高、误差收敛性更强。

Description

一种锂电池SOC在线估计方法
技术领域
本发明涉及电动汽车电池管理领域,具体涉及一种锂电池SOC在线估计方法。
背景技术
近年来,随着空气质量的日益恶化以及石油资源的渐趋匮乏,新能源汽车,尤其是纯电动汽车成为当今世界各大汽车公司的开发热点。动力电池组作为电动汽车的关键部件,动力电池SOC被用来直接反应电池的剩余电量,是整车控制系统制定最优能量管理策略的重要依据,动力电池SOC值的准确估计对于提高电池安全可靠性、提高电池能量利用率、延长电池寿命具有重要意义。
目前,常用的SOC估计方法主要有开路电压法、安时积分法、卡尔曼滤波法和神经网络法等。
锂电池开路电压(OCV)可以表现其当前状态电池的放电能力,其与SOC有良好的线性关系,根据OCV-SOC关系估计SOC的方法称为开路电压法。开路电压在电池工作状态下不能直接测量,只有在电池未工作的情况下才能近似测量,所以这种方法只适用于电动汽车的驻车状态。通常,开路电压法用于为其它估计方法提供SOC的初始值。
安时积分方法的基本原理是电池在充放电过程中,通过电流对时间积分,可以计算出电池充入或放出的电量,将此电量除以电池当前状态可用容量,再与电池初始SOC进行相应的加减运算即可得出当前状态SOC值。安时积分法具有成本低、测量方便等优点,但在电动汽车场合应用时也有以下几个问题:需要借助其它方法获得SOC初始值;电流测量精度对SOC估计精度具有决定性影响;积分过程的累积误差无法消除,一次计算过程中如果充放电时间过长,累积误差可能导致估计结果不可靠。
神经网络法具有良好的非线性映射能力,理论上动力电池的非线性特性能够较好的由神经网络映射,但其需要大量的数据进行训练,使用复杂,训练数据和训练方法对估计精度的影响较大。
卡尔曼滤波法的核心思想是对动态系统的状态做出最小均方意义上的最优估计,卡尔曼滤波的优点在于误差纠正能力较强,不足在于估计精度对电池模型的准确性依赖较高。
因此需要建立一种简单易行、估算精度较高,鲁棒性强且能消除累积误差的SOC估计方法。
发明内容
本发明的目的是针对上述现有技术的不足,提供了一种锂电池SOC在线估计方法,该方法采用基于最小二乘法和卡尔曼滤波法相结合的状态变量的联合估计算法,在一步递推过程中先用最小二乘法更新卡尔曼滤波器的模型参数,再根据滤波得到的SOC求出OCV,根据OCV和测得的电压、电流信号用最小二乘法估计并更新下一步卡尔曼滤波运算中的模型参数,依次递推。实现了比传统无迹卡尔曼滤波算法精度更高,误差收敛性更强的技术效果。
本发明的目的可以通过如下技术方案实现:
一种锂电池SOC在线估计方法,所述方法包括以下步骤:
1)在估算程序开始前,测量电池在静止状态下的开路电压Voc(0),根据OCV-SOC曲线,得到电池荷电状态的初始值SOC(0);
2)根据电池的外特性建立电池的二阶RC等效模型,该模型包括一个电压源Voc、一个直流内阻R以及两个RC并联环路,所述RC并联环路包括Rs、Cs、Rp和Cp,根据电池工作初期的电压响应曲线,通过曲线拟合的方法,估算电池等效模型的参数初始值R(0)、Rs(0)、Cs(0)、Rp(0)和Cp(0);
3)启动估算程序,根据步骤1)中电池荷电状态的初始值SOC(0)和步骤2)中电池等效模型的参数初始值R(0)、Rs(0)、Cs(0)、Rp(0)和Cp(0),设定状态方程的匹配系数初值;
4)利用自适应无迹卡尔曼滤波算法得到当前电池荷电状态值SOC(k),根据OCV-SOC曲线,得到当前的开路电压Voc(k);
5)启动带遗忘因子的最小二乘法,对当前电池等效模型的参数R(k)、Rs(k)、Cs(k)、Rp(k)和Cp(k)进行辨识,将辨识出来的当前电池等效模型的参数更新状态方程的匹配系数,求出下一时刻电池荷电状态值;
6)重复步骤4)和步骤5),反复推算,得到每个时刻的电池荷电状态值。
优选的,所述步骤3)中设定状态方程的匹配系数初值的具体过程为:根据电池的二阶RC等效模型以及荷电状态的积分法得:
其中,E(t)为电池开路电压OCV值,U(t)为电池端电压值,us为极化电容Cs两端的电压,up为极化电容Cp两端的电压,SOC(t)为SOC估计值,SOC(t')为电池荷电状态上一时刻的初始值,CN为电池最大可用容量,η为库伦效率,对上式进行离散化,得状态方程:
Uk=Ek-IkR-Us,k-Up,k+υ(k)=F(SOCk)-IkR-Us,k-Up,k+υ(k)
其中:
其中,as、bs、ap、bp为状态方程的匹配系数,ω1(k)、ω3(k)、ω5(k)为系统噪声。
优选的,所述步骤4)的具体过程为:
令:
为了便于区别,在此取xk=[SOCk,Us,k,Up,k]为系统的原始状态;取yk为原始输出,对应电路模型中的Uk;取uk为控制量,对应电路模型中的Ik,且令Ψ=[y1,y2…yk],然后进行自适应无迹卡尔曼滤波运算:
(1)状态估计时间更新
基于上一时刻状态最优估计得到扩展状态的均值和方差,据此选择(2L+1)个采样点,最后将采样点通过状态方程进行变换并完成状态预测:
一、初始化,初始状态确定
二、状态扩维
其中,Q、R为协方差矩阵,是对称的矩阵,对角线上是各个维度上的方差;
扩展状态均值:
扩展状态方差:
三、选取采样点
Sample={zi,Xk-1,i},其中i=0、1、2、……2L+1,Xk-1,i为所选粒子,zi是相应的加权值,粒子点按如下方式选取:
对应的加权系数为:
其中,λ为比例系数,满足:λ=α2(L+t)-L,z(m)、z(c)分别是粒子点均值和方差相对应的加权值;而表示(L+λ)PX,k-1的平方根矩阵的第i列;参数t满足t≥0以保证方差阵为正定,此处默认t=0;α控制粒子分布距离,且满足10-2≤α≤1,在此取α=1,β用于减小高阶项误差,对以正态分布最优取β=2,分析采样点又分为 三部分,据此进行状态估计的时间更新为:
(2)均方误差时间更新
(3)系统输出先验估计
(4)滤波增益矩阵计算
(5)状态最优估计
(6)均方误差估计
由于过程噪声和测量噪声都是时变的,为了让噪声协方差实时更新,令:
其中,μk和yk|k-1,i分别是测量输出量的残差和各sigma点估算得到的测量输出量的残差,即可实现过程噪声和测量噪声的实时更新。
优选的,所述步骤5)的具体过程为:
将状态方程进行拉普拉斯变化得
所以:
其中,G(s)为回路阻抗的拉普拉斯形式;
采用双线性变换进行离散化,令可得离散化的传递函数:
其中,a1、a2、a3、a4、a5为相应的常数系数,将上式转化成差分方程可得:
y(k)=E(k)-U(k)
=a1y(k-1)+a2y(k-2)+a3I(k)+a4I(k-1)+a5I(k-2)
其中,I(k)为系统输入,y(k)为系统输出,令:
θ=[a1 a2 a3 a4 a5]T
设k时刻传感器采样误差为e(k),则:
扩展为N维,k=1,2,……N+n,n=2,可得如下式子:
Y=[y(3),y(4),y(5)……y(N+2)]T
e=[e(3),e(4),e(5)……e(N+2)]T
取泛函数J(θ):
因为最小二乘法原理是使J(θ)取最小值,所以求J(θ)极值,令:
可得:
对上述过程通过递推最小二乘法进行递推运算,如下所示:
其中,是上一时刻系统所估计的参考值,是此时刻的观测值,y(k+1)作为系统实际的观测值,与相减后便为预测误差,将预测误差与增益项K(k+1)相乘,便是此刻预测值的校正,最终获得此时刻最优估计值必须提供符合条件的和P(0),才能获得增益项K(k+1),进而启动最小二乘法,为任意值,P(0)=αI,α为单位阵的系数,I为单位阵;
递推最小二乘法是具有无限记忆长度的算法,对于电池系统,最小二乘法在递推运算过程中旧数据越来越多会导致递推结果不能良好的反应新数据的特性,为避免上述情况,引入遗忘因子λ,0<λ<1,即:
所以,即使(N+1)很大,P(N+1)也不趋于0,有效的克服了“数据饱和”现象,所述带遗忘因子最小二乘算法的步骤为:
当λ=1时,为普通最小二乘法,λ越小跟踪能力越强,但波动也越大;
由上述节算法求出θ值后,令:
可得:
由系数对应相等可得:
此式右边的系数通过递推算法求出,左边即是模型的未知参数,至此带有遗忘因子的最小二乘法参数辨识的推导过程完成。
优选的,所述遗忘因子λ的取值范围为:0.95<λ<1。
本发明与现有技术相比,具有如下优点和有益效果:
1、本发明通过使用带遗忘因子的最小二乘法与自适应无迹卡尔曼滤波滤波算法相结合,估计动力电池荷电状态值,实现了比传统无迹卡尔曼滤波算法精度更高,误差收敛性更强的技术效果。
2、本发明通过采用遗忘因子λ(0<λ<1),避免了最小二乘法递推过程中旧数据越来越多、导致递推结果不能良好的反应新数据的特性的问题,有效的克服了“数据饱和”现象。
3、本发明在自适应无迹卡尔曼滤波算法(AUKF)中,将每次测量的输出值和模型估计到的输出值的残差及各状态sigma点估算的输出值残差的加权作为新息来估计当前时刻的噪声协方差,让协方差随时间而更新,改变了传统无迹卡尔曼滤波算法(UKF)中协方差为常量不能满足噪声实时更新的特性,从而提高了估计精度。
附图说明
图1为本发明实施例估计方法的流程图。
图2为本发明实施例根据电池的外特性建立的电池二阶RC等效模型。
图3为锂电池放电结束端的电压响应曲线。
图4为本发明所述锂电池SOC在线联合估计算法与传统自适应无迹卡尔曼滤波算法的SOC估计值比较图。
图5为本发明所述锂电池SOC在线联合估计算法与传统自适应无迹卡尔曼滤波算法的SOC估计值误差比较图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例:
本实施例提供了一种锂电池SOC在线估计方法,如图1所示,所述方法包括以下步骤:
步骤一、在估算程序开始前,测量电池在静止状态下的开路电压Voc(0),根据OCV-SOC曲线,得到电池荷电状态的初始值SOC(0);
步骤二、根据电池放电结束端的电压响应曲线,如图3所示,建立电池的二阶RC等效模型,如图2所示,该模型包括一个电压源Voc、一个直流内阻R以及两个RC并联环路,所述RC并联环路包括Rs、Cs、Rp和Cp,根据电池工作初期的电压响应曲线,通过曲线拟合的方法,估算电池等效模型的参数初始值R(0)、Rs(0)、Cs(0)、Rp(0)和Cp(0);
步骤三、启动估算程序,根据步骤一中电池荷电状态的初始值SOC(0)和步骤二中电池等效模型的参数初始值R(0)、Rs(0)、Cs(0)、Rp(0)和Cp(0),设定状态方程的匹配系数初值;
其中,步骤3)中设定状态方程的匹配系数初值的具体过程为:根据电池的二阶RC等效模型以及荷电状态的积分法得:
其中,E(t)为电池开路电压OCV值,U(t)为电池端电压值,us为极化电容Cs两端的电压,up为极化电容Cp两端的电压,SOC(t)为SOC估计值,SOC(t')为电池荷电状态上一时刻的初始值,CN为电池最大可用容量,η为库伦效率,对上式进行离散化,得状态方程:
Uk=Ek-IkR-Us,k-Up,k+υ(k)=F(SOCk)-IkR-Us,k-Up,k+υ(k)
其中:
其中,as、bs、ap、bp为状态方程的匹配系数,ω1(k)、ω3(k)、ω5(k)为系统噪声。
步骤四、利用自适应无迹卡尔曼滤波算法得到当前电池荷电状态值SOC(k),根据OCV-SOC曲线,得到当前的开路电压Voc(k);
其中,所述步骤4)的具体过程为:
令:
为了便于区别,在此取xk=[SOCk,Us,k,Up,k]为系统的原始状态;取yk为原始输出,对应电路模型中的Uk;取uk为控制量,对应电路模型中的Ik,且令Ψ=[y1,y2…yk],然后进行自适应无迹卡尔曼滤波运算:
(1)状态估计时间更新
基于上一时刻状态最优估计得到扩展状态的均值和方差,据此选择(2L+1)个采样点,最后将采样点通过状态方程进行变换并完成状态预测:
一、初始化,初始状态确定
二、状态扩维
其中,Q、R为协方差矩阵,是对称的矩阵,对角线上是各个维度上的方差;
扩展状态均值:
扩展状态方差:
三、选取采样点
Sample={zi,Xk-1,i},其中i=0、1、2、……2L+1,Xk-1,i为所选粒子,zi是相应的加权值,粒子点按如下方式选取:
对应的加权系数为:
其中,λ为比例系数,满足:λ=α2(L+t)-L,z(m)、z(c)分别是粒子点均值和方差相对应的加权值;而表示(L+λ)PX,k-1的平方根矩阵的第i列;参数t满足t≥0以保证方差阵为正定,此处默认t=0;α控制粒子分布距离,且满足10-2≤α≤1,在此取α=1,β用于减小高阶项误差,对以正态分布最优取β=2,分析采样点又分为 三部分,据此进行状态估计的时间更新为:
(2)均方误差时间更新
(3)系统输出先验估计
(4)滤波增益矩阵计算
(5)状态最优估计
(6)均方误差估计
由于过程噪声和测量噪声都是时变的,为了让噪声协方差实时更新,令:
其中,μk和yk|k-1,i分别是测量输出量的残差和各sigma点估算得到的测量输出量的残差,即可实现过程噪声和测量噪声的实时更新。
步骤五、启动带遗忘因子的最小二乘法,对当前电池等效模型的参数R(k)、Rs(k)、Cs(k)、Rp(k)和Cp(k)进行辨识,将辨识出来的当前电池等效模型的参数更新状态方程的匹配系数,求出下一时刻电池荷电状态值;
其中,所述步骤5)的具体过程为:
将状态方程进行拉普拉斯变化得
所以:
其中,G(s)为回路阻抗的拉普拉斯形式;
采用双线性变换进行离散化,令可得离散化的传递函数:
其中,a1、a2、a3、a4、a5为相应的常数系数,将上式转化成差分方程可得:
y(k)=E(k)-U(k)
=a1y(k-1)+a2y(k-2)+a3I(k)+a4I(k-1)+a5I(k-2)
其中,I(k)为系统输入,y(k)为系统输出,令:
θ=[a1 a2 a3 a4 a5]T
设k时刻传感器采样误差为e(k),则:
扩展为N维,k=1,2,……N+n,n=2,可得如下式子:
Y=[y(3),y(4),y(5)……y(N+2)]T
e=[e(3),e(4),e(5)……e(N+2)]T
取泛函数J(θ):
因为最小二乘法原理是使J(θ)取最小值,所以求J(θ)极值,令:
可得:
对上述过程通过递推最小二乘法进行递推运算,如下所示:
其中,是上一时刻系统所估计的参考值,是此时刻的观测值,y(k+1)作为系统实际的观测值,与相减后便为预测误差,将预测误差与增益项K(k+1)相乘,便是此刻预测值的校正,最终获得此时刻最优估计值必须提供符合条件的和P(0),才能获得增益项K(k+1),进而启动最小二乘法,为任意值,P(0)=αI,α为单位阵的系数,I为单位阵;
递推最小二乘法是具有无限记忆长度的算法,对于电池系统,最小二乘法在递推运算过程中旧数据越来越多会导致递推结果不能良好的反应新数据的特性,为避免上述情况,引入遗忘因子λ,0<λ<1,即:
所以,即使(N+1)很大,P(N+1)也不趋于0,有效的克服了“数据饱和”现象,所述带遗忘因子最小二乘算法的步骤为:
当λ=1时,为普通最小二乘法,λ越小跟踪能力越强,但波动也越大,这里遗忘因子λ的取值范围为:0.95<λ<1;
由上述节算法求出θ值后,令:
可得:
由系数对应相等可得:
此式右边的系数通过递推算法求出,左边即是模型的未知参数,至此带有遗忘因子的最小二乘法参数辨识的推导过程完成。
步骤六、重复步骤四和步骤五,反复推算,得到每个时刻的电池荷电状态值。
由图4与图5所示的本发明所述锂电池SOC在线联合估计算法与传统自适应无迹卡尔曼滤波算法的SOC估计值比较图与SOC估计值误差比较图可以看出,本发明所述联合估计算法相比于传统无迹卡尔曼滤波算法精度更高、误差收敛性更强。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明专利构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (5)

1.一种锂电池SOC在线估计方法,其特征在于,所述方法包括以下步骤:
1)在估算程序开始前,测量电池在静止状态下的开路电压Voc(0),根据OCV-SOC曲线,得到电池荷电状态的初始值SOC(0);
2)根据电池的外特性建立电池的二阶RC等效模型,该模型包括一个电压源Voc、一个直流内阻R以及两个RC并联环路,所述RC并联环路包括Rs、Cs、Rp和Cp,根据电池工作初期的电压响应曲线,通过曲线拟合的方法,估算电池等效模型的参数初始值R(0)、Rs(0)、Cs(0)、Rp(0)和Cp(0);
3)启动估算程序,根据步骤1)中电池荷电状态的初始值SOC(0)和步骤2)中电池等效模型的参数初始值R(0)、Rs(0)、Cs(0)、Rp(0)和Cp(0),设定状态方程的匹配系数初值;
4)利用自适应无迹卡尔曼滤波算法得到当前电池荷电状态值SOC(k),根据OCV-SOC曲线,得到当前的开路电压Voc(k);
5)启动带遗忘因子的最小二乘法,对当前电池等效模型的参数R(k)、Rs(k)、Cs(k)、Rp(k)和Cp(k)进行辨识,将辨识出来的当前电池等效模型的参数更新状态方程的匹配系数,求出下一时刻电池荷电状态值;
6)重复步骤4)和步骤5),反复推算,得到每个时刻的电池荷电状态值。
2.根据权利要求1所述的一种锂电池SOC在线估计方法,其特征在于:所述步骤3)中设定状态方程的匹配系数初值的具体过程为:根据电池的二阶RC等效模型以及荷电状态的积分法得:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>E</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>i</mi> <mi>R</mi> <mo>+</mo> <msub> <mi>u</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>u</mi> <mi>p</mi> </msub> <mo>+</mo> <mi>U</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>F</mi> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> <mo>=</mo> <mfrac> <msub> <mi>u</mi> <mi>s</mi> </msub> <msub> <mi>R</mi> <mi>s</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>C</mi> <mi>s</mi> </msub> <mfrac> <mrow> <msub> <mi>du</mi> <mi>s</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> <mo>=</mo> <mfrac> <msub> <mi>u</mi> <mi>p</mi> </msub> <msub> <mi>R</mi> <mi>p</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>C</mi> <mi>p</mi> </msub> <mfrac> <mrow> <msub> <mi>du</mi> <mi>p</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>(</mo> <msup> <mi>t</mi> <mo>&amp;prime;</mo> </msup> <mo>)</mo> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>C</mi> <mi>N</mi> </msub> </mfrac> <mstyle> <mrow> <msubsup> <mo>&amp;Integral;</mo> <msup> <mi>t</mi> <mo>&amp;prime;</mo> </msup> <mi>t</mi> </msubsup> <mrow> <mi>&amp;eta;</mi> <mi>i</mi> <mi>d</mi> <mi>t</mi> </mrow> </mrow> </mstyle> </mtd> </mtr> </mtable> </mfenced>
其中,E(t)为电池开路电压OCV值,U(t)为电池端电压值,us为极化电容Cs两端的电压,up为极化电容Cp两端的电压,SOC(t)为SOC估计值,SOC(t')为电池荷电状态上一时刻的初始值,CN为电池最大可用容量,η为库伦效率,对上式进行离散化,得状态方程:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>S</mi> <mi>O</mi> <msub> <mi>C</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>a</mi> <mi>s</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>a</mi> <mi>p</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>S</mi> <mi>O</mi> <msub> <mi>C</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mi>&amp;eta;</mi> <mi>T</mi> </mrow> <msub> <mi>C</mi> <mi>N</mi> </msub> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mi>s</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mi>p</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mn>3</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mn>5</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> </mrow>
Uk=Ek-IkR-Us,k-Up,k+υ(k)=F(SOCk)-IkR-Us,k-Up,k+υ(k)
其中:
<mrow> <msub> <mi>a</mi> <mi>s</mi> </msub> <mo>=</mo> <msup> <mi>e</mi> <mfrac> <mrow> <mo>-</mo> <mi>T</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>C</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msup> </mrow>
<mrow> <msub> <mi>b</mi> <mi>s</mi> </msub> <mo>=</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msup> <mi>e</mi> <mfrac> <mrow> <mo>-</mo> <mi>T</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>C</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msup> </mrow> 1
<mrow> <msub> <mi>a</mi> <mi>p</mi> </msub> <mo>=</mo> <msup> <mi>e</mi> <mfrac> <mrow> <mo>-</mo> <mi>T</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <msub> <mi>C</mi> <mi>p</mi> </msub> </mrow> </mfrac> </msup> </mrow>
<mrow> <msub> <mi>b</mi> <mi>p</mi> </msub> <mo>=</mo> <msub> <mi>R</mi> <mi>p</mi> </msub> <mo>-</mo> <msub> <mi>R</mi> <mi>p</mi> </msub> <msup> <mi>e</mi> <mfrac> <mrow> <mo>-</mo> <mi>T</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <msub> <mi>C</mi> <mi>p</mi> </msub> </mrow> </mfrac> </msup> </mrow>
其中,as、bs、ap、bp为状态方程的匹配系数,ω1(k)、ω3(k)、ω5(k)为系统噪声。
3.根据权利要求1所述的一种锂电池SOC在线估计方法,其特征在于:所述步骤4)的具体过程为:
令:
<mrow> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>x</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>,</mo> <msubsup> <mi>&amp;omega;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>,</mo> <msubsup> <mi>&amp;upsi;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>SOC</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>c</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&amp;upsi;</mi> <mi>k</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow>
为了便于区别,在此取xk=[SOCk,Us,k,Up,k]为系统的原始状态;取yk为原始输出,对应电路模型中的Uk;取uk为控制量,对应电路模型中的Ik,且令Ψ=[y1,y2 … yk],然后进行自适应无迹卡尔曼滤波运算:
(1)状态估计时间更新
基于上一时刻状态最优估计得到扩展状态的均值和方差,据此选择(2L+1)个采样点,最后将采样点通过状态方程进行变换并完成状态预测:
一、初始化,初始状态确定
<mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>&amp;rsqb;</mo> </mrow>
<mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>&amp;rsqb;</mo> </mrow>
二、状态扩维
<mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>X</mi> <mn>0</mn> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>&amp;rsqb;</mo> </mrow>
<mrow> <msub> <mi>P</mi> <mrow> <mi>X</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mn>0</mn> </msub> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mi>Q</mi> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mi>R</mi> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>w</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>w</mi> <mi>n</mi> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>Q</mi> </mtd> <mtd> <mrow> <mi>m</mi> <mo>=</mo> <mi>n</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>m</mi> <mo>&amp;NotEqual;</mo> <mi>n</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>v</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>v</mi> <mi>n</mi> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>R</mi> </mtd> <mtd> <mrow> <mi>m</mi> <mo>=</mo> <mi>n</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>m</mi> <mo>&amp;NotEqual;</mo> <mi>n</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中,Q、R为协方差矩阵,是对称的矩阵,对角线上是各个维度上的方差;
扩展状态均值:
<mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <msubsup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>k</mi> <mi>T</mi> </msubsup> <mo>,</mo> <msubsup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>k</mi> <mi>T</mi> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow>
扩展状态方差:
<mrow> <msub> <mi>P</mi> <mrow> <mi>X</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mi>Q</mi> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mi>R</mi> </mtd> </mtr> </mtable> </mfenced> </mrow>
三、选取采样点
Sample={zi,Xk-1,i},其中i=0、1、2、……2L+1,Xk-1,i为所选粒子,zi是相应的加权值,粒子点按如下方式选取:
<mrow> <msub> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow>
<mrow> <msub> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <msqrt> <mrow> <mo>(</mo> <mi>L</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mo>)</mo> <msub> <mi>P</mi> <mrow> <mi>X</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </msqrt> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>~</mo> <mi>L</mi> </mrow>
<mrow> <msub> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <msqrt> <mrow> <mo>(</mo> <mi>L</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mo>)</mo> <msub> <mi>P</mi> <mrow> <mi>X</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </msqrt> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mrow> <mo>(</mo> <mi>L</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>~</mo> <mn>2</mn> <mi>L</mi> </mrow>
对应的加权系数为:
<mrow> <msubsup> <mi>z</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mfrac> <mi>&amp;lambda;</mi> <mrow> <mi>L</mi> <mo>+</mo> <mi>&amp;lambda;</mi> </mrow> </mfrac> </mrow>
<mrow> <msubsup> <mi>z</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mfrac> <mi>&amp;lambda;</mi> <mrow> <mi>L</mi> <mo>+</mo> <mi>&amp;lambda;</mi> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>&amp;alpha;</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>&amp;beta;</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>z</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>z</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>L</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>~</mo> <mn>2</mn> <mi>L</mi> </mrow>
其中,λ为比例系数,满足:λ=α2(L+t)-L,z(m)、z(c)分别是粒子点均值和方差相对应的加权值;而表示(L+λ)PX,k-1的平方根矩阵的第i列;参数t满足t≥0以保证方差阵为正定,此处默认t=0;α控制粒子分布距离,且满足10-2≤α≤1,在此取α=1,β用于减小高阶项误差,对以正态分布最优取β=2,分析采样点又分为三部分,据此进行状态估计的时间更新为:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>E</mi> <mo>{</mo> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>w</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>|</mo> <msub> <mi>&amp;Psi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </munderover> <msubsup> <mi>z</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mo>&amp;lsqb;</mo> <msub> <mi>A</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> <mi>x</mi> </msubsup> <mo>+</mo> <msub> <mi>B</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>u</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msubsup> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> <mi>w</mi> </msubsup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </munderover> <msubsup> <mi>z</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>X</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> <mi>x</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced>
(2)均方误差时间更新
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </munderover> <msubsup> <mi>z</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> <mi>x</mi> </msubsup> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> <mi>x</mi> </msubsup> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced>
(3)系统输出先验估计
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mi>E</mi> <mo>{</mo> <mo>&amp;lsqb;</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>u</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>&amp;rsqb;</mo> <mo>|</mo> <msub> <mi>&amp;Psi;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </munderover> <msubsup> <mi>z</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mo>&amp;lsqb;</mo> <mi>h</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>x</mi> </msubsup> <mo>,</mo> <msub> <mi>u</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> <mi>v</mi> </msubsup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </munderover> <msubsup> <mi>z</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
(4)滤波增益矩阵计算
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </munderover> <msubsup> <mi>z</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> <mi>x</mi> </msubsup> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msup> <mrow> <mo>&amp;lsqb;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </munderover> <msubsup> <mi>z</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced>
(5)状态最优估计
<mrow> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>L</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow>
(6)均方误差估计
<mrow> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>L</mi> <mi>k</mi> </msub> <msub> <mi>P</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mrow>
由于过程噪声和测量噪声都是时变的,为了让噪声协方差实时更新,令:
<mrow> <msub> <mi>&amp;mu;</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>y</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>H</mi> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>u</mi> <mi>k</mi> </msub> <mo>&amp;rsqb;</mo> </mrow>
<mrow> <msub> <mi>F</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&amp;mu;</mi> <mi>k</mi> </msub> <msubsup> <mi>&amp;mu;</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mrow>
<mrow> <msubsup> <mi>R</mi> <mi>k</mi> <mi>v</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mi>k</mi> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </munderover> <msubsup> <mi>z</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>(</mo> <mrow> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>y</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>y</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> </mrow>
<mrow> <msubsup> <mi>R</mi> <mi>k</mi> <mi>w</mi> </msubsup> <mo>=</mo> <msub> <mi>L</mi> <mi>k</mi> </msub> <msub> <mi>F</mi> <mi>k</mi> </msub> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mrow>
其中,μk和yk|k-1,i分别是测量输出量的残差和各sigma点估算得到的测量输出量的残差,即可实现过程噪声和测量噪声的实时更新。
4.根据权利要求1所述的一种锂电池SOC在线估计方法,其特征在于:所述步骤5)的具体过程为:
将状态方程进行拉普拉斯变化得
<mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>U</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>I</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>R</mi> <mo>+</mo> <mfrac> <msub> <mi>R</mi> <mi>s</mi> </msub> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>C</mi> <mi>s</mi> </msub> <mi>s</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>R</mi> <mi>p</mi> </msub> <msub> <mi>C</mi> <mi>p</mi> </msub> <mi>s</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
所以:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>R</mi> <mo>+</mo> <mfrac> <msub> <mi>R</mi> <mi>s</mi> </msub> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>C</mi> <mi>s</mi> </msub> <mi>s</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>R</mi> <mi>p</mi> </msub> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>R</mi> <mi>p</mi> </msub> <msub> <mi>C</mi> <mi>p</mi> </msub> <mi>s</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>Rs</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;tau;</mi> <mi>s</mi> </msub> <msub> <mi>&amp;tau;</mi> <mi>p</mi> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>R&amp;tau;</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>R&amp;tau;</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>p</mi> </msub> <msub> <mi>&amp;tau;</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>&amp;tau;</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mi>s</mi> <mo>+</mo> <mfrac> <mrow> <mi>R</mi> <mo>+</mo> <msub> <mi>R</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> </mrow> <mrow> <msub> <mi>&amp;tau;</mi> <mi>s</mi> </msub> <msub> <mi>&amp;tau;</mi> <mi>p</mi> </msub> </mrow> </mfrac> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;tau;</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>&amp;tau;</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mrow> <msub> <mi>&amp;tau;</mi> <mi>s</mi> </msub> <msub> <mi>&amp;tau;</mi> <mi>p</mi> </msub> </mrow> </mfrac> <mi>s</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;tau;</mi> <mi>s</mi> </msub> <msub> <mi>&amp;tau;</mi> <mi>p</mi> </msub> </mrow> </mfrac> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced>
其中,G(s)为回路阻抗的拉普拉斯形式;
采用双线性变换进行离散化,令可得离散化的传递函数:
<mrow> <mi>G</mi> <mrow> <mo>(</mo> <msup> <mi>z</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <msup> <mi>z</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <msup> <mi>z</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msup> <mi>z</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <msup> <mi>z</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow>
其中,a1、a2、a3、a4、a5为相应的常数系数,将上式转化成差分方程可得:
y(k)=E(k)-U(k)
=a1y(k-1)+a2y(k-2)+a3I(k)+a4I(k-1)+a5I(k-2)
其中,I(k)为系统输入,y(k)为系统输出,令:
θ=[a1 a2 a3 a4 a5]T
设k时刻传感器采样误差为e(k),则:
扩展为N维,k=1,2,……N+n,n=2,可得如下式子:
<mrow> <mi>&amp;Phi;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>k</mi> <mo>&amp;GreaterEqual;</mo> <mn>3</mn> </mrow>
Y=[y(3),y(4),y(5)……y(N+2)]T
e=[e(3),e(4),e(5)……e(N+2)]T
取泛函数J(θ):
<mrow> <mi>J</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <mi>Y</mi> <mo>-</mo> <mi>&amp;Phi;</mi> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <mi>e</mi> <mo>(</mo> <mrow> <mi>i</mi> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow>
因为最小二乘法原理是使J(θ)取最小值,所以求J(θ)极值,令:
可得;
对上述过程通过递推最小二乘法进行递推运算,如下所示:
其中,是上一时刻系统所估计的参考值,是此时刻的观测值,y(k+1)作为系统实际的观测值,与相减后便为预测误差,将预测误差与增益项K(k+1)相乘,便是此刻预测值的校正,最终获得此时刻最优估计值必须提供符合条件的和P(0),才能获得增益项K(k+1),进而启动最小二乘法,为任意值,P(0)=αI,α为单位阵的系数,I为单位阵;
递推最小二乘法是具有无限记忆长度的算法,对于电池系统,最小二乘法在递推运算过程中旧数据越来越多会导致递推结果不能良好的反应新数据的特性,为避免上述情况,引入遗忘因子λ,0<λ<1,即:
所以,即使(N+1)很大,P(N+1)也不趋于0,有效的克服了“数据饱和”现象,所述带遗忘因子最小二乘算法的步骤为:
当λ=1时,为普通最小二乘法,λ越小跟踪能力越强,但波动也越大;
由上述节算法求出θ值后,令:
可得:
由系数对应相等可得:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>R</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>5</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;tau;</mi> <mi>s</mi> </msub> <msub> <mi>&amp;tau;</mi> <mi>p</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>T</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>4</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;tau;</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>&amp;tau;</mi> <mi>p</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>T</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>R</mi> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>p</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>5</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>R&amp;tau;</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>R&amp;tau;</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>p</mi> </msub> <msub> <mi>&amp;tau;</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>&amp;tau;</mi> <mi>p</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>4</mn> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced>
此式右边的系数通过递推算法求出,左边即是模型的未知参数,至此带有遗忘因子的最小二乘法参数辨识的推导过程完成。
5.根据权利要求4所述的一种锂电池SOC在线估计方法,其特征在于:所述遗忘因子λ的取值范围为:0.95<λ<1。
CN201710116581.9A 2017-03-01 2017-03-01 一种锂电池soc在线估计方法 Pending CN107064811A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710116581.9A CN107064811A (zh) 2017-03-01 2017-03-01 一种锂电池soc在线估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710116581.9A CN107064811A (zh) 2017-03-01 2017-03-01 一种锂电池soc在线估计方法

Publications (1)

Publication Number Publication Date
CN107064811A true CN107064811A (zh) 2017-08-18

Family

ID=59622818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710116581.9A Pending CN107064811A (zh) 2017-03-01 2017-03-01 一种锂电池soc在线估计方法

Country Status (1)

Country Link
CN (1) CN107064811A (zh)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107765187A (zh) * 2017-11-14 2018-03-06 佛山科学技术学院 一种锂电池荷电状态估算方法
CN108872873A (zh) * 2018-06-29 2018-11-23 长沙理工大学 一种基于ga-aukf的磷酸铁锂动力电池荷电状态联合估算方法
CN109606200A (zh) * 2018-12-19 2019-04-12 江苏科达车业有限公司 一种新能源汽车电池管理系统
CN109726501A (zh) * 2019-01-11 2019-05-07 武汉理工大学 基于可变遗忘因子的rls锂电池模型参数在线辨识方法
CN109884548A (zh) * 2019-03-04 2019-06-14 武汉科技大学 一种基于gasvm-aukf算法的锂电池剩余寿命预测方法
CN109917299A (zh) * 2019-04-08 2019-06-21 青岛大学 一种锂电池荷电状态的三层滤波估算方法
CN110095723A (zh) * 2018-01-26 2019-08-06 重庆邮电大学 一种锂离子电池模型参数与soc在线联合估计方法
CN110261778A (zh) * 2019-05-27 2019-09-20 南京理工自动化研究院有限公司 一种锂离子电池soc估测算法
CN110286324A (zh) * 2019-07-18 2019-09-27 北京碧水润城水务咨询有限公司 一种电池荷电状态估算方法及电池健康状态估算方法
CN110361653A (zh) * 2019-07-25 2019-10-22 北方民族大学 一种基于混合储能装置的soc估算方法及系统
CN110361652A (zh) * 2019-06-26 2019-10-22 河南理工大学 一种基于模型参数优化的卡尔曼滤波锂电池soc估计方法
CN110456279A (zh) * 2019-08-15 2019-11-15 长安大学 一种基于数据驱动模型的动力电池云管理系统
CN110837622A (zh) * 2019-11-26 2020-02-25 国网湖南省电力有限公司 基于大倍率放电的锂电池荷电状态估算方法
CN111033930A (zh) * 2017-08-24 2020-04-17 罗伯特·博世有限公司 电池和电池包的荷电状态的估计方法及利用此荷电状态估计方法的电池管理系统、电池以及电动汽车
CN111123107A (zh) * 2018-10-30 2020-05-08 北京天诚同创电气有限公司 电池仿真建模方法、装置及电池等效模型
CN111216595A (zh) * 2020-01-03 2020-06-02 安徽力高新能源技术有限公司 基于锂电池等效电路模型的重度混合动力汽车soc校准方法
CN111308371A (zh) * 2019-11-29 2020-06-19 湖南海博瑞德电智控制技术有限公司 一种锂离子的电池荷电状态估算方法
CN111426967A (zh) * 2020-05-22 2020-07-17 枣庄职业学院 电池等效电路模型的参数在线实时辨识方法
CN111551869A (zh) * 2020-05-15 2020-08-18 江苏科尚智能科技有限公司 锂电池低频参数测量方法、装置、计算机设备和存储介质
CN111781503A (zh) * 2020-06-15 2020-10-16 国网江苏省电力有限公司无锡供电分公司 一种锂离子储能电池soc在线估算方法
CN111929585A (zh) * 2019-05-13 2020-11-13 顺丰科技有限公司 电池电荷状态计算装置、方法、服务器及介质
CN112114254A (zh) * 2020-08-25 2020-12-22 哈尔滨工业大学(威海) 一种动力电池开路电压模型融合方法
CN112234673A (zh) * 2020-09-30 2021-01-15 长安大学 一种适用于均衡电路的电池能量均衡方法
CN112433154A (zh) * 2019-08-25 2021-03-02 南京理工大学 基于ffrls和ekf的锂离子电池soc估测算法
CN112462282A (zh) * 2020-11-09 2021-03-09 西南大学 基于机理模型的用于确定电池组实时荷电状态的方法
CN112858920A (zh) * 2021-02-01 2021-05-28 山西国润储能科技有限公司 一种基于自适应无迹卡尔曼滤波的全钒液流电池融合模型的soc估算方法
CN112964992A (zh) * 2019-11-28 2021-06-15 比亚迪股份有限公司 基于aukf的电池内部温度信息处理方法、设备和介质
CN113030752A (zh) * 2021-04-12 2021-06-25 安徽理工大学 一种基于变遗忘因子在线参数辨识和soc联合估计方法
CN113030741A (zh) * 2019-12-24 2021-06-25 比亚迪股份有限公司 基于aukf的电池模型参数和soc估算方法、设备和介质
CN113125969A (zh) * 2020-01-14 2021-07-16 比亚迪股份有限公司 基于aukf的电池数据处理方法、设备和介质
CN113203955A (zh) * 2021-04-29 2021-08-03 南京林业大学 一种基于动态优选遗忘因子递推最小二乘在线辨识的磷酸铁锂电池soc估算方法
CN113391212A (zh) * 2021-06-23 2021-09-14 山东大学 一种锂离子电池等值电路参数在线辨识方法及系统
CN113466723A (zh) * 2020-03-31 2021-10-01 比亚迪股份有限公司 确定电池荷电状态的方法及装置,电池管理系统
CN113626983A (zh) * 2021-07-06 2021-11-09 南京理工大学 基于状态方程递推预测高炮射弹脱靶量的方法
CN113777510A (zh) * 2021-09-07 2021-12-10 国网江苏省电力有限公司电力科学研究院 一种锂电池荷电状态估计方法及装置
CN113835033A (zh) * 2021-09-17 2021-12-24 一汽奔腾轿车有限公司 一种新能源汽车电池管理系统sof估算方法
CN113848487A (zh) * 2021-10-22 2021-12-28 四川宽鑫科技发展有限公司 一种基于专有soc估算的均衡控制方法
CN113848486A (zh) * 2021-10-22 2021-12-28 四川宽鑫科技发展有限公司 一种soc联合估算方法
CN113866654A (zh) * 2021-10-22 2021-12-31 四川宽鑫科技发展有限公司 一种基于专有soc估算和专有均衡算法的bms结构
CN113960482A (zh) * 2021-09-03 2022-01-21 西南科技大学 基于改进灰狼粒子滤波的锂电池荷电状态智能预测方法
CN114114037A (zh) * 2021-11-12 2022-03-01 桂林电子科技大学 一种基于模糊pid-ukf的动力电池soc估算方法
CN114839550A (zh) * 2022-04-14 2022-08-02 安徽理工大学 一种基于ukf-aukf的锂电池soc联合估计方法
CN116203432A (zh) * 2023-03-23 2023-06-02 广东工业大学 基于cso优化的无迹卡尔曼滤波预测电池荷电状态的方法
CN116340766A (zh) * 2023-02-17 2023-06-27 广东工业大学 基于滑动窗口的锂电池soc在线预测方法与相关设备
CN116699415A (zh) * 2023-05-26 2023-09-05 云储新能源科技有限公司 一种动态可重构电池系统电量估计方法、系统及电子设备
CN116699415B (zh) * 2023-05-26 2024-06-11 云储新能源科技有限公司 一种动态可重构电池系统电量估计方法、系统及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607009A (zh) * 2016-02-01 2016-05-25 深圳大学 一种基于动态参数模型的动力电池soc估计方法和系统
CN106405433A (zh) * 2016-11-04 2017-02-15 首都师范大学 一种基于扩展卡尔曼粒子滤波的soc估计方法及系统
CN106443471A (zh) * 2016-09-20 2017-02-22 首都师范大学 锂离子电池soc估计方法及其硬件实现

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607009A (zh) * 2016-02-01 2016-05-25 深圳大学 一种基于动态参数模型的动力电池soc估计方法和系统
CN106443471A (zh) * 2016-09-20 2017-02-22 首都师范大学 锂离子电池soc估计方法及其硬件实现
CN106405433A (zh) * 2016-11-04 2017-02-15 首都师范大学 一种基于扩展卡尔曼粒子滤波的soc估计方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭向伟: "电动汽车电池荷电状态估计及均衡技术研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033930B (zh) * 2017-08-24 2024-03-05 罗伯特·博世有限公司 电池和电池包的荷电状态的估计方法及利用此荷电状态估计方法的电池管理系统
CN111033930A (zh) * 2017-08-24 2020-04-17 罗伯特·博世有限公司 电池和电池包的荷电状态的估计方法及利用此荷电状态估计方法的电池管理系统、电池以及电动汽车
CN107765187A (zh) * 2017-11-14 2018-03-06 佛山科学技术学院 一种锂电池荷电状态估算方法
CN110095723A (zh) * 2018-01-26 2019-08-06 重庆邮电大学 一种锂离子电池模型参数与soc在线联合估计方法
CN108872873A (zh) * 2018-06-29 2018-11-23 长沙理工大学 一种基于ga-aukf的磷酸铁锂动力电池荷电状态联合估算方法
CN111123107A (zh) * 2018-10-30 2020-05-08 北京天诚同创电气有限公司 电池仿真建模方法、装置及电池等效模型
CN109606200B (zh) * 2018-12-19 2020-12-22 江苏科达车业有限公司 一种新能源汽车电池管理系统
CN109606200A (zh) * 2018-12-19 2019-04-12 江苏科达车业有限公司 一种新能源汽车电池管理系统
CN109726501A (zh) * 2019-01-11 2019-05-07 武汉理工大学 基于可变遗忘因子的rls锂电池模型参数在线辨识方法
CN109884548A (zh) * 2019-03-04 2019-06-14 武汉科技大学 一种基于gasvm-aukf算法的锂电池剩余寿命预测方法
CN109917299A (zh) * 2019-04-08 2019-06-21 青岛大学 一种锂电池荷电状态的三层滤波估算方法
CN111929585A (zh) * 2019-05-13 2020-11-13 顺丰科技有限公司 电池电荷状态计算装置、方法、服务器及介质
CN110261778A (zh) * 2019-05-27 2019-09-20 南京理工自动化研究院有限公司 一种锂离子电池soc估测算法
CN110361652A (zh) * 2019-06-26 2019-10-22 河南理工大学 一种基于模型参数优化的卡尔曼滤波锂电池soc估计方法
CN110286324B (zh) * 2019-07-18 2021-07-09 北京碧水润城水务咨询有限公司 一种电池荷电状态估算方法及电池健康状态估算方法
CN110286324A (zh) * 2019-07-18 2019-09-27 北京碧水润城水务咨询有限公司 一种电池荷电状态估算方法及电池健康状态估算方法
CN110361653A (zh) * 2019-07-25 2019-10-22 北方民族大学 一种基于混合储能装置的soc估算方法及系统
CN110361653B (zh) * 2019-07-25 2024-05-03 郑柏阳 一种基于混合储能装置的soc估算方法及系统
CN110456279A (zh) * 2019-08-15 2019-11-15 长安大学 一种基于数据驱动模型的动力电池云管理系统
CN112433154A (zh) * 2019-08-25 2021-03-02 南京理工大学 基于ffrls和ekf的锂离子电池soc估测算法
CN110837622A (zh) * 2019-11-26 2020-02-25 国网湖南省电力有限公司 基于大倍率放电的锂电池荷电状态估算方法
CN112964992A (zh) * 2019-11-28 2021-06-15 比亚迪股份有限公司 基于aukf的电池内部温度信息处理方法、设备和介质
CN111308371A (zh) * 2019-11-29 2020-06-19 湖南海博瑞德电智控制技术有限公司 一种锂离子的电池荷电状态估算方法
CN113030741B (zh) * 2019-12-24 2022-07-15 比亚迪股份有限公司 基于aukf的电池模型参数和soc估算方法、设备和介质
CN113030741A (zh) * 2019-12-24 2021-06-25 比亚迪股份有限公司 基于aukf的电池模型参数和soc估算方法、设备和介质
CN111216595A (zh) * 2020-01-03 2020-06-02 安徽力高新能源技术有限公司 基于锂电池等效电路模型的重度混合动力汽车soc校准方法
CN113125969B (zh) * 2020-01-14 2022-07-15 比亚迪股份有限公司 基于aukf的电池数据处理方法、设备和介质
CN113125969A (zh) * 2020-01-14 2021-07-16 比亚迪股份有限公司 基于aukf的电池数据处理方法、设备和介质
WO2021197038A1 (zh) * 2020-03-31 2021-10-07 比亚迪股份有限公司 确定电池荷电状态的方法及装置,电池管理系统
CN113466723A (zh) * 2020-03-31 2021-10-01 比亚迪股份有限公司 确定电池荷电状态的方法及装置,电池管理系统
CN111551869A (zh) * 2020-05-15 2020-08-18 江苏科尚智能科技有限公司 锂电池低频参数测量方法、装置、计算机设备和存储介质
CN111426967B (zh) * 2020-05-22 2022-07-05 枣庄职业学院 电池等效电路模型的参数在线实时辨识方法
CN111426967A (zh) * 2020-05-22 2020-07-17 枣庄职业学院 电池等效电路模型的参数在线实时辨识方法
CN111781503A (zh) * 2020-06-15 2020-10-16 国网江苏省电力有限公司无锡供电分公司 一种锂离子储能电池soc在线估算方法
CN111781503B (zh) * 2020-06-15 2023-09-22 国网江苏省电力有限公司无锡供电分公司 一种锂离子储能电池soc在线估算方法
CN112114254B (zh) * 2020-08-25 2022-02-08 哈尔滨工业大学(威海) 一种动力电池开路电压模型融合方法
CN112114254A (zh) * 2020-08-25 2020-12-22 哈尔滨工业大学(威海) 一种动力电池开路电压模型融合方法
CN112234673A (zh) * 2020-09-30 2021-01-15 长安大学 一种适用于均衡电路的电池能量均衡方法
CN112234673B (zh) * 2020-09-30 2022-04-22 长安大学 一种适用于均衡电路的电池能量均衡方法
CN112462282A (zh) * 2020-11-09 2021-03-09 西南大学 基于机理模型的用于确定电池组实时荷电状态的方法
CN112462282B (zh) * 2020-11-09 2022-03-18 西南大学 基于机理模型的用于确定电池组实时荷电状态的方法
CN112858920A (zh) * 2021-02-01 2021-05-28 山西国润储能科技有限公司 一种基于自适应无迹卡尔曼滤波的全钒液流电池融合模型的soc估算方法
CN113030752B (zh) * 2021-04-12 2024-03-29 安徽理工大学 一种基于变遗忘因子在线参数辨识和soc联合估计方法
CN113030752A (zh) * 2021-04-12 2021-06-25 安徽理工大学 一种基于变遗忘因子在线参数辨识和soc联合估计方法
CN113203955A (zh) * 2021-04-29 2021-08-03 南京林业大学 一种基于动态优选遗忘因子递推最小二乘在线辨识的磷酸铁锂电池soc估算方法
CN113391212A (zh) * 2021-06-23 2021-09-14 山东大学 一种锂离子电池等值电路参数在线辨识方法及系统
CN113391212B (zh) * 2021-06-23 2022-05-17 山东大学 一种锂离子电池等值电路参数在线辨识方法及系统
CN113626983A (zh) * 2021-07-06 2021-11-09 南京理工大学 基于状态方程递推预测高炮射弹脱靶量的方法
CN113960482A (zh) * 2021-09-03 2022-01-21 西南科技大学 基于改进灰狼粒子滤波的锂电池荷电状态智能预测方法
CN113777510A (zh) * 2021-09-07 2021-12-10 国网江苏省电力有限公司电力科学研究院 一种锂电池荷电状态估计方法及装置
CN113835033A (zh) * 2021-09-17 2021-12-24 一汽奔腾轿车有限公司 一种新能源汽车电池管理系统sof估算方法
WO2023040486A1 (zh) * 2021-09-17 2023-03-23 一汽奔腾轿车有限公司 一种新能源汽车电池管理系统sof估算方法
CN113866654A (zh) * 2021-10-22 2021-12-31 四川宽鑫科技发展有限公司 一种基于专有soc估算和专有均衡算法的bms结构
CN113848486A (zh) * 2021-10-22 2021-12-28 四川宽鑫科技发展有限公司 一种soc联合估算方法
CN113848487A (zh) * 2021-10-22 2021-12-28 四川宽鑫科技发展有限公司 一种基于专有soc估算的均衡控制方法
CN114114037A (zh) * 2021-11-12 2022-03-01 桂林电子科技大学 一种基于模糊pid-ukf的动力电池soc估算方法
CN114839550B (zh) * 2022-04-14 2024-05-10 安徽理工大学 一种基于ukf-aukf的锂电池soc联合估计方法
CN114839550A (zh) * 2022-04-14 2022-08-02 安徽理工大学 一种基于ukf-aukf的锂电池soc联合估计方法
CN116340766A (zh) * 2023-02-17 2023-06-27 广东工业大学 基于滑动窗口的锂电池soc在线预测方法与相关设备
CN116340766B (zh) * 2023-02-17 2024-05-28 广东工业大学 基于滑动窗口的锂电池soc在线预测方法与相关设备
CN116203432B (zh) * 2023-03-23 2023-10-20 广东工业大学 基于cso优化的无迹卡尔曼滤波预测电池荷电状态的方法
CN116203432A (zh) * 2023-03-23 2023-06-02 广东工业大学 基于cso优化的无迹卡尔曼滤波预测电池荷电状态的方法
CN116699415A (zh) * 2023-05-26 2023-09-05 云储新能源科技有限公司 一种动态可重构电池系统电量估计方法、系统及电子设备
CN116699415B (zh) * 2023-05-26 2024-06-11 云储新能源科技有限公司 一种动态可重构电池系统电量估计方法、系统及电子设备

Similar Documents

Publication Publication Date Title
CN107064811A (zh) 一种锂电池soc在线估计方法
CN107576919A (zh) 基于armax模型的动力电池荷电状态估算系统及方法
CN109188293B (zh) 基于新息协方差带渐消因子的ekf锂离子电池soc估算方法
CN108594135A (zh) 一种用于锂电池均衡充放电控制的soc估算方法
CN111060834A (zh) 一种动力电池健康状态估算方法
CN103020445B (zh) 一种电动车车载磷酸铁锂电池的soc与soh预测方法
CN105425153B (zh) 一种估计电动车辆的动力电池的荷电状态的方法
CN109870651A (zh) 一种电动汽车动力电池系统soc和soh联合在线估算方法
CN110824363B (zh) 一种基于改进ckf的锂电池soc和soe联合估算方法
CN109633479B (zh) 基于嵌入式容积卡尔曼滤波的锂电池soc在线估算方法
CN107589379A (zh) 一种在线估计锂电池soc和阻抗的方法
CN112858929B (zh) 一种基于模糊逻辑与扩展卡尔曼滤波的电池soc估计方法
CN112305440A (zh) 一种电池剩余电量和健康状态联合估计方法
CN106896324A (zh) 一种soc估计方法
CN105699910A (zh) 一种锂电池剩余电量在线估计方法
CN111537903B (zh) 一种基于hckf的电池soc估计方法
CN111856282B (zh) 基于改进遗传无迹卡尔曼滤波的车载锂电池状态估计方法
CN108445418A (zh) 一种电池剩余电量估算方法及存储介质
CN111965544B (zh) 基于电压及电流双约束的车用并联动力电池的最小包络线soc估计方法
CN111428433A (zh) 基于混合滤波的锂离子电池状态计算方法
CN106443496A (zh) 一种带改进型噪声估计器的电池荷电状态估计方法
CN114660464A (zh) 一种锂离子电池荷电状态估算方法
CN112083333A (zh) 一种基于机器学习模型的动力电池组荷电状态估计方法
CN112580289A (zh) 一种混合电容器功率状态在线估计方法及系统
CN113190969A (zh) 一种基于信息评估机制的锂电池模型参数辨识方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170818