CN1070308C - 生产高温超导体及其铸件的方法 - Google Patents

生产高温超导体及其铸件的方法 Download PDF

Info

Publication number
CN1070308C
CN1070308C CN93106901A CN93106901A CN1070308C CN 1070308 C CN1070308 C CN 1070308C CN 93106901 A CN93106901 A CN 93106901A CN 93106901 A CN93106901 A CN 93106901A CN 1070308 C CN1070308 C CN 1070308C
Authority
CN
China
Prior art keywords
crucible
melt
strontium
temperature
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN93106901A
Other languages
English (en)
Other versions
CN1082241A (zh
Inventor
J·博克
E·博莱思乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel superconductor Co.,Ltd.
Alcatel superconductor GmbH & Co.
Naikesen superconducting Co.,Ltd.
Original Assignee
Aventis Research and Technologies GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventis Research and Technologies GmbH and Co KG filed Critical Aventis Research and Technologies GmbH and Co KG
Publication of CN1082241A publication Critical patent/CN1082241A/zh
Application granted granted Critical
Publication of CN1070308C publication Critical patent/CN1070308C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

一种生产高温超导体及其铸件的方法,该方法包括把铋、锶、钙、铜和任选地铅的氧化物按所要求的摩尔比并且以各氧化物的混合物为基础计算添加2~30%(重量)的硫酸锶和/或1~20%(重量)的硫酸钡完全混合;在温度870~1600℃的铂坩埚中熔炼该混合物;将该熔体浇进所需形状和大小的永久铸模内;使熔体慢慢固化;使所生产的铸件与永久铸模材料分离;并在含氧气氛中于温度700~900℃使其退火6~200小时。

Description

生产高温超导体及其铸件的方法
本发明涉及一种生产高温超导体及其铸件方法,该超导体包括铋、锶、钙、铜和任选地铅的氧化物,以及锶和/或钡的硫酸盐。
DE3830092A1公开了一种生产组成为Bi2(Sr,Ca)3Cu2Ox的高温超导体(HTSC)的方法,上述组成中的x为8-10。在这种方法中,铋、锶、钙和铜的氧化物或碳酸盐的化学计量混合物被加热到温度为870~1100℃,同时形成了均匀熔体,将上述溶体浇注进永久铸模内并使其慢慢固化。从永久铸模中取下铸件并在780~850℃退火6~30小时,随后在含氧气氛中于600~830℃处理至少6小时。用这种方法不仅能生产小样品,而且能生产尺寸相当大的铸件,例如长度达0.5m的棒材,边长数cm,厚度数mm的扁锭,或者改变方法使用EP-0462409A1的离心浇铸,甚至能生产直径20cm和高度10cm的中空圆柱样品。能将固体贵金属元件融合在上述铸件或上述固体部件中,在温度处理后,可同超导材料连接以这种方式生产接触电阻极低的电流接触器。
上述带有或不带有电流接触器的超导体铸件将会在电工技术领域内找到进一步的用途。第一类用途中的一种将可能是低温超导体的电线。用HTSC陶瓷代替迄今使用的普通铜线将会大大降低作为冷却剂的氦气的消耗,因为陶瓷的热导率大大地低于金属铜的热导率,在转变温度以下超导体内没有电阻损失,否则将导致更多的热量进入液氦中。
因此,使用新电线代替常规线材会获得较大的好处,新电线荷载的电流更大。HTSC元件在电工技术领域内的上述和其它用途的先决条件是必须能荷载1KA数量级的电流。
使用DE383092A1(包括浇铸均匀熔体的)方法生产HTSC元件的缺点是,用于生产均匀熔体的工业用刚玉坩埚被含铋熔体严重腐蚀。此外,坩埚材料在生产过程期间承受很大的温度变化:从1000℃的加热炉中取出坩埚。
首先这将缩短刚玉坩埚的使用寿命。在某些情况下,坩埚仅仅浇铸两次就产生了裂纹,产生裂纹的坩埚是不允许继续使用的,这不只是因为要求安全加工金属熔体的缘故。
更为严重的是由于坩埚腐蚀,致使HTSC材料被铝污染。可在HTSC材料成品中探测到明显数量的铝。如果在1030℃进行熔化约15分钟,铝的数量一般约为2000ppm。该数值随熔化温度增加和在熔融状态停留时间的增加而增加。
为了延长坩埚的使用寿命和使铝的污染减至最低程度,选择尽可能低的熔化温度和尽可能短的熔化时间。为此只能生产一种刚刚达到可以浇铸的溶体。这样会带来另外的缺点:
1.存在熔体不完全均质并且仍然含有固体原料的危险。尤其是,如果碱土金属含量对铋含量的比率大于3~2,或者如果使用添加剂(SrSO4,BaSO4)上述危险性就更大。上述添加剂的主要作用是防止陶瓷铸件产生裂纹。任何以无控制方式发生的离析和在制成的超导体材料中离析出不是超导的成分都是不允许的,因为在电流荷载下它们会以所谓“热点”的形式导致不稳定。况且,上述不均匀性对例如棒材一类铸件的机械性能会产生不利影响。
2.由于熔化温度低,熔体十分粘稠而且浇铸后固化十分迅速,以致于要进行小截面或较长长度形式的浇铸相当困难。例如,要把一种摩尔组成为Bi2Sr2CaCu2Ox同时添加9%(重量)SrSO4的金属氧化物熔体浇铸进一个直径为<8mm的管状永久铸模内是不可能的。
3.从熔融状态生产的并包含铋、锶、钙和铜的各种氧化物的熔体铸件只具有102A/cm2左右的电流荷载容量(临界电流密度),因此只是有条件地适宜于上述技术用途。如上所述,通过添加锶或钡的硫酸盐,将它们混入要熔炼的氧化物混合物中,可以部分地避免上述缺点。因而,在截面积为0.12cm2的棒状样品中,第一次能够达到电流密度大于1000A/cm2
对直径大到可适用于工业应用的棒状样品(截面积0.5cm2,长度150mm)的系统研究表明,其电流密度尚未显示出在电工技术领域内对所用材料所要求的再现性。在工业过程中难于控制的一些参数起到一定的作用,例如用于生产熔体的刚玉坩埚已经使用的次数。上述一系列试验的结果可以在以下表1中看到。
                    表1
添加SrSO4的各种棒状样品(直径8mm)的临界电流密度:用刚玉坩埚浇铸生产
每个坩埚浇       电流密度  (A/cm2)铸的次数    3%SrSO4       6%SrSO4
1           669            889
            568            900
2           607            858
            785            558
3           701            444
            837            607
4           680            382
            465            425
5           285            393
            640            680
在每种情况下都使用新制的坩埚,熔体中添加3%或6%的Sr-SO4,浇铸1~5次。每种试验都进行两次,随后测定临界电流密度。表1显示出,临界电流密度随每种情况下使用同一坩埚的浇铸次数的增加而降低,同时,两个样品之间的差别逐渐增加。
其它一些陶瓷材料如稳定化的氧化锆或致密烧结的氧化镁也不适宜作为坩埚材料,因为上述材料较低的温度变化稳定性不允许以上述方式进行该工艺过程。
尽管镍或致密烧结的氮化铝的坩埚具有足够高的温度变化稳定性,但它们遭受熔体十分严重的腐蚀,以致完全不适宜作为坩埚材料。
本发明的目的在于改进现有的方法,以便克服上述许多缺点和局限性。
已经意外地发现,如果在铂坩埚内熔炼初始混合物,固体部件(铸件)的临界电流密度会得到明显地增加。上述观察同文献中最近的研究有很大不同,该文献叙述了使用玻璃前体生产组成为Bi2Sr2CaCu2O8的超导体材料,它是通过使熔体快速固化而得到的(T.G Holesinger等人,Manuscript Submitted to Journal of Ma-terials Research,February 7,1992)。当使用刚玉和铂坩埚时,作者并没有发现超导体材料的任何差异。包含铋、锶、钙和铜以及任选的铅的各种氧化物的熔融陶瓷样品的临界电流密度一般为102A/cm2左右。如果在铂坩埚内熔炼相同材料(即同样地不混合硫酸盐),其它条件都相同时(相同的处理温度,相同的截面积0.5cm2),是可以获得高达1100A/cm2的明显较高的临界电流密度值的。
如果将各种不同陶瓷样品的临界电流密度进行直接比较,应该指出,应是以相同的截面积彼此进行比较,因为对于较大的截面来说,其样品的自磁场也增加。
在其它材料性能都相同时,将会导致较大截面积的临界电流密度的降低。自场效应也随流过样品的电流面增加,即对于具有大电流荷载容量的材料该影响变得更加明显。
例如,在一个通过在坩埚内熔炼和在石英管内浇铸而生产的,长度为60mm,截面积为0.5cm2的棒状样品中,测得其临界电流为865A/cm2。可是,当将上述样品沿其纵向锯开,使其成为一些截面积为0.05cm2的棒材时,可再现地测得其临界电流密度为2200A/cm2。当谈到临界电流密度时,总是应该同时指出在其中测得上述电流密度的样品的截面积。
然而,自场效应不仅取决于样品的绝对截面积,而且也取决于该截面的几何形状。例如,最好使用管状元件而不是棒状实心元件。
即使在铂坩埚中进行熔炼,也不能满意而再现地获得所要求的临界电流密度。然而已意外地发现,如果同时采用两种措施:在铂坩埚中熔炼和添加SrSO4或BaSO4,就可以获得甚至较高的绝对值和良好的再现性。把这两个措施结合起来就可能第一次在全部直径为8mm的实心棒材中获得1400A/cm2的电流密度。
表2列出了在组成为Bi2Sr2CaCu2Ox(直径8mm,长度120mm)并具有不同硫酸盐含量的棒材中得到的电流密度。
                    表2
由铂坩埚浇铸时的硫酸锶含量对临界电流密度(jc)的影响添加SrSO4(%重量)      0      1      3      6      9      15jc(A/cm2)   658    658    753    921    945    1178
         732    763    878    951    1072   1283
         764    826    889    1046   1109   1317
         816    881    962    1046   1146   1380
         1107   941    1066   1167   1274   1420
在各种情况下,试验了五个样品,按上升次序列出了所测得的数值。
而且,同刚玉坩埚比较,铂坩埚的使用寿命明显地较长。铂坩锅即使浇铸20次以后,也未显示出任何严重损坏。也可以使用Pt/Ir97/3或90/10,或Pt/Au95/5,或Pt/Rh90/10或80/20坩埚代替实验室的铂坩埚来进行所述的工艺过程,纯铱的坩埚形容器也是适用的。
还意外地发现,在铂坩埚中生产的溶体能够浇铸进较薄截面的管状永久铸模中,因而可以假定,这时熔体的稠度受到并非微不足道的Al含量的影响。
况且,如果使用所述贵金属的坩埚材料,可以显著地提高熔炼温度。如果按较大比例添加具有较高熔点(在1500-1600℃之间)的SrSO4或BaSO4添加剂,这是特别所希望的。因而,在这种特定情况下,所用温度仅仅取决于用作坩埚材料的铂金属的破坏温度。
特别是,本发明方法包括以下步骤:使铋、锶、钙、铜和任选地铅的氧化物按所要求的摩尔比,并以各氧化物的混合物为基础计算添加2~30%(重量)的硫酸锶和/或1~20%(重量)的硫酸钡完全混合;使混合物在温度870~1600℃的铂金属坩埚中熔炼;使熔体浇铸进所需形状和大小的永久铸模内;使熔体慢慢固化;使所生产的铸件从永久铸模的材料中脱开并在含氧气氛中于700-900℃温度使其退火6-200小时。
此外,本发明方法还可任选地或优选地具有下列特征:
a)坩埚材料包含铂、铱、铑或其相互的合金或者它们同元素周期表第一副族或第八族的其它贵金属的合金;
b)该熔体被浇铸进一个水平地布置、快速旋转的管状永久铸模内;
c)氧化物混合物的组成为
Bi2-a+b+cPba(Sr,Ca)3-b-cCu2+dOx,
式中a=0~0.7;b+c=0~0.5;d=-0.1~+0.1;
    x=7~10;而且(Sr∶Ca)的摩尔比
    =(2.8∶1)~(1∶2.8);
d)在温度1000~1300℃熔炼该混合物;
e)在含氧气氛中于750~870℃使铸件退火。
实施例1(对比例):
在1030℃的烧结刚玉坩埚中,按各种金属2∶2∶1∶2的摩尔比熔化铋、锶、钙和铜的氧化物的混合物,并将其浇铸进一个直径为8mm长度为150mm的管状石英永久铸模内,永久铸模的上端被扩宽成一漏斗形浇口。在上述处理以前,在永久铸模上下端安装环形弯曲银板带,通过这种板带浇铸熔体,以致随后它们被牢固地融合在固化熔体中。在空气中分别于750℃退火60小时和于850℃退火60小时后,该材料成为超导材料而上述板带被连接到超导体上,以致它们有效地成为接触电阻特别低的电流接触器。对十根以上的所述棒材测定临界电流密度。其数值在38~195A/cm2范围内。
实施例2(对比例):
与实施例1不同,把要熔炼的氧化物混合物同3%(重量)的Sr-SO4混合,并生产出30多根棒材。其平均临界电流密度约为500A/cm2,但是其数值在250~900A/cm2范围内。
实施例3(对比例):
与实施例1不同,在1050℃的Pt/Ir 97/3的坩埚中熔化金属氧化物,生产带有电流接触器的棒状固体元件。对长度为150mm的十根样品测定临界电流密度。其数值在450-1100A/cm2之间。
实施例4:
与实施例3不同,氧化物混合物同3%(重量)的SrSO4混合。对九根样品测定电流密度,其数值在750-1170A/cm2之间。
实施例5:
与实施例3不同,使用9%(重量)的SrSO4作为添加剂。熔炼温度为1050℃,对七根样品测得的电流密度在920-1274A/cm2之间。
实施例6:
与实施例3不同,混合进15%(重量)的SrSO4在直径8mm的固体棒材中,不止一次地可以获得约1400A/cm2的临界电流密度。
实施例7:
与实施例3不同,在所有情况下使用8%(重量)的BaSO4作为添加剂,对五个样品测得的临界电流密度在700-900A/cm2之间。
实施例8(为证实自场效应):
根据实施例4,生产一个长度为60mm直径为8mm的样品,测得其临界电流密度为865A/cm2。从该样品的表面和其内部,按其总长度各切下一段截面约为0.05cm2的棒材。对从该样品内部和外部切下的四根棒材所测得的临界电流密度在2150-2230A/cm2之间。
实施例9:
在实验室制品的铂坩埚中熔化具有实施例2成分的混合物,通过倾斜通道将其浇铸进水平位置的永久铸模,该永久铸模内的直径为35mm长度为200mm,并以800rpm的转速旋转。在上述工艺处理以前,将在退火处理以后作为电流接触器的银板带安装在永久铸模内。该管内的临界电流密度为2050A,而其材料截面积为3cm2(jc=683A/cm2)。
实施例10:
分别在1080℃的仪器级铂和刚玉坩埚中熔化具有实施例5成分的混合物,试验将上述熔体浇铸进石管内,该石英管具有直径为5、6、7和8mm的扩宽漏斗形浇口。在该试验中发现,使用铂坩埚溶化的材料,在所有情形下都能得到长度为120mm的棒材,而在使用刚玉坩埚熔化材料的情形中,只能得到直径为8mm的棒材,这是因为该熔体十分粘稠。

Claims (5)

1.一种生产高温超导体及其铸件的方法,该超导体包括铋、锶、钙、铜和任选地铅的氧化物,以及锶、钡的硫酸盐及其混合物,该方法包括使铋、锶、钙、铜和任选地铅的氧化物按下式所要求的摩尔比混合,
Bi2-a+b+cPba(Sr,Ca)3-b-cCu2+dOx,
式中a=0~0.7;b+c=0~0.5;d=-0.1~+0.1;
    x=7~10;而且(Sr∶Ca)的摩尔比=(2.8∶1)~(1∶2.8);
并以各氧化物的混合物为基础计算添加2~30%(重量)的硫酸锶和/或1~20%(重量)的硫酸钡完全混合;在温度870~1600℃的铂坩埚中熔炼该混合物;将该熔体浇铸进所需形状和大小的永久铸模内;使该熔体慢慢地固化;使所生产的铸件与永久铸模的材料分离,并在含氧气氛中于700~900℃温度使其退火6~200小时。
2.根据权利要求1所述的方法,其中坩埚材料包括铂、铱、铑或其相互的合金或者它们同元素周期第一副族或第8族的其它贵金属的合金。
3.根据权利要求1或2所述的方法,其中该熔体被浇铸进一个水平地布置并高速旋转的管状永久铸模内。
4.根据权利要求1或2所述的方法,其中混合物在温度1000~1300℃被熔化。
5.根据权利要求1或2所述的方法,其中铸件在含氧气氛中于750~870℃进行退火。
CN93106901A 1992-06-10 1993-06-08 生产高温超导体及其铸件的方法 Expired - Lifetime CN1070308C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4218950A DE4218950A1 (de) 1992-06-10 1992-06-10 Verfahren zur Herstellung eines Hochtemperatursupraleiters und daraus gebildeter Formkörper
DEP4218950.0 1992-06-10

Publications (2)

Publication Number Publication Date
CN1082241A CN1082241A (zh) 1994-02-16
CN1070308C true CN1070308C (zh) 2001-08-29

Family

ID=6460694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93106901A Expired - Lifetime CN1070308C (zh) 1992-06-10 1993-06-08 生产高温超导体及其铸件的方法

Country Status (14)

Country Link
US (1) US5389605A (zh)
EP (1) EP0573798B1 (zh)
JP (1) JP2958214B2 (zh)
KR (1) KR100227434B1 (zh)
CN (1) CN1070308C (zh)
AT (1) ATE148438T1 (zh)
CA (1) CA2096899C (zh)
DE (2) DE4218950A1 (zh)
DK (1) DK0573798T3 (zh)
ES (1) ES2099859T3 (zh)
GR (1) GR3022892T3 (zh)
NO (1) NO932106L (zh)
RU (1) RU2104256C1 (zh)
TW (1) TW345754B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072525A (ja) * 1993-02-17 1995-01-06 Hoechst Ag 高温超伝導体先駆物質の製造方法
EP0646554A1 (de) * 1993-10-04 1995-04-05 Hoechst Aktiengesellschaft Massivteile aus Hochtemperatur-Supraleiter-Material
CA2505501A1 (en) * 2004-05-04 2005-11-04 Nexans Method for mechanical stabilisation of tube-shaped superconducting ceramics and mechanically stabilised tube-shaped superconducting composite
ATE381521T1 (de) 2004-10-19 2008-01-15 Nexans Verbessertes hochtemperatur-supraleiter material des bscco systems
CN1970454A (zh) 2004-11-22 2007-05-30 尼克桑斯公司 用于Bi-基氧化物超导体的前体材料和制备该材料的方法
ATE496874T1 (de) * 2007-10-05 2011-02-15 Knauf Gips Kg Verfahren zur herstellung einer bauplatte auf calciumsulfat-bariumsulfat-basis
RU2442749C1 (ru) * 2010-06-03 2012-02-20 Учреждение Российской академии наук ИНСТИТУТ ФИЗИКИ ТВЕРДОГО ТЕЛА РАН (ИФТТ РАН) Способ получения сверхпроводящего соединения кальций-фосфор-кислород

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369464A2 (en) * 1988-11-18 1990-05-23 Sumitomo Electric Industries, Ltd. Method of producing superconducting ceramic wire
JP4089361B2 (ja) * 2002-09-12 2008-05-28 株式会社日立製作所 自動車用電気制御式ブレーキ装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1332513C (en) * 1987-04-02 1994-10-18 Yoshihiro Nakai Superconductor and method of manufacturing the same
JP2557882B2 (ja) * 1987-05-01 1996-11-27 日本電信電話株式会社 超伝導酸化物単結晶の成長方法
JPH01160861A (ja) * 1987-12-17 1989-06-23 Mitsubishi Electric Corp 超電導セラミクスの異方成長法
JP2601876B2 (ja) * 1988-06-02 1997-04-16 住友電気工業株式会社 超電導体および超電導線材の各製造方法
DE3830092A1 (de) * 1988-09-03 1990-03-15 Hoechst Ag Verfahren zur herstellung eines hochtemperatursupraleiters sowie daraus bestehende formkoerper
JPH0397658A (ja) * 1989-09-11 1991-04-23 Chisso Corp 超伝導体組成物
JPH03237071A (ja) * 1990-02-13 1991-10-22 Mitsubishi Electric Corp 酸化物超電導体の製造方法
DE4019368A1 (de) * 1990-06-18 1991-12-19 Hoechst Ag Verfahren zur herstellung rohrfoermiger formteile aus hochtemperatur-supraleiter-material sowie eine anlage zu seiner durchfuehrung
US5215961A (en) * 1990-06-25 1993-06-01 The United States Of America As Represented By The Secretary Of The Navy Machinable oxide ceramic
JPH0489361A (ja) * 1990-07-30 1992-03-23 Furukawa Electric Co Ltd:The Bi系酸化物超電導前駆物質の鋳造成形方法
DE4124823A1 (de) * 1991-07-26 1993-01-28 Hoechst Ag Hochtemperatur-supraleiter und verfahren zu seiner herstellung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369464A2 (en) * 1988-11-18 1990-05-23 Sumitomo Electric Industries, Ltd. Method of producing superconducting ceramic wire
JP4089361B2 (ja) * 2002-09-12 2008-05-28 株式会社日立製作所 自動車用電気制御式ブレーキ装置

Also Published As

Publication number Publication date
EP0573798A2 (de) 1993-12-15
ES2099859T3 (es) 1997-06-01
DE4218950A1 (de) 1993-12-16
KR100227434B1 (ko) 1999-11-01
EP0573798B1 (de) 1997-01-29
CA2096899C (en) 1998-09-22
JPH0692740A (ja) 1994-04-05
JP2958214B2 (ja) 1999-10-06
KR940005514A (ko) 1994-03-21
NO932106D0 (no) 1993-06-09
EP0573798A3 (de) 1995-02-08
DE59305305D1 (de) 1997-03-13
ATE148438T1 (de) 1997-02-15
RU2104256C1 (ru) 1998-02-10
TW345754B (en) 1998-11-21
GR3022892T3 (en) 1997-06-30
NO932106L (no) 1993-12-13
DK0573798T3 (da) 1997-07-07
CN1082241A (zh) 1994-02-16
CA2096899A1 (en) 1993-12-11
US5389605A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
JP2672334B2 (ja) 超伝導体の製造方法
CN1034247C (zh) 高温超导体的制造方法及其制成的超导体成型体
US5011823A (en) Fabrication of oxide superconductors by melt growth method
US5306700A (en) Dense melt-based ceramic superconductors
CN1070308C (zh) 生产高温超导体及其铸件的方法
EP0495677B1 (en) Oxide superconducting material and process for producing the same
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
US6548187B2 (en) Sn based alloy containing Sn—Ti compound, and precursor of Nb3SN superconducting wire
US5294601A (en) High-temperature superconductor comprising barium sulfate, strontium sulfate or mixtures thereof and a process for its preparation
JP2672926B2 (ja) イットリウム系超伝導体の製造方法
US20050016854A1 (en) Materials fabrication method and apparatus
KR100614554B1 (ko) 세라믹 성형체의 균열 치유 방법 및 이러한 방법으로처리된 성형체
EP1650178B1 (en) Improved high temperature superconductor material of BSCCO system
Luo et al. High Tc superconductors prepared by oxidation of liquid-quenched Bi Sr Ca Cu,(Bi1− xPbx) Sr Ca Cu, Eu Ba Cu, Yb Ba Cu and Y Ba Cu alloy precursors: Structure, microstructure and electrical properties
JPH08217530A (ja) アルミナ質焼結体およびその製造方法
JP3217660B2 (ja) 酸化物超電導体の製造方法
JPS63313416A (ja) 超伝導線材およびその作製方法
KR970005161B1 (ko) 초전도체 제조방법과 장치
JPH0355530B2 (zh)
JPH05254834A (ja) 酸化物超電導体及びその製造方法
Bock et al. Large Scale Transport Properties of Melt Cast Processed Bi 2 Sr 2 CaCu 2 O x
EP0375134A1 (en) Bi-Ca-Sr-Cu-O superconducting glass ceramics
Samanta Processing and Superconducting Properties of YBa2Cu3O7-X+ Ag2O Microcomposite for Fabrication of High Tc, Flexible Wire
CNEA SOLIDIFICATION OF YBa2Cu3O7-x CERAMICS COOLED FROM THE RANGE OF TEMPERATURES OF PERITECTIC MELTING
JPH0123539B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Applicant after: AVENTIS RESEARCH & TECHNOLOGIES GmbH & Co.KG

Applicant before: HOECHST AG

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: HOECHST AKTIENGESELLSCHAFT (DE) TO: AVENTIS RESEARCH + TECHNOLOGY GMBH + CO. KG

C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ALCATAR HIGH-TEMPERATURE SUPERCONDUCTORS LIMITED P

Free format text: FORMER OWNER: AVENTIS RESEARCH + TECHNOLOGY GMBH + CO. KG

Effective date: 20090327

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: NIKSEN SUPERCONDUCT CO.,LTD.

Free format text: FORMER NAME: ALCATAR HIGH-TEMPERATURE SUPERCONDUCTORS LIMITED

Owner name: ALCATAR HIGH-TEMPERATURE SUPERCONDUCTORS LIMITED

Free format text: FORMER NAME: ALCATAR HIGH-TEMPERATURE SUPERCONDUCTORS LIMITED PARTNERSHIP

CP03 Change of name, title or address

Address after: Hult, Germany

Patentee after: Naikesen superconducting Co.,Ltd.

Address before: Hult, Germany

Patentee before: Alcatel superconductor Co.,Ltd.

Address after: Hult, Germany

Patentee after: Alcatel superconductor Co.,Ltd.

Address before: Hult, Germany

Patentee before: Alcatel superconductor GmbH & Co.

TR01 Transfer of patent right

Effective date of registration: 20090327

Address after: Hult, Germany

Patentee after: Alcatel superconductor GmbH & Co.

Address before: Frankfurt, Federal Republic of Germany

Patentee before: AVENTIS RESEARCH & TECHNOLOGIES GmbH & Co.KG

C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20130608

Granted publication date: 20010829