CN106810244B - 锆基复合陶瓷材料及其制备方法与外壳或装饰品 - Google Patents

锆基复合陶瓷材料及其制备方法与外壳或装饰品 Download PDF

Info

Publication number
CN106810244B
CN106810244B CN201510861089.5A CN201510861089A CN106810244B CN 106810244 B CN106810244 B CN 106810244B CN 201510861089 A CN201510861089 A CN 201510861089A CN 106810244 B CN106810244 B CN 106810244B
Authority
CN
China
Prior art keywords
ceramic material
powder
zirconium
based composite
nbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510861089.5A
Other languages
English (en)
Other versions
CN106810244A (zh
Inventor
宫清
林信平
陈戈
吴波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201510861089.5A priority Critical patent/CN106810244B/zh
Priority to KR1020187014131A priority patent/KR102010234B1/ko
Priority to EP16869901.5A priority patent/EP3383826B1/en
Priority to PCT/CN2016/106864 priority patent/WO2017092591A1/en
Priority to JP2018527785A priority patent/JP6615998B2/ja
Priority to US15/775,104 priority patent/US10532949B2/en
Publication of CN106810244A publication Critical patent/CN106810244A/zh
Application granted granted Critical
Publication of CN106810244B publication Critical patent/CN106810244B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Adornments (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种锆基复合陶瓷材料及其制备方法与外壳或装饰品。该陶瓷材料含有氧化锆基体,以及分散在所述氧化锆基体中的立方结构SrxNbO3稳定相,所述立方结构SrxNbO3稳定相中0.7≤x≤0.95。这种锆基复合陶瓷材料通过在氧化锆基底中分散立方结构SrxNbO3稳定相,能够有效地提高锆基复合陶瓷材料的韧性和抗摔性能,使其适用于制备类似于外壳或装饰品的大面积外观件。

Description

锆基复合陶瓷材料及其制备方法与外壳或装饰品
技术领域
本发明涉及陶瓷材料及其应用领域,具体地,涉及一种锆基复合陶瓷材料及其制备方法与外壳或装饰品。
背景技术
由于科学技术的高度发展,对陶瓷材料的性能、质量以及要求越来越高。氧化锆陶瓷由于其具有比其他类型陶瓷耐腐蚀性好、硬度高、以及强度高的特点有着广泛应用。然而,在制作大面积外观件时,虽然现有的氧化锆陶瓷的韧性(达到5-6MPa·m1/2)比其他类型的陶瓷要高一些,但仍然存在不耐摔的缺点。因此,若想采用氧化锆陶瓷制作外观件,还需要对氧化锆陶瓷的抗摔性能进一步改良。
目前,市面上钇稳定的氧化锆粉体已经较为成熟,对于氧化锆陶瓷的改良通常是建立在钇稳定的氧化锆粉体基础上。为了改良氧化锆陶瓷的韧性,常规的增韧方法包括:促使氧化锆陶瓷发生相变,或者在氧化锆陶瓷中添加第二结构相以增韧等。例如,在中国专利No.02111146.4中公开了一种Mg稳定TZP陶瓷。这种陶瓷通过掺杂Mg能够起到一部分增韧的效果,但是这种效果不明显。而且根据这种方法制备出的陶瓷样品强度偏低,只有590MPa左右,这样的强度无法制备出大面积的薄片(易断)。
由上述内容可知,目前氧化锆陶瓷的抗摔性能还需要进一步改进,还需要进一步提出一种具有优异抗摔性能陶瓷材料,以适应于市场需求。
发明内容
本发明的目的是提供一种锆基复合陶瓷材料及其制备方法与外壳或装饰品,以提供一种抗摔性能较好的锆基复合陶瓷。
为了实现上述目的,根据本发明的第一个方面,提供一种锆基复合陶瓷材料,该陶瓷材料含有氧化锆基体,以及分散在所述氧化锆基体中的立方结构SrxNbO3稳定相,所述立方结构SrxNbO3稳定相中0.7≤x≤0.95。
根据本发明的第二个方面,提供了一种锆基复合陶瓷材料的制备方法,该制备方法包括以下步骤:S1、将氧化锆粉体、SrCO3粉体和Nb2O5粉体和粘结剂混合,形成混合浆料,其中所述SrCO3粉体和Nb2O5粉体的摩尔比为2x:1,0.7≤x≤0.95;S2、将所述混合浆料依次进行干燥、成型、以及烧结形成所述锆基复合陶瓷材料。
根据本发明的第三个方面,提供了一种锆基复合陶瓷材料,该锆基复合陶瓷材料由本发明锆基复合陶瓷材料的制备方法制备而成。
根据本发明的第四个方面,提供了一种外壳或装饰品,该外壳或装饰品由上述锆基复合陶瓷材料制备而成。
本发明锆基复合陶瓷材料通过在氧化锆基底中分散立方结构SrxNbO3稳定相,能够有效地提高锆基复合陶瓷材料的韧性和抗摔性能,使其适用于制备类似于外壳或装饰品的大面积外观件。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1示出了证明例1所制备的P1的XRD衍射图谱,以及SrNb6O16(00-045-0228)和Sr2Nb2O7(01-070-0114)的标准卡片;
图2示出了证明例2所制备的P2的XRD衍射图谱,以及四方相氧化锆(00-017-0923)、单斜相氧化锆(01-083-0939)和Sr0.82NbO3(00-009-0079)标准卡片。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
正如背景技术部分所指出的目前氧化锆陶瓷的抗摔性能还需要进一步改进,为此,本发明的发明人针对于氧化锆陶瓷进行了大量的研究,并提出了一种锆基复合陶瓷材料。该陶瓷材料含有氧化锆基体,以及分散在所述氧化锆基体中(内部和表面上)的立方结构SrxNbO3稳定相,所述立方结构SrxNbO3稳定相中0.7≤x≤0.95。
优选地,所述立方结构SrxNbO3稳定相中0.72≤x≤0.86;更优选所述立方结构SrxNbO3稳定相的晶格常数在
Figure BDA0000863236980000031
特别优选所述立方结构SrxNbO3稳定相为立方结构Sr0.82NbO3稳定相(晶格常数在
Figure BDA0000863236980000032
)、立方结构Sr0.72NbO3稳定相(晶格常数在
Figure BDA0000863236980000033
)或立方结构Sr0.86NbO3稳定相(晶格常数在
Figure BDA0000863236980000034
)。
本发明上述锆基复合陶瓷材料通过在氧化锆基底中(内部和表面上)分散立方结构SrxNbO3稳定相,能够有效地提高锆基复合陶瓷材料的韧性和抗摔性能,使其适用于制备类似于外壳或装饰品的大面积外观件。
在本发明中对于立方结构SrxNbO3稳定相的含量并没有特殊的要求,只要在氧化锆基体中含有上述立方结构稳定相就能够在一定程度上起到对氧化锆基复合陶瓷材料韧性的调节作用。本领域技术人员可以根据本领域常规用于调整陶瓷材料的韧性的辅料的用量合理地调节氧化锆基体中立方结构SrxNbO3稳定相的含量。
在本发明中优选地,以氧化锆的含量为100mol%为基准,上述锆基复合陶瓷材料中含有0.2-8mol%的所述立方结构SrxNbO3稳定相。更优选地,以氧化锆的含量为100mol%为基准,所述锆基复合陶瓷材料中含有1-6.1mol%的所述立方结构SrxNbO3。通过将陶瓷材料中的立方结构SrxNbO3稳定相的含量限定在上述范围内,有利于更好的提高所制备的锆基复合陶瓷材料的韧性和抗摔性能。
在制备本发明上述锆基复合陶瓷材料的过程中,所使用的原料包括氧化锆粉体、SrCO3粉体和Nb2O5粉体。其中优选地,所添加的氧化锆粉体为3mo1%钇稳定的四方相氧化锆粉体,此时所形成的锆基复合陶瓷材料中氧化锆基体为3mo1%钇稳定的氧化锆基体。所添加的SrCO3粉体和Nb2O5粉体能够在氧化锆基体中烧结形成立方结构SrxNbO3稳定相。
在本发明上述锆基复合陶瓷材料中,推定原料中SrCO3(碳酸锶)粉体和Nb2O5(五氧化二铌)粉体能完全反应生成立方结构SrxNbO3稳定相,在本发明中立方结构SrxNbO3稳定相的含量是根据SrCO3(碳酸锶)粉体和Nb2O5(五氧化二铌)粉体的投料比计量换算所得。
在本发明中对于所使用的氧化锆粉体、SrCO3粉体和Nb2O5粉体的粒径等因素并没有特殊要求,可以参照本领域制备陶瓷材料时的对于原料粒径的常规选择。例如所添加的氧化锆粉体的粒径D50可以为0.1-1μm;优选为0.5-0.8μm;所添加的SrCO3粉体和Nb2O5粉体的粒径为0.2-5μm。其中粒径D50为体积平均粒径,其是通过将待测粉体分散在水中,然后超声震荡30分钟,用激光粒度仪进行粒度测试获得。
在制备本发明上述锆基复合陶瓷材料的过程中,根据消费者的需求,还可以在锆基复合陶瓷材料中引入致色粉体以形成具有特定颜色的陶瓷材料,例如,添加ErAlO3粉体(添加量为氧化锆添加量的0.8-5mol%)以形成粉色陶瓷材料;添加LaFeO3粉体(添加量为氧化锆添加量的0.5~9mol%)和所述LaCrO3粉体(添加量为氧化锆添加量的0.21-3.86mol%)以形成咖啡色陶瓷材料;添加ErAlO3粉体(添加量为氧化锆添加量的0.5~9mol%)和FeAlO3粉体(添加量为氧化锆添加量的0.056-1mol%)以形成杏色陶瓷材料;添加CoFe2O4粉体(添加量为氧化锆添加量的0.8-5mol%)以形成黑色陶瓷材料;添加La0.8Sr0.2MnO3粉体(添加量为氧化锆添加量的0.8-5mol%)以形成黑色、特别是黑灰色陶瓷材料;添加SrAl12O19粉体(添加量为氧化锆添加量的0.17-0.75mol%)与立方结构SrxNbO3稳定相配合以形成白色、特别是冷白色陶瓷材料,添加Ca10(PO4)6(OH)2粉体(添加量为氧化锆添加量的0.05~1mol%)和SrAl12O19粉体(添加量为氧化锆添加量的0.13-0.83mol%)以形成白色、特别是乳白色陶瓷材料。优选所添加的致色粉体的粒径D50为0.1-2μm,优选为0.2-0.7μm。
本发明上述锆基复合陶瓷材料可以通过将氧化锆粉体、以及具有立方结构SrxNbO3稳定相的物质粉体混合后,经干燥、成型、烧结处理制得,其制备方法可以参照本领域的常规工艺方法,只要所形成的陶瓷材料中含有立方结构SrxNbO3稳定相即可。
然而,由于现有的具有立方结构SrxNbO3稳定相(特别是立方结构Sr0.82NbO3稳定相、立方结构Sr0.72NbO3稳定相、立方结构Sr0.86NbO3稳定相)的物质粉体的价格相对昂贵,使其并不利于上述锆基复合陶瓷材料的广泛应用。为此,本发明的发明人采用了价格相对低廉的SrCO3粉体和Nb2O5粉体按比例在氧化锆粉体中烧结以形成所需立方结构SrxNbO3稳定相。
在本发明中进一步提供了一种锆基复合陶瓷材料的制备方法。该制备方法包括以下步骤,其中所述SrCO3粉体和Nb2O5粉体的摩尔比为2x:1,0.7≤x≤0.95:S1、将氧化锆粉体、SrCO3粉体和Nb2O5粉体和粘结剂混合,形成混合浆料;S2、将所述混合浆料依次进行干燥、成型、以及烧结形成所述锆基复合陶瓷材料。
本发明上述所提供的这种方法,通过添加SrCO3粉体和Nb2O5粉体(两者具有与烧结助剂相似的作用),可以在相同条件下相对降低锆基复合陶瓷材料的烧结温度,促使所获得的陶瓷材料结构更为致密。同时,SrCO3粉体和Nb2O5粉体通过混和烧结形成的立方结构SrxNbO3稳定相能够有效地提高锆基复合陶瓷材料的韧性和抗摔性能,使其适用于制备类似于外壳或装饰品的大面积外观件。
在本发明上述制备方法的S1中,对于各种原料的混合方法并没有特殊要求,参照本领域常规混料方法即可。在本发明中优选地,所述S1形成混合浆料的步骤包括:S11、将氧化锆粉体、SrCO3粉体和Nb2O5粉体混合研磨(优选为球磨),形成预混体;S12、将所述预混体与粘结剂混合研磨(优选为球磨),形成所述混合浆料。通过这样的方式进行混料,所形成喷雾浆料中各原料分散的更为均匀,进而有利于获得韧性和抗摔性能更好的锆基复合陶瓷材料。
在本发明上述制备方法的S1中,对于氧化锆粉体和SrCO3粉体和Nb2O5粉体的用量比例并没有特殊要求,只要在所制备的锆基复合陶瓷材料中含有立方结构SrxNbO3稳定相即可在一定程度上实现本发明增加锆基复合陶瓷材料抗摔性能的目的。然而,为了优化所制备的锆基复合陶瓷材料的韧性,在本发明中上述制备方法的S1中,氧化锆粉体和SrCO3粉体的摩尔比为100:(0.2-8)x,优选为100:(1-6.1)x。
将氧化锆粉体和SrCO3粉体的摩尔比控制在上述范围内以使得所制备的锆基复合陶瓷材料中,以氧化锆的含量为100mol%为基准,含有0.2-8mol%的所述立方结构SrxNbO3稳定相,优选地,含有1-6.1mol%的所述立方结构SrxNbO3,进而更好的提高所制备的锆基复合陶瓷材料的韧性和抗摔性能。
优选地,所述S1中,所述SrCO3粉体和Nb2O5粉体的摩尔比为2x:1,0.72≤x≤0.86;优选地,所述SrCO3粉体和Nb2O5粉体通过烧结在所述锆基复合陶瓷材料形成晶格常数为
Figure BDA0000863236980000071
的立方结构SrxNbO3稳定相;优选地,所述x为0.72以在本发明锆基符合陶瓷材料中形成立方结构Sr0.72NbO3稳定相,所述x为0.82以在本发明锆基符合陶瓷材料中形成立方结构Sr0.82NbO3稳定相,或者所述x为0.86以在本发明锆基符合陶瓷材料中形成立方结构Sr0.86NbO3稳定相。
优选氧化锆粉体和SrCO3粉体的用量比为使得所制备的锆基复合陶瓷材料中立方结构SrxNbO3稳定相的含量为氧化锆含量的0.2-8mol%,优选为1-6mol%,且所述SrCO3粉体和Nb2O5粉体按立方结构SrxNbO3稳定相中元素摩尔计量比投料。
在本发明的一种优选实施方式中,上述方法所制备的锆基复合陶瓷材料中含有立方结构Sr0.82NbO3稳定相,此时上述制备方法的S1中,氧化锆粉体和SrCO3粉体的摩尔比为100:(0.164-6.56),优选为100:(0.82-5),而SrCO3粉体和Nb2O5粉体的投料摩尔比为1.64:1。
在本发明的一种优选实施方式中,上述方法所制备的锆基复合陶瓷材料中含有立方结构Sr0.72NbO3稳定相,此时上述制备方法的S1中,氧化锆粉体和SrCO3粉体的摩尔比为100:(0.15-5.8),优选为100:(0.72-4.4),而SrCO3粉体和Nb2O5粉体的投料摩尔比为1.44:1。
在本发明的一种优选实施方式中,上述方法所制备的锆基复合陶瓷材料中含有立方结构Sr0.86NbO3稳定相,此时上述制备方法的S1中,氧化锆粉体和SrCO3粉体的摩尔比为100:(0.17-6.9),优选为100:(0.86-5.15),而SrCO3粉体和Nb2O5粉体的投料摩尔比为1.72:1。
在本发明上述制备方法的S1中,对于粘结剂的类型和用量均没有特殊要求,可以参照本领域的常规方法进行选择原料及选择用量,例如可以选择的粘结剂包括但不限于PVA或者聚乙二醇4000,粘结剂的用量为氧化锆粉体总重量的0.2-2wt%。
在本发明上述制备方法的S2中,对于干燥的工艺条件并没有特殊要求,参照本领域常规工艺方法即可。优选采用喷雾干燥方法,且所述喷雾干燥的条件包括:进风温度为220-260℃,出风温度为100-125℃,离心转速为10-20rpm。
在本发明上述制备方法的S2中,对于成型的工艺并没有特殊要求,可以采用干压成型、等静压成型、注射成型、热压铸成型等传统成型方式。在本发明优选采用干压成型,优选所述干压成型的条件包括:采用吨位为150-200的压机,在干压压力为6-12Mpa条件下成型20-60s。
在本发明上述制备方法的S2中,对于烧结的工艺并没有特殊要求,烧结采用普通的马弗炉空气常压烧结即可。优选地,所述烧结的步骤包括,将成型所得的预制件在1350-1500℃,优选1390-1480℃,更优选1430-1470℃下烧结1-2h。
在本发明所提供的上述制备方法中,还可以根据制备要求或者使用要求添加其他辅料,例如可以根据市场要求,适当的添加相应的色料以获取相应颜色的陶瓷材料。此时,可以根据所添加的辅料适当的调整本发明制备方法的烧结温度,对于这一内容可以参照本领域所常规方法,在此不再赘述。
更优选地,所述S3中烧结步骤包括,将所述成型所得的预制件从室温经350-450min升至550-650℃后保温1.5-2.5h,再经250-350min升至1100-1200℃后保温1.5-2.5h,再经120-180min升至1250-1350℃后保温1.5-2.5h,再经30-60min升至1430-1470℃后保温1-2h,然后经过120-180min分钟降至900℃,最后自然冷却至室温。
在本发明上述制备方法中,对于S1中研磨过程中并没有特殊要求,只要能够实现原料的充分混合即可,优选地,所述研磨的方式为球磨,在球磨过程中,使用具有氧化锆陶瓷内衬的球磨罐,以及氧化锆研磨球。
在本发明上述制备方法中,球磨步骤通常需要添加球磨溶液,在本发明中可以采用的球磨溶液包括但不限于用水和/或C1-C5醇,优选地,所述球磨溶液为水和/或C1-C5的一元醇。C1-C5的一元醇可以为甲醇、乙醇、正丙醇、2-丙醇、正丁醇、2-丁醇、2-甲基-1-丙醇、2-甲基-2-丙醇、正戊醇、2-甲基-1-丁醇、3-甲基-1-丁醇、2-甲基-2-丁醇、3-甲基-2-丁醇和2,2-二甲基-1-丙醇中的一种或多种。更优选地,所述球磨溶液为水和/或乙醇。
同时,在本发明中还提供了一种锆基复合陶瓷材料,该锆基复合陶瓷材料由上述锆基复合陶瓷材料的制备方法制备而成。所述陶瓷材料含有氧化锆基体,以及分散在所述氧化锆基体中的立方结构SrxNbO3稳定相,所述立方结构SrxNbO3稳定相中0.7≤x≤0.95。
优选地,所述立方结构SrxNbO3稳定相中0.72≤x≤0.86,优选地,所述立方结构SrxNbO3稳定相的晶格常数在
Figure BDA0000863236980000091
优选地,所述立方结构SrxNbO3稳定相为立方结构Sr0.82NbO3稳定相、立方结构Sr0.72NbO3稳定相或立方结构Sr0.86NbO3稳定相。优选地,以氧化锆的含量为100mol%为基准,所述锆基复合陶瓷材料中含有0.2-8mol%的所述立方结构SrxNbO3稳定相,更优选所述锆基复合陶瓷材料中含有1-6mol%的所述立方结构SrxNbO3稳定相。
在本发明上述锆基复合陶瓷材料的制备方法中,推定原料中SrCO3(碳酸锶)粉体和Nb2O5(五氧化二铌)粉体完全反应生成立方结构Sr0.82NbO3稳定相,故而,所制备的锆基复合陶瓷材料中立方结构Sr0.82NbO3稳定相的含量是根据SrCO3(碳酸锶)粉体和Nb2O5(五氧化二铌)粉体的投料比计量换算所得。
另外,在本发明中还提供了一种外壳或装饰品,所述外壳或装饰品由上述锆基复合陶瓷材料制备而成。上述外壳或装饰品通过采用本发明锆基复合陶瓷材料制备而成,能够具有相对较好的韧性和抗摔性能。
以下将结合具体实施例及对比例以进一步详细描述本发明锆基复合陶瓷材料及其制备方法,并说明本发明锆基复合陶瓷材料及其制备方法的有益效果。
一、如下实施例和对比例中的原料说明
(1)氧化锆粉体:商购自东方锆业公司OZ-3Y-7型号的产品(粒度D50为0.7μm),为3mo1%钇稳定的四方相氧化锆粉体;
(2)SrCO3粉体:商购自公司上海典扬实业(粒度D50为1μm),纯度为99%;
(3)Nb2O5粉体:商购自扬州三和公司(粒度D50为1μm),纯度为99.5%;
(4)粘结剂:商购自可乐丽公司的聚乙二醇4000,以及商购自可乐丽公司的PVA217。
二、证明例
在如下证明例1和2所涉及的X射线衍射相分析中:
测试仪器:X射线衍射相分析仪。
测试条件:采用CuKa辐射,测试管压为40KV,管流为20mA,扫描模式为theta/2theta(θ/2θ);扫描方式为continue;扫描范围:10-80°,步进角度为0.04°。
证明例1
用于证明Nb2O5粉体与SrCO3粉体按摩尔比1:1.64在空气中烧结无法生成立方结构Sr0.82NbO3稳定相。
原料:SrCO3粉体与Nb2O5粉体,两者的摩尔比为1.64:1。
制备方法:
S1、将SrCO3粉体和Nb2O5粉体在球磨罐中加酒精球磨8小时形成混合物,烘干后待用;
S2、将干燥的所述混合物从室温经400min升至600℃后保温2h,再经300min升至1150℃后保温2h,再经150min升至1300℃后保温2h,再经50min升至1450℃后保温1.5h,然后经过150min分钟降至900℃,最后自然冷却至室温,形成烧结物,记为P1。
X射线衍射相分析结果:如图1所示,在图1示出了证明例1所制备的P1的XRD衍射图谱,以及SrNb6O16(00-045-0228)和Sr2Nb2O7(01-070-0114)的标准卡片。由图1中可以看出,上述证明例1所制备的烧结物P1中主要含有SrNb6O16相和Sr2Nb2O7相,其中并不含有立方结构Sr0.82NbO3稳定相,由此可见,将Nb2O5粉体与SrCO3粉体按摩尔比1:1.64在空气中烧结无法生产立方结构Sr0.82NbO3稳定相。
证明例2
用于证明Nb2O5粉体与SrCO3粉体按摩尔比1:1.64在氧化锆基体中烧结能够生成立方结构Sr0.82NbO3稳定相。
原料:氧化锆,用量为200g;Nb2O5粉体,用量为氧化锆总摩尔量的25mol%,SrCO3粉体,其与Nb2O5粉体的摩尔比为1.64:1。
制备方法:
S1、先将氧化锆粉体、SrCO3粉体和Nb2O5粉体在球磨罐中加酒精球磨8小时形成混合物,烘干后待用;
S2、将干燥的所述混合物从室温经400min升至600℃后保温2h,再经300min升至1150℃后保温2h,再经150min升至1300℃后保温2h,再经50min升至1450℃后保温1.5h,然后经过150min分钟降至900℃,最后自然冷却至室温,形成烧结物,记为P2。
X射线衍射相分析结果:如图2所示,在图2中示出了证明例2所制备的烧结物P2的XRD衍射图谱,以及四方相氧化锆(00-017-0923)、单斜相氧化锆(01-083-0939)和Sr0.82NbO3(00-009-0079)的标准卡片,由图2中对比可以看出,上述证明例2所制备的烧结物P2中含有四方相氧化锆、单斜相氧化锆和立方结构Sr0.82NbO3稳定相,由此可见,将Nb2O5粉体与SrCO3粉体按摩尔比1:1.64在氧化锆基体中烧结能够生产立方结构Sr0.82NbO3稳定相。
总结:由上述证明例1和2的X射线衍射相分析结果可知,立方结构Sr0.82NbO3稳定相的制备存在一定的客观条件要求,并非是在任意条件下将Nb2O5粉体与SrCO3粉体按摩尔比1:1.64混合均能够得到立方结构Sr0.82NbO3稳定相。在本发明中发明人在偶然的机会下发现,将Nb2O5粉体与SrCO3粉体按摩尔比1:1.64混合在氧化锆基体中烧结能够生产立方结构Sr0.82NbO3稳定相,而正是基于这一发现,本发明的发明人提供了本发明锆基复合陶瓷材料及其制备方法。
此外,本发明为了节省篇幅,并未提供所制备的立方结构Sr0.72NbO3稳定相和立方结构Sr0.86NbO3稳定相的XRD图谱。但是,需要说明的是,立方结构Sr0.72NbO3稳定相和立方结构Sr0.86NbO3稳定相与上述立方结构Sr0.82NbO3稳定相的制备情况相似,同样的通过按比例混合在氧化锆基体中进行烧结能够获得。
实施例1至6
用于说明本申请锆基复合陶瓷材料及其制备方法,其中所述陶瓷材料含有氧化锆基体,以及分散在所述氧化锆基体中的立方结构Sr0.82NbO3稳定相。
实施例1
用于说明本申请锆基复合陶瓷材料及其制备方法
原料:氧化锆,用量为200g;SrCO3粉体,用量为氧化锆总摩尔量的1.5mol%;Nb2O5粉体,其摩尔用量与SrCO3粉体摩尔用量的比值为1:1.64;聚乙二醇4000,用量为氧化锆重量的0.5wt%;PVA,用量为氧化锆重量的0.5wt%。
制备方法:
S1、先将氧化锆粉体、SrCO3粉体和Nb2O5粉体在球磨罐中加酒精球磨8小时形成预混体;在预混体中加入粘结剂聚乙二醇4000和PVA球磨半小时,形成喷雾用浆料;
S2、将喷雾用浆料送入喷雾塔在进风温度为250℃,出风温度为110℃,离心转速为15rpm条件下进行喷雾干燥形成用来干压的球形粉体;将用来干压的球形粉体加入到干压机(吨位180吨的压机使用8MPa的油压压强)中,干压30s形成预制件;将所述预制件从室温经400min升至600℃后保温2h,再经300min升至1150℃后保温2h,再经150min升至1300℃后保温2h,再经50min升至1450℃后保温1.5h,然后经过150min分钟降至900℃,最后自然冷却至室温,形成锆基复合陶瓷材料;
根据原料的投料计量比推定,以氧化锆的含量为100mol%为基准,所形成的锆基复合陶瓷材料中含有约1.83mol%的立方结构Sr0.82NbO3稳定相(晶格常数在
Figure BDA0000863236980000131
)。
S3、将所述锆基复合陶瓷材料打磨抛光并激光切割制成长宽厚为135mm×65mm×0.7mm的样板,记为S1。
实施例2-6
用于说明本申请锆基复合陶瓷材料及其制备方法。
原料:参照实施例1中原料,区别在于:SrCO3粉体的用量为氧化锆总摩尔量的Xmol%;Nb2O5粉体的摩尔用量与SrCO3粉体摩尔用量的比值为1:1.64,其中X如下表所示:
实施例 2 3 4 5 6
X 0.82 5 0.2 6.56 7.38
制备方法:同实施例1。
根据原料的投料计量比推定,以氧化锆的含量为100mol%为基准,所形成的锆基复合陶瓷材料中含有Ymol%的立方结构Sr0.82NbO3稳定相,其中Y如下表所示:
实施例 2 3 4 5 6
Y 1 6.1 0.24 8 9
将所述锆基复合陶瓷材料打磨抛光并激光切割制成长宽厚为135mm×65mm×0.7mm的样板,记为S2-S6。
实施例7至12
用于说明本申请锆基复合陶瓷材料及其制备方法,其中所述陶瓷材料含有氧化锆基体,以及分散在所述氧化锆基体中的立方结构Sr0.72NbO3稳定相。
实施例7
用于说明本申请锆基复合陶瓷材料及其制备方法
原料:参照实施例1,区别在于:Nb2O5粉体与SrCO3粉体摩尔用量的比值为1:1.44。
制备方法:同实施例1。
根据原料的投料计量比推定,以氧化锆的含量为100mol%为基准,所形成的锆基复合陶瓷材料中含有2.08mol%的立方结构Sr0.72NbO3稳定相(晶格常数在
Figure BDA0000863236980000151
)。
将所述锆基复合陶瓷材料打磨抛光并激光切割制成长宽厚为135mm×65mm×0.7mm的样板,记为S7。
实施例8-12
用于说明本申请锆基复合陶瓷材料及其制备方法。
原料:参照实施例1中原料,区别在于:SrCO3粉体的用量为氧化锆总摩尔量的Xmol%;Nb2O5粉体的摩尔用量与SrCO3粉体摩尔用量的比值为1:1.44,其中X如下表所示:
实施例 8 9 10 11 12
X 0.72 4.4 0.15 5.8 6.5
制备方法:同实施例1。
根据原料的投料计量比推定,以氧化锆的含量为100mol%为基准,所形成的锆基复合陶瓷材料中含有Ymol%的立方结构Sr0.82NbO3稳定相,其中Y如下表所示:
实施例 8 9 10 11 12
Y 1 6.1 0.21 8.05 9.03
将所述锆基复合陶瓷材料打磨抛光并激光切割制成长宽厚为135mm×65mm×0.7mm的样板,记为S8-S12。
实施例13至18
用于说明本申请锆基复合陶瓷材料及其制备方法,其中所述陶瓷材料含有氧化锆基体,以及分散在所述氧化锆基体中的立方结构Sr0.86NbO3稳定相。
实施例13
用于说明本申请锆基复合陶瓷材料及其制备方法
原料:参照实施例1,区别在于:Nb2O5粉体与SrCO3粉体摩尔用量的比值为1:1.72制备方法:同实施例1。
根据原料的投料计量比推定,以氧化锆的含量为100mol%为基准,所形成的锆基复合陶瓷材料中含有1.74mol%的立方结构Sr0.86NbO3稳定相(晶格常数在
Figure BDA0000863236980000161
)。
将所述锆基复合陶瓷材料打磨抛光并激光切割制成长宽厚为135mm×65mm×0.7mm的样板,记为S13。
实施例14-18
用于说明本申请锆基复合陶瓷材料及其制备方法。
原料:参照实施例1中原料,区别在于:SrCO3粉体的用量为氧化锆总摩尔量的Xmol%;Nb2O5粉体的摩尔用量与SrCO3粉体摩尔用量的比值为1:1.64,其中X如下表所示:
实施例 14 15 16 17 18
X 0.86 5.1 0.2 6.9 8
制备方法:同实施例1。
根据原料的投料计量比推定,以氧化锆的含量为100mol%为基准,所形成的锆基复合陶瓷材料中含有Ymol%的立方结构Sr0.86NbO3稳定相,其中Y如下表所示:
实施例 14 15 16 17 18
Y 1 5.9 0.23 8 9.3
将所述锆基复合陶瓷材料打磨抛光并激光切割制成长宽厚为135mm×65mm×0.7mm的样板,记为S14-S18。
对比例1:
用于对比说明本申请锆基复合陶瓷材料及其制备方法
(1)原料:氧化锆200g,聚乙二醇4000,用量为氧化锆重量的0.5wt%;PVA,用量为氧化锆重量的0.5wt%;
(2)陶瓷材料的制备方法包括以下步骤:
S1、将氧化锆粉体与粘结剂聚乙二醇4000和PVA球磨半小时,形成喷雾用浆料;
S2、将喷雾用浆料送入喷雾塔在进风温度为250℃,出风温度为110℃,离心转速为15rpm条件下进行喷雾干燥形成用来干压的球形粉体;将用来干压的球形粉体加入到干压机(吨位180吨的压机使用8MPa的油压压强)中,干压30s形成预制件;将所述预制件升温至1480℃烧结2小时,冷却至室温,形成锆基陶瓷材料。
将锆基陶瓷材料打磨抛光并激光切割制成长宽厚为135mm×65mm×0.7mm的样板,记为D1。
对比例2
用于对比说明本发明锆基复合陶瓷材料及其制备方法(参照中国专利No.02111146.4中实施例1)
将0.5vol%的超细YAS烧结助剂与(Mg,Y)-TZP粉体((14mol%)MgO-(1.5mol%)Y2O3-(余量)ZrO2)机械球磨12小时左右烘干,再加入3%浓度PVA为粘结剂造粒后在60MPa下干压成型,并在200MPa下等静压获得素坯。随后将素坯置于硅钼棒炉中以2℃/分钟的升温速度升到1400℃保温2小时,随炉冷却。
将烧结体打磨抛光并激光切割制成长宽厚为135mm×65mm×0.7mm的样板,记为D2。
对比例3
用于对比说明本发明锆基复合陶瓷材料及其制备方法
(1)原料:氧化锆,用量为200g;Sr2Nb2O7粉体,用量为氧化锆总摩尔量的1.83mol%;聚乙二醇4000,用量为氧化锆重量的0.5wt%;PVA,用量为氧化锆重量的0.5wt%;其中,Sr2Nb2O7粉体通过将SrCO3粉体和Nb2O5粉体按摩尔比2:1球磨混合,烘干,在1200℃下保温烧结1.5h,然后球磨粉碎至D50为0.5μm粉体获得;
(2)陶瓷材料的制备方法:参照对比例1,区别在于:
S1、先将氧化锆粉体、Sr2Nb2O7粉体在球磨罐中加酒精球磨8小时形成预混体;在预混体中加入粘结剂聚乙二醇4000和PVA球磨半小时,形成喷雾用浆料;
将锆基陶瓷材料打磨抛光并激光切割制成长宽厚为135mm×65mm×0.7mm的样板,记为D3。
三、测试:
将实施例1-18以及对比例1-3所制备的长宽厚为135mm×65mm×0.7mm的样板进行性能测试,以说明本发明锆基复合陶瓷材料及其制备方法的有益效果。
(一)、测试项目及方法
(1)韧性测试:采用GB/T23806精密陶瓷断裂韧性测试方法即单边切口梁法进行测量。
(2)抗摔测试:取实施例1-18以及对比例1-3中所制备的长宽厚为135mm×65mm×0.7mm的样板在1.3m的高处以自由落体的下落方式与地面进行大面垂直接触,每样产品取样品10个,取抗摔次数平均值。
(3)抛光效果:通过肉眼观测实施例1-18以及对比例1-3中所制备的长宽厚为135mm×65mm×0.7mm的样板表面是否存在缺陷。
(二)、测试结果:如表1所示。
表1
Figure BDA0000863236980000191
由表1中数据可知,根据本发明锆基复合陶瓷材料的制备方法所制备的样板S1-S18的韧性明显优于对比例1和对比例2所制备的样板D1-D2,且能够承受特定条件下3次以上,甚至10至20次的抗摔实验。
而且,与对比例5添加Sr2Nb2O7粉体(采用了最优原料用量)所制备的样板D3相比,本发明实施例1至4所制备的样板S1-S4(内含立方结构Sr0.82NbO3稳定相),本发明实施例7至10所制备的样板S7-S10(内含立方结构Sr0.72NbO3稳定相),本发明实施例13至16所制备的样板S13-S16(内含立方结构Sr0.86NbO3稳定相)的韧性和抗摔性能远远优于样板D3。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (17)

1.一种锆基复合陶瓷材料,其特征在于,所述陶瓷材料含有氧化锆基体,以及分散在所述氧化锆基体中的立方结构SrxNbO3稳定相,所述立方结构SrxNbO3稳定相中0.7≤x≤0.95,其中,
以氧化锆的含量为100mol%为基准,所述锆基复合陶瓷材料中含有0.2-8mol%的所述立方结构SrxNbO3稳定相。
2.根据权利要求1所述的陶瓷材料,其中,所述立方结构SrxNbO3稳定相中0.72≤x≤0.86。
3.根据权利要求1所述的陶瓷材料,其中,所述立方结构SrxNbO3稳定相的晶格常数在
Figure FDA0002132848800000011
4.根据权利要求1所述的陶瓷材料,其中,所述立方结构SrxNbO3稳定相为立方结构Sr0.82NbO3稳定相、立方结构Sr0.72NbO3稳定相或立方结构Sr0.86NbO3稳定相。
5.根据权利要求1所述的陶瓷材料,其中,以氧化锆的含量为100mol%为基准,所述锆基复合陶瓷材料中含有1-6.1mol%的所述立方结构SrxNbO3稳定相。
6.根据权利要求1至4中任意一项所述的陶瓷材料,其中,所述氧化锆基体为3mo1%钇稳定的氧化锆基体。
7.根据权利要求1所述的陶瓷材料,其中,制备所述陶瓷材料的过程中,按照化学计量比添加SrCO3粉体和Nb2O5粉体以烧结形成所述立方结构SrxNbO3稳定相。
8.一种锆基复合陶瓷材料的制备方法,其特征在于,所述制备方法包括以下步骤:
S1、将氧化锆粉体、SrCO3粉体和Nb2O5粉体和粘结剂混合,形成混合浆料,其中所述SrCO3粉体和Nb2O5粉体的摩尔比为2x:1,0.7≤x≤0.95;
S2、将所述混合浆料依次进行干燥、成型、以及烧结形成所述锆基复合陶瓷材料;
所述S1中,氧化锆粉体和SrCO3粉体的摩尔比为100:(0.2-8)x。
9.根据权利要求8所述的制备方法,其中,所述S1中,氧化锆粉体和SrCO3粉体的摩尔比为100:(1-6.1)x。
10.根据权利要求8或9所述的制备方法,其中,所述S1中,所述SrCO3粉体和Nb2O5粉体的摩尔比为2x:1,0.72≤x≤0.86。
11.根据权利要求10所述的制备方法,其中,所述SrCO3粉体和Nb2O5粉体通过烧结在所述锆基复合陶瓷材料形成晶格常数为
Figure FDA0002132848800000031
的立方结构SrxNbO3稳定相。
12.根据权利要求10所述的制备方法,其中,所述x为0.72、0.82或0.86。
13.根据权利要求8所述的制备方法,其中,所述S2的干燥步骤采用喷雾干燥的方法,所述喷雾干燥的条件包括:进风温度为220-260℃,出风温度为100-125℃,离心转速为10-20rpm。
14.根据权利要求8所述的制备方法,其中,所述S2的成型步骤采用干压成型,所述干压成型的条件包括:采用吨位为150-200的压机,在干压压力为6-12MPa条件下成型20-60s。
15.根据权利要求8所述的制备方法,其中,所述S2中烧结步骤包括:将成型所得的预制件在1350-1500℃下烧结1-2h。
16.一种锆基复合陶瓷材料,其特征在于,所述锆基复合陶瓷材料由权利要求8至15中任意一项所述的锆基复合陶瓷材料的制备方法制备而成。
17.一种外壳或装饰品,其特征在于,所述外壳或装饰品由权利要求1至7、以及16中任意一项所述的锆基复合陶瓷材料制备而成。
CN201510861089.5A 2015-11-30 2015-11-30 锆基复合陶瓷材料及其制备方法与外壳或装饰品 Active CN106810244B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201510861089.5A CN106810244B (zh) 2015-11-30 2015-11-30 锆基复合陶瓷材料及其制备方法与外壳或装饰品
KR1020187014131A KR102010234B1 (ko) 2015-11-30 2016-11-23 Zr-계 복합 세라믹 재료, 이의 제조 방법 및 쉘 또는 장식물
EP16869901.5A EP3383826B1 (en) 2015-11-30 2016-11-23 Zr-based composite ceramic material, preparation method thereof, and shell or decoration
PCT/CN2016/106864 WO2017092591A1 (en) 2015-11-30 2016-11-23 Zr-BASED COMPOSITE CERAMIC MATERIAL, PREPARATION METHOD THEREOF, AND SHELL OR DECORATION
JP2018527785A JP6615998B2 (ja) 2015-11-30 2016-11-23 Zr系複合セラミックス材料、その調製方法、及び外板(shell)又は装飾材
US15/775,104 US10532949B2 (en) 2015-11-30 2016-11-23 Zr-based composite ceramic material, preparation method thereof, and shell or decoration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510861089.5A CN106810244B (zh) 2015-11-30 2015-11-30 锆基复合陶瓷材料及其制备方法与外壳或装饰品

Publications (2)

Publication Number Publication Date
CN106810244A CN106810244A (zh) 2017-06-09
CN106810244B true CN106810244B (zh) 2020-03-31

Family

ID=58796251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510861089.5A Active CN106810244B (zh) 2015-11-30 2015-11-30 锆基复合陶瓷材料及其制备方法与外壳或装饰品

Country Status (6)

Country Link
US (1) US10532949B2 (zh)
EP (1) EP3383826B1 (zh)
JP (1) JP6615998B2 (zh)
KR (1) KR102010234B1 (zh)
CN (1) CN106810244B (zh)
WO (1) WO2017092591A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106810246A (zh) * 2015-11-30 2017-06-09 比亚迪股份有限公司 锆基复合陶瓷材料及其制备方法与外壳或装饰品
CN112552041B (zh) * 2019-09-10 2021-11-12 比亚迪股份有限公司 制备氧化锆陶瓷的组合物、氧化锆陶瓷及其制备方法和应用
KR20220110750A (ko) 2019-12-10 2022-08-09 도소 가부시키가이샤 내충격성이 우수한 소결체
CN113929451B (zh) * 2020-06-29 2022-12-09 比亚迪股份有限公司 氧化锆复合陶瓷及其制备方法、壳体组件和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800140A (zh) * 2010-01-19 2010-08-11 咸阳澳华瓷业有限公司 一种含有四方相氧化锆的外管壳材料及其制备方法
CN101857455A (zh) * 2010-06-25 2010-10-13 中南大学 一种高强韧3y-tzp复合陶瓷及其制备方法
CN102482163A (zh) * 2009-06-30 2012-05-30 法商圣高拜欧洲实验及研究中心 有色烧结氧化锆
CN104446457A (zh) * 2014-11-18 2015-03-25 潮州三环(集团)股份有限公司 一种改性氧化锆陶瓷材料及其应用
CN104788095A (zh) * 2015-01-29 2015-07-22 包头市金格瑞新型陶瓷有限责任公司 一种牙科用彩色氧化锆粉末的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3312533A (en) * 1963-06-26 1967-04-04 Philips Corp Ceramic article with sintered metallic layer and flux
JPS59105055A (ja) * 1982-12-07 1984-06-18 Kyocera Corp ジルコニア系着色部材
CN101624285B (zh) 2008-07-08 2012-09-05 比亚迪股份有限公司 一种用于制备氧化锆陶瓷的组合物和陶瓷
CN101439969A (zh) 2008-12-22 2009-05-27 西北有色金属研究院 稀土氧化物和氧化锰共稳定的氧化锆陶瓷及其制备方法
CN102260078B (zh) 2010-05-31 2013-03-20 比亚迪股份有限公司 一种氧化锆陶瓷及其制备方法
CN102260079B (zh) 2010-05-31 2013-10-02 中国科学院上海硅酸盐研究所 一种“收/发”两用型PZT-Pb(Sb2/3Mn1/3)三元系压电陶瓷材料及其制备方法
CN106810246A (zh) * 2015-11-30 2017-06-09 比亚迪股份有限公司 锆基复合陶瓷材料及其制备方法与外壳或装饰品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482163A (zh) * 2009-06-30 2012-05-30 法商圣高拜欧洲实验及研究中心 有色烧结氧化锆
CN101800140A (zh) * 2010-01-19 2010-08-11 咸阳澳华瓷业有限公司 一种含有四方相氧化锆的外管壳材料及其制备方法
CN101857455A (zh) * 2010-06-25 2010-10-13 中南大学 一种高强韧3y-tzp复合陶瓷及其制备方法
CN104446457A (zh) * 2014-11-18 2015-03-25 潮州三环(集团)股份有限公司 一种改性氧化锆陶瓷材料及其应用
CN104788095A (zh) * 2015-01-29 2015-07-22 包头市金格瑞新型陶瓷有限责任公司 一种牙科用彩色氧化锆粉末的制备方法

Also Published As

Publication number Publication date
EP3383826A4 (en) 2018-11-14
US20180327320A1 (en) 2018-11-15
CN106810244A (zh) 2017-06-09
WO2017092591A1 (en) 2017-06-08
US10532949B2 (en) 2020-01-14
EP3383826A1 (en) 2018-10-10
JP6615998B2 (ja) 2019-12-04
EP3383826B1 (en) 2019-11-06
JP2019501855A (ja) 2019-01-24
KR102010234B1 (ko) 2019-08-13
KR20180070674A (ko) 2018-06-26

Similar Documents

Publication Publication Date Title
CN106810244B (zh) 锆基复合陶瓷材料及其制备方法与外壳或装饰品
KR20040077493A (ko) 지르코니아 소결체 및 그의 제조 방법
CN108546118B (zh) 一种氧化钇稳定氧化锆粉体及其制备方法和陶瓷
JPS6125677B2 (zh)
CN106045505A (zh) 一种氧化镁掺杂的钇稳定氧化锆(5y‑psz)陶瓷的制备方法
CN101148355A (zh) 一种提高抗热震性的部分稳定氧化锆陶瓷制备方法
CN110483061A (zh) 一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用
CN108083796B (zh) 锆基复合陶瓷材料及其制备方法与外壳或装饰品
KR102002347B1 (ko) Zr-계 복합 세라믹 재료, 이의 제조 방법 및 쉘 또는 장식물
CN107311651A (zh) 锆基复合陶瓷材料及其制备方法与外壳或装饰品
JP4383099B2 (ja) 複合セラミックスの製法
JP2006248858A (ja) イットリア安定化ジルコニア質焼結体及びその製造方法
CN110862261A (zh) 一种黄色氧化锆陶瓷用粉体及其制备方法和应用
CN103664167B (zh) 一种片状AlON/四方相ZrO2复合材料的制备方法
CN106810243A (zh) 锆基复合陶瓷材料(黑色)及其制备方法与外壳或装饰品
JP4243514B2 (ja) 複合セラミックス及びその製法
CN107311652A (zh) 锆基复合陶瓷材料及其制备方法与外壳或装饰品
CN106810242A (zh) 锆基复合陶瓷材料(杏色)及其制备方法与外壳或装饰品
KR100246145B1 (ko) 고강도.고인성 지르코니아계 세라믹스의 제조방법
CN106810239A (zh) 锆基复合陶瓷材料(咖啡色)及其制备方法与外壳或装饰品
CN106810245A (zh) 锆基复合陶瓷材料(粉色)及其制备方法与外壳或装饰品
CN106810240A (zh) 锆基复合陶瓷材料(冷白色)及其制备方法与外壳或装饰品
CN110922185A (zh) 锆基复合陶瓷材料及其制备方法与外壳或装饰品
CN107311653A (zh) 锆基复合陶瓷材料及其制备方法与外壳或装饰品
CN114591081A (zh) 一种氧化锆陶瓷制备方法及氧化锆陶瓷识别卡

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant