CN106716682B - 包含高容量负极的二次电池及其制造方法 - Google Patents

包含高容量负极的二次电池及其制造方法 Download PDF

Info

Publication number
CN106716682B
CN106716682B CN201680002863.XA CN201680002863A CN106716682B CN 106716682 B CN106716682 B CN 106716682B CN 201680002863 A CN201680002863 A CN 201680002863A CN 106716682 B CN106716682 B CN 106716682B
Authority
CN
China
Prior art keywords
negative
negative electrode
active material
lithium
prelithiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680002863.XA
Other languages
English (en)
Other versions
CN106716682A (zh
Inventor
金京昊
金彩儿
宋周容
李慧娟
河会珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lg Energy Solution
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of CN106716682A publication Critical patent/CN106716682A/zh
Application granted granted Critical
Publication of CN106716682B publication Critical patent/CN106716682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本发明提供二次电池及其制造方法,所述二次电池包含具有两个以上负极板的负极,各负极板:在施加有负极活性材料的负极集电器中包含通过预锂化反应形成的锂副产物层;具有在负极极耳部中形成的无机层,所述负极极耳部从所述负极集电器的一侧端部延伸并且包含未施加负极活性材料的未涂覆部,其中所述负极板的负极极耳部与一个负极引线电连接,从而形成负极端子。

Description

包含高容量负极的二次电池及其制造方法
技术领域
本申请要求于2015年2月2日向韩国知识产权局提交的韩国专利申请号10-2015-0015891的权益,所述申请的公开内容通过参考以其整体并入本文中。
本发明涉及包含高容量负极的二次电池及其制造方法。更特别地,本发明涉及包含如下的负极的二次电池及其制造方法,所述负极包含预锂化的负极集电器、上面形成有无机物质层的负极极耳,从而提供高容量并因此提供提高的寿命和倍率特性以及提高的生产效率。
背景技术
随着各种装置的技术发展和其需求继续增加,对作为能源的二次电池的需求快速增加。在这些二次电池中,具有高能量密度和电压且显示长寿命和低自放电率的锂二次电池是可商购的并被广泛使用。
在这种锂二次电池中,具有层状晶体结构的含锂氧化钴(LiCoO2)、具有层状晶体结构的LiMnO2、具有尖晶石晶体结构的含锂氧化锰如LiMn2O4、或含锂氧化镍如LiNiO2通常被用作正极活性材料。此外,碳类材料主要被用作其负极活性材料。近来,对高容量二次电池的需求正在增加,因此对硅类材料或包含有效容量比碳类材料的有效容量高10倍以上的硅氧化物类材料的混合物的使用在考虑中。
然而,锂二次电池具有各种问题。例如,一些锂二次电池具有与负极制作和工作中的特性相关的问题。
例如,在碳类负极活性材料的初始充放电过程(活化过程)中,固体电解质界面(SEI)层形成在负极活性材料的表面上,因此诱导初始不可逆性。此外,SEI层在连续的充放电过程中瓦解,电解液在再生过程中消耗,由此电池容量降低。
此外,在硅类材料的情况下,显示高容量,但其体积膨胀随着循环数的增加为300%以上。因此,电解液的电阻和副反应可能增加,由此由于SEI层形成导致的问题如电极结构损坏可能加剧。
因为硅氧化物类材料相比于硅类材料具有较低的体积膨胀比和优异的疲劳寿命特性,因此可以考虑其应用。然而,硅氧化物类材料也具有诸如由于充电期间形成SEI层和因活性材料中存在的氧形成Li2O而导致的高频率的初始不可逆性的问题。
为了解决这种问题,对通过硅氧化物类材料的预锂化而将引起高不可逆容量的硅氧化物类材料中存在的氧改变为锂氧化物的方法的研究正在积极进行。这种方法可通过降低硅氧化物类材料的初始不可逆性而增加寿命。然而,当使用该方法时,在其中用锂源预锂化硅氧化物类材料的过程中生成大量的副产物,并且大多数锂氧化物生成在硅氧化物类材料的表面上。因此,在降低不可逆性方面存在局限。
近来,为了解决这种问题,已经尝试通过将负极供给到含锂源的溶液中,向负极施加电流,并因此使得预锂化反应进行,来完全降低初始不可逆性并由此提高循环特性。然而,当通过施加电流而在负极上形成锂层时,在负极的未涂覆负极活性材料的活性材料未涂覆部处也形成锂副产物。因此,难以将负极的活性材料未涂覆部焊接到负极引线上,从而不能制造单电池。
因此,迫切需要制造具有高能量密度并解决这种问题的二次电池的技术。
发明内容
技术问题
因此,已经做出本发明来解决以上和其它尚待解决的技术问题。
本发明的目的是通过在使用高容量负极活性材料的同时,使用预锂化的负极集电器以将根据负极活性材料的应用的不可逆性最小化,来提供具有增加的寿命和倍率特性的二次电池,和提供所述二次电池的制造方法。
本发明的另一个目的是通过应用上面形成有无机物质层的负极极耳而促进负极极耳对负极引线的连接,从而提供具有极大地提高的生产效率的二次电池,和提供所述二次电池的制造方法。
技术方案
根据本发明的一个方面,可以通过提供如下的二次电池来实现以上和其它目的,所述二次电池包含由两个以上负极板构成的负极,
其中所述负极板中的每个包含通过预锂化反应形成在涂覆有负极活性材料的负极集电器上的锂副产物层,
其中无机物质层形成在负极极耳上,所述负极极耳从负极集电器一侧的端部延伸并且由未涂覆负极活性材料的活性材料未涂覆部构成,并且
所述负极板的负极极耳与一个负极引线电连接从而形成负极端子。
如上所述的,当使用高容量负极活性材料时,负极的不可逆性可能由于SEI层的形成而加剧。为了解决这一问题,可通过预先嵌插锂并由此使得预锂化进行来防止不可逆性。然而,在此情况下,锂副产物层也形成在未涂覆负极活性材料的负极极耳的表面上,由此阻碍了负极极耳与负极引线的连接。因此,不可能制造二次电池。
因此,本发明的发明人确认了,当无机物质层预先形成在负极板的负极极耳上时,涂覆有无机物质的部分的电阻增加,由此即使在锂类溶剂中预锂化时电流也不能在该部分处很好地流动。因此,本发明的发明人确认了,锂不容易沉积且由此未形成锂副产物层。
因此,本发明可通过预先在负极板的负极极耳上形成无机物质层,由此仅对负极板的涂覆有负极活性材料的负极部进行预锂化,从而增加负极极耳和负极引线之间的结合力,来提供具有增加的寿命和倍率特性以及增加的生产效率的二次电池。
在本发明中,负极活性材料可包括选自例如如下的一种以上作为硅类材料:硅(Si),硅的合金,SiB4,SiB6,Mg2Si,Ni2Si,TiSi2,MoSi2,CoSi2,NiSi2,CaSi2,CrSi2,Cu5Si,FeSi2,MnSi2,NbSi2,TaSi2,VSi2,WSi2,ZnSi2,SiC,Si3N4,Si2N2O,其中0.5≤v≤1.2的SiOv,和LiSiO。负极活性材料可包含特别是0.5≤v≤1.2的SiOv,更特别是具有硅类材料中的最小体积膨胀和优异循环特性的SiO。
当这种SiO被用作负极活性材料时,不可逆性由于活性材料中存在的氧而增加,且容量可能随着循环数增加而快速降低。然而,本发明可通过生成锂氧化物来降低不可逆性,所述锂氧化物通过预锂化使活性材料中的氧和锂预先反应而形成;且可降低随循环数增加的容量降低。
除前述硅类材料外,负极活性材料可还包含碳类材料。
碳类材料可以是本领域中可获得的任何碳类材料。所述碳类材料可以是选自例如以下的一种以上:石墨,人造石墨,中间相碳微球(MCMB),碳纤维,碳黑,乙炔黑和科琴黑。特别地,碳类材料可以是石墨。
当负极活性材料包含硅类材料和碳类材料时,基于负极活性材料的总重量,硅类材料的含量可以为80重量%以下,特别是50重量%以下。更特别地,硅类材料的含量可以为30重量%以下。更特别地,硅类材料的含量可以为15重量%以下。当硅类材料与碳类材料混合且在此情况下硅类材料的量太少时,不能预期到期望的容量增加。当硅类材料的量太大时,其体积膨胀相比于碳类材料可能加剧。
在本发明中,在涂覆有负极活性材料的负极集电器上形成的锂副产物包含锂。例如,锂副产物可以是选自如下的一种以上:锂金属如Li,锂氧化物如Li2O或Li2O,锂氯化物如LiCl,和无机化合物如LiCl4。特别地,锂副产物可以是Li2O。
尽管锂副产物层的厚度取决于预锂化条件,但所述厚度可以为0.01μm至1μm,特别是0.05μm至0.5μm,更特别是0.1μm至0.3μm。
当锂副产物层的厚度小于0.01μm时,负极几乎不预锂化。因此,可能不能充分地防止负极活性材料的不可逆性,由此可能不能获得期望的效果。当锂副产物层的厚度大于1μm时,负极的内电阻不期望地增加。
此外,在由未涂覆负极活性材料的活性材料未涂覆部构成的负极极耳上形成的无机物质可以是选自如下的一种以上:SiO2,TiO2,Al2O3,ZrO2,SnO2,CeO2,MgO,CaO,ZnO,Y2O3,Pb(Zr,Ti)O3(PZT),其中0<x<1且0<y<1的Pb1-xLaxZr1-yTiyO3(PLZT),Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT),BaTiO3,二氧化铪(HfO2),SrTiO3,和其两种以上的混合物。
根据需要,在本发明的效果不降低的范围内,所述无机物质可以是包含选自如下的一种或多种的混合物:聚合物树脂,如聚乙烯、聚丙烯、聚(醚酰亚胺)、聚缩醛、聚砜、聚醚醚酮、聚酯、聚酰胺、乙烯-乙酸乙烯酯共聚物、聚苯乙烯、聚四氟乙烯、聚硅氧烷、和聚酰亚胺,其共聚物,及其混合物。
无机物质层的厚度可以为1nm至10μm,特别是10nm至5μm,更特别是100nm至2μm。
当无机物质层的厚度小于1nm时,无机物质的量不足,因此可能在预锂化期间在负极极耳处形成锂副产物层。当无机物质层的厚度大于10μm时,难以在负极极耳与负极引线之间焊接,因此可能难以实现其电连接。
在由活性材料未涂覆部构成的负极极耳上形成的无机物质层可特别形成在整个负极极耳上。
本发明提供二次电池的制造方法,所述方法包括:
(a)将负极活性材料涂覆在金属片的除对应于负极极耳的部分之外的负极集电器部上,然后用无机物质涂覆由未用负极活性材料涂覆的活性材料未涂覆部构成的负极极耳;
(b)将通过涂覆(a)制造的金属片供给到锂类溶剂中,然后向其施加电流,从而进行预锂化;
(c)将通过预锂化(b)制造的金属片切割成包含负极集电器部和负极极耳的负极板的形状;和
(d)将通过切割(c)制造的两个以上负极板进行堆叠,然后将负极极耳电连接至负极引线,从而形成负极端子。
在涂覆(a)中,金属片可在其宽度和长度方向上延伸以切割成多个负极。金属片可由例如不锈钢,铝,镍,钛,烧结碳,或表面用碳、镍、钛或银处理过的铜或不锈钢,或铝-镉合金制成。特别地,金属片可由铜制成。
可通过例如将金属片设置在两个相对的辊之间并使得金属片通过含有锂类溶剂的室来进行预锂化(b)。
锂类溶剂可以是选自如下的一种或者是两种以上的混合物:LiCl,LiBr,LiI,LiClO4,LiBF4,LiB10Cl10,LiPF6,LiCF3SO3,LiCF3CO2,LiAsF6,LiSbF6,LiAlCl4,CH3SO3Li,CF3SO3Li,(CF3SO2)2NLi,Li3N,LiI,Li5NI2,Li3N-LiI-LiOH,LiSiO4,LiSiO4-LiI-LiOH,Li2SiS3,Li4SiO4,Li4SiO4-LiI-LiOH和Li3PO4-Li2S-SiS2。然而,本发明不限于这些材料。
通过施加10mA至10A的电流0.1小时至12小时,特别是100mA至5A的电流1小时至10小时,可进行预锂化。
预锂化的电流水平和时间条件是进行期望的预锂化的最佳条件。当这些条件在该范围之外时,预锂化难以进行,或者锂副产物层的厚度增加。因此,电阻增加和预锂化所花的时间延长,从而降低生产率。
即使当预锂化(b)在锂类溶剂中进行时,也不容易形成锂副产物层,这是因为电流由于在涂覆(a)中用无机物质涂覆的负极极耳的高电阻而不容易流动。
因此,在所述切割(c)中,负极集电器部可包括通过预锂化形成的锂副产物层。
此外,在预锂化(b)与切割(c)之间可另外包括在30℃至100℃下将金属片稳定化6小时至12小时、特别是在40℃至100℃下稳定化6小时至10小时的工序。
当将金属片预锂化后在所述条件下另外进行稳定化工序时,可在金属片的涂覆有负极活性材料的负极集电器上充分形成锂氧化物层。
在所述形成(d)中,因为在未涂覆负极活性材料的负极极耳上预先形成无机物质层,所以可以防止由于预锂化而导致的锂副产物层的生成。因此,通过焊接可容易地实现负极极耳连接至负极引线。
一般来讲,激光焊接根据表面状态而非均匀地进行,电阻焊接提供了高的结合力但由于暴露于高温而在连接部处显示大的变形。因此,因为在本发明中使用摩擦热进行焊接,所以连接部的表面变形降低,并且可以进行超声焊接,所述超声焊接使得能实现均匀焊接而与连接表面的状态无关。
通过这种超声焊接而结合的原理如下。使用由约20kHz的超声波产生的高频振动,在振动能由于在负极极耳之间和负极极耳与负极引线之间在界面处的摩擦而转化为热能的同时,快速进行焊接。由于界面涂层的部分塑性变形而新暴露的电极极耳表面通过伴随振动的摩擦而彼此附着。此外,通过由于摩擦热导致的部分温度增加而促进原子的扩散和重结晶,因此可形成实心压力焊接部。
此外,即使当无机物质层形成在负极极耳上时,由于由超声波的施加而生成的摩擦热,负极极耳也可以容易地与负极引线焊接。
作为一个实施方式,这种二次电池可以是锂电池,但本发明不限于此。
锂二次电池包含通过将正极活性材料、导电材料和粘合剂的混合物涂覆在正极集电器上并干燥和压制涂覆的正极集电器而制造的正极,和使用与用于制造正极的方法相同的方法制造的负极。在此情况下,混合物可根据需要还包含填料。
正极集电器通常制作成3至500μm的厚度。正极集电器没有特别限制,只要其在制作的锂二次电池中不引起化学变化且具有高的导电性即可。例如,正极集电器可由不锈钢,铝,镍,钛,烧结碳,表面用碳、镍、钛或银处理过的铝或不锈钢等制成。正极集电器可在其表面具有微细不规则处以增加正极活性材料与正极集电器之间的粘附性。此外,正极集电器可以以包括膜、片、箔、网、多孔结构、发泡体和无纺布的各种形式中的任一种使用。
锂二次电池可包含以下作为正极活性材料:锂镍氧化物(LiNiO2);锂锰氧化物,如式Li1+xMn2-xO4的化合物,其中0≤x≤0.33,LiMnO3,LiMn2O3和LiMnO2;锂铜氧化物(Li2CuO2);钒氧化物LiV3O8,LiV3O4,V2O5和Cu2V2O7;式LiNi1-xMxO2的Ni位点型锂镍氧化物,其中M=Co、Mn、Al、Cu、Fe、Mg、B或Ga且0.01≤x≤0.3;式LiMn2-xMxO2的锂锰复合氧化物,其中M=Co、Ni、Fe、Cr、Zn或Ta且0.01≤x≤0.1,或式Li2Mn3MO8的锂锰复合氧化物,其中M=Fe、Co、Ni、Cu或Zn;式LiNixMn2-xO4的尖晶石结构的锂锰复合氧化物,其中x=0.01至0.6;其中一些Li原子被碱土金属离子取代的LiMn2O4;二硫化合物;Fe2(MoO4)3等。
相对于包含正极活性材料的混合物的总重量,导电材料通常以1重量%至50重量%的量添加。这种导电材料没有具体限制,只要其在制作的电池中不引起化学变化且具有导电性即可。例如,可以使用石墨如天然石墨或人造石墨;碳黑如碳黑、乙炔黑、科琴黑、槽法炭黑、炉黑、灯黑和热裂法炭黑;导电纤维如碳纤维和金属纤维;金属粉末如氟化碳粉末、铝粉末和镍粉末;导电晶须如氧化锌晶须和钛酸钾晶须;导电金属氧化物如氧化钛;导电材料如聚亚苯基衍生物等。
粘合剂是帮助活性材料和导电材料之间粘合以及活性材料对集电体的粘合的组分。基于包含正极活性材料的混合物的总重量,所述粘合剂通常以1重量%至50重量%的量添加。所述粘合剂的实例包括但不限于聚偏二氟乙烯、聚乙烯醇、羧甲基纤维素(CMC)、淀粉、羟丙基纤维素、再生纤维素、聚乙烯基吡咯烷酮、四氟乙烯、聚乙烯、聚丙烯、乙烯-丙烯-二烯三元共聚物(EPDM)、磺化EPDM、丁苯橡胶、氟橡胶、和各种共聚物。
任选使用填料作为抑制正极膨胀的组分。所述填料没有特别的限制,只要它是在制成的二次电池中不引起化学变化的纤维材料即可。所述填料的实例包括烯烃类聚合物例如聚乙烯和聚丙烯;以及纤维材料例如玻璃纤维和碳纤维。
负极集电器通常制成3μm至500μm的厚度。
锂二次电池可具有其中用含锂盐的电解液浸渍电极组件的结构,所述电极组件包含正极、负极和布置在所述正极和所述负极之间的隔膜。
隔膜布置在正极和负极之间,并且将具有高离子渗透性和高机械强度的绝缘薄膜用作隔膜。所述隔膜通常具有0.01μm至10μm的孔径和5μm至300μm的厚度。作为隔膜,例如使用具有耐化学性和疏水性的由烯烃类聚合物如聚丙烯;或玻璃纤维或聚乙烯制成的片或无纺布。当固体电解质例如聚合物用作电解质时,所述固体电解质也可以充当隔膜。
含锂盐的电解液由非水溶剂和锂盐构成。锂盐是容易溶于非水电解质中的材料,其实例包括但不限于LiCl,LiBr,LiI,LiClO4,LiBF4,LiB10Cl10,LiPF6,LiCF3SO3,LiCF3CO2,LiAsF6,LiSbF6,LiAlCl4,CH3SO3Li,(CF3SO2)2NLi,氯硼烷锂,低级脂族羧酸锂,四苯基硼酸锂和亚氨基锂。
非水溶剂没有具体限制,只要是本领域中已知的即可,并且可以为选自例如碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、丙酸甲酯(MP)和丙酸乙酯(EP)中的一种以上。
此外,为了改进充放电特性和阻燃性,可以向所述电解质添加例如吡啶、亚磷酸三乙酯、三乙醇胺、环醚、乙二胺、正甘醇二甲醚、六磷酸三酰胺、硝基苯衍生物、硫、醌亚胺染料、N-取代的唑烷酮、N,N-取代的咪唑烷、乙二醇二烷基醚、铵盐、吡咯、2-甲氧基乙醇、三氯化铝等。如有必要,为了赋予不可燃性,所述电解质可还包含含卤素溶剂,例如四氯化碳和三氟乙烯。另外,为了改善高温储存特性,所述非水电解质可还包含二氧化碳气体、丙烯磺酸内酯(PRS)等。
在一个优选实施方式中,所述含锂盐的非水电解质可通过将锂盐如LiPF6、LiClO4、LiBF4、LiN(SO2CF3)2等添加至高介电溶剂中来制备。
本发明还提供包含二次电池作为电源的装置。所述装置可选自移动电话、便携式计算机、智能电话、平板PC、智能平板、上网本、轻型电动车辆(LEV)、轻型电动车辆、混合动力电动车辆、插电式混合动力电动车辆、蓄电装置等。
这些装置的结构和装置的制造方法是本领域中已知的,因此省略其详细说明。
附图说明
结合附图,将从以下详细说明更清楚地理解本发明的以上和其它目的、特征和其它优点,其中:
图1是显示在实验例2中测量的根据实施例1以及比较例1和2的锂电池的寿命特性的图。
具体实施方式
现在,将参考以下实施例对本发明进行更详细的描述。这些实施例仅为了说明本发明而提供,不应理解为对本发明范围和主旨的限制。
<实施例1>
1-1)负极板的制造
将负极浆料涂覆在铜片的除对应于负极极耳的部分以外的负极集电器部上至50μm的厚度,然后进行压制,所述负极浆料通过将包含重量比为30:70的SiO和石墨的92重量%的负极活性材料、3重量%的作为导电材料的Super-P、3.5重量%的作为粘合剂的SBR和1.5重量%的作为增稠剂的CMC添加到作为溶剂的H2O来制备。随后,将由未涂覆负极混合物的活性材料未涂覆部构成的负极极耳用Al2O3涂覆至0.2μm的厚度。
将所得铜片供给到含LiCl盐和1M LiPF6的锂盐的非水EC/EMC类电解液中,然后向其施加100mA的电流1小时,由此将铜片预锂化至多达不可逆的量。
随后,将金属片切割成包含涂覆的负极部和负极极耳的负极板的形状。
1-2.正极板的制造
将Li(Ni0.8Mn0.1Co0.1)O2用作正极活性材料。将94重量%的Li(Ni0.8Mn0.1Co0.1)O2、3.5重量%的作为导电材料的Super-P和2.5重量%的作为粘合剂的PVdF添加到作为溶剂的NMP,来制备正极浆料。将制备的正极浆料涂覆在铝箔上至80μm的厚度,然后压制和干燥。其结果,制造了正极板。
1-3.锂电池的制造
在所制造的正极板与负极板之间设置多孔隔膜(CelgardTM)。将正极极耳和负极极耳集中布置,然后进行超声焊接以分别连接至正极引线和负极引线。随后,向其添加包含1MLiPF6的非水EC/EMC类电解液,从而制造锂电池。
<比较例1>
以与实施例1中相同的方式制造锂电池,不同之处在于在制造负极板时,负极的活性材料未涂覆部未用无机物质涂覆。
<比较例2>
以与实施例1中相同的方式制造锂电池,不同之处在于在制造负极板时未进行预锂化反应。
<实验例1>
对根据实施例1以及比较例1和2制造的锂二次电池的倍率特性进行测定。为了测定倍率特性,在2.5V至4.3V的电压下在25℃下进行充放电。特别地,以0.1C恒流/恒压(CC/CV)充电方式进行充电直至67.5mA,以0.1C、0.5C和1C恒流(CC)放电方式在2.5V截止(cut-off)条件下进行放电。相对于0.1C放电容量的0.5C和1C放电效率总结在表1中。
<表1>
0.1C放电效率 0.5C放电效率 2C放电效率
实施例1 100% 91.2% 81.3%
比较例1 100% 70.8% 37.7%
比较例2 100% 89.5% 73.9%
如表1中所示的,可以确认,根据实施例1的其中活性材料未涂覆负极部涂覆有无机物质且进行预锂化的电池相比于根据比较例1的其中活性材料未涂覆负极部未涂覆有无机物质但进行预锂化的电池显示优异的倍率性能。
这发生的原因在于,当活性材料未涂覆负极部未涂覆有无机物质时,由于预锂化期间生成的锂副产物,活性材料未涂覆负极部不与负极引线焊接,或倍率性能由于与负极引线的高接触电阻而劣化。
<实验例2>
对根据实施例1以及比较例1和2制造的锂二次电池的寿命特性进行测定。为了测定寿命特性,以0.5C和4.3V的恒流/恒压(CC/CV)充电方式在25℃下进行充电直至67.5mA。在0.5C和2.5V的截止条件下以恒流(CC)放电方式进行放电100次。结果总结在图1中。
如图1中所示,可以确认,与比较例1的其中活性材料未涂覆负极部未涂覆有无机物质但进行预锂化的电池和比较例2的其中负极未进行预锂化的电池相比,实施例1的通过用无机物质涂覆活性材料未涂覆负极部并进行预锂化而制造的电池显示优异的寿命。
这发生的原因在于,比较例1的其中活性材料未涂覆负极部未涂覆有无机物质的电池由于锂副产物的副反应而显示负极引线处的高电阻和降低的寿命。此外,这发生的原因在于,在比较例2的负极未进行预锂化的电池情况下,Li由于高的不可逆容量和大的体积膨胀而极大消耗,因此降低循环寿命。
工业实用性
因为根据本发明的二次电池能够利用高容量负极活性材料通过预锂化反应而将不可逆性最小化,所以可以提高其寿命和倍率特性。
此外,因为在负极极耳上预先形成无机物质层,然后在锂类溶剂中进行预锂化反应,所以在负极极耳上不能形成锂副产物层。因此,负极极耳可以容易地连接至负极引线,由此可以提高生产效率。
尽管本发明的优选实施方式已经为了说明目的而公开,但本领域技术人员将理解在不背离本发明的如在所附权利要求书中公开的范围和主旨的情况下,各种修改、添加和取代也是可行的。

Claims (17)

1.一种二次电池,所述二次电池包含由两个以上负极板构成的负极,
其中所述负极板中的每个包含通过预锂化反应形成在涂覆有负极活性材料的负极集电器上的锂副产物层,
其中无机物质层预先形成在整个负极极耳上使得在其后的预锂化反应中在负极极耳上未形成锂副产物层,所述负极极耳从所述负极集电器一侧的端部延伸并且由未涂覆所述负极活性材料的活性材料未涂覆部构成,并且
所述负极板的负极极耳与一个负极引线电连接从而形成负极端子。
2.根据权利要求1所述的二次电池,其中所述负极活性材料为选自如下的一种以上:硅(Si),SiB4,SiB6,Mg2Si,Ni2Si,TiSi2,MoSi2,CoSi2,NiSi2,CaSi2,CrSi2,Cu5Si,FeSi2,MnSi2,NbSi2,TaSi2,VSi2,WSi2,ZnSi2,SiC,Si3N4,Si2N2O,SiOv其中0.5≤v≤1.2,和LiSiO。
3.根据权利要求1所述的二次电池,其中所述负极活性材料包含SiOv,其中0.5≤v≤1.2。
4.根据权利要求1所述的二次电池,其中所述锂副产物是选自如下的一种以上:Li,Li2O,Li2CO3,LiCl和LiClO4
5.根据权利要求1所述的二次电池,其中所述锂副产物层的厚度为0.01μm至1μm。
6.根据权利要求1所述的二次电池,其中所述无机物质是选自如下的一种以上:SiO2,TiO2,Al2O3,ZrO2,SnO2,CeO2,MgO,CaO,ZnO,Y2O3,Pb(Zr,Ti)O3(PZT),Pb1-xLaxZr1-yTiyO3(PLZT)其中0<x<1且0<y<1,Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT),BaTiO3,二氧化铪(HfO2),SrTiO3,和其两种以上的混合物。
7.根据权利要求1所述的二次电池,其中所述无机物质层的厚度为1nm至10μm。
8.一种制造根据权利要求1所述的二次电池的方法,所述方法包括:
将负极活性材料涂覆在金属片的除对应于负极极耳的部分之外的负极集电器部上,然后用无机物质涂覆由未用所述负极活性材料涂覆的活性材料未涂覆部构成的所述负极极耳;
将通过所述涂覆制造的所述金属片供给到锂类溶剂中,然后向其施加电流,从而进行预锂化;
将通过所述预锂化制造的所述金属片切割成包含所述负极集电器部和所述负极极耳的负极板的形状;和
将通过所述切割制造的两个以上负极板进行堆叠,然后将所述负极极耳与负极引线电连接,从而形成负极端子。
9.根据权利要求8所述的方法,其中在所述预锂化中,所述锂类溶剂是选自如下的一种以上:LiCl,LiBr,LiI,LiClO4,LiBF4,LiB10Cl10,LiPF6,LiCF3SO3,LiCF3CO2,LiAsF6,LiSbF6,LiAlCl4,CH3SO3Li,(CF3SO2)2NLi,Li3N,Li5NI2,Li3N-LiI-LiOH,LiSiO4,LiSiO4-LiI-LiOH,Li2SiS3,Li4SiO4,Li4SiO4-LiI-LiOH和Li3PO4-Li2S-SiS2
10.根据权利要求8所述的方法,其中在所述预锂化中,施加10mA至10A的电流。
11.根据权利要求8所述的方法,其中在所述预锂化中,将电流施加0.1小时至12小时。
12.根据权利要求8所述的方法,其中所述切割的所述负极集电器部包含通过预锂化反应形成的锂副产物层。
13.根据权利要求8所述的方法,其中在所述预锂化与所述切割之间还包含将所述金属片在30℃至100℃下稳定化6小时至12小时的工序。
14.根据权利要求8所述的方法,其中在所述形成中,通过焊接进行所述负极极耳对所述负极引线的连接。
15.根据权利要求14所述的方法,其中所述焊接是超声焊接。
16.一种装置,所述装置包含根据权利要求1所述的二次电池作为电源。
17.根据权利要求16所述的装置,其中所述装置是选自如下的一种以上:移动电话,便携式计算机,轻型电动车辆(LEV),和混合动力电动车辆。
CN201680002863.XA 2015-02-02 2016-01-28 包含高容量负极的二次电池及其制造方法 Active CN106716682B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0015891 2015-02-02
KR1020150015891A KR101783447B1 (ko) 2015-02-02 2015-02-02 고용량 음극을 포함하는 이차전지 및 그 제조 방법
PCT/KR2016/000917 WO2016126046A1 (ko) 2015-02-02 2016-01-28 고용량 음극을 포함하는 이차전지 및 그 제조 방법

Publications (2)

Publication Number Publication Date
CN106716682A CN106716682A (zh) 2017-05-24
CN106716682B true CN106716682B (zh) 2019-12-03

Family

ID=56564328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680002863.XA Active CN106716682B (zh) 2015-02-02 2016-01-28 包含高容量负极的二次电池及其制造方法

Country Status (9)

Country Link
US (1) US10581073B2 (zh)
EP (1) EP3179544B1 (zh)
JP (1) JP6604635B2 (zh)
KR (1) KR101783447B1 (zh)
CN (1) CN106716682B (zh)
BR (1) BR112017005881B8 (zh)
PL (1) PL3179544T3 (zh)
TW (1) TWI630751B (zh)
WO (1) WO2016126046A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101984727B1 (ko) 2016-11-21 2019-05-31 주식회사 엘지화학 전극 및 이를 포함하는 리튬 이차 전지
KR102268077B1 (ko) * 2017-07-12 2021-06-23 주식회사 엘지에너지솔루션 리튬 이차전지 및 이의 제조 방법
KR102327179B1 (ko) 2017-08-10 2021-11-16 주식회사 엘지에너지솔루션 리튬금속과 무기물 복합박막 제조방법 및 이를 이용한 리튬 이차전지 음극의 전리튬화 방법
KR102264691B1 (ko) 2017-08-11 2021-06-15 (주)엘지에너지솔루션 리튬금속과 무기물 복합층을 이용한 전리튬화
KR102278634B1 (ko) 2017-12-20 2021-07-16 주식회사 엘지에너지솔루션 리튬이차전지용 음극, 이의 제조방법 및 이를 포함한 리튬이차전지
CN108232096B (zh) * 2018-01-02 2021-04-09 惠州亿纬锂能股份有限公司 一种电池负极耳及电池
KR102362887B1 (ko) 2018-01-03 2022-02-14 주식회사 엘지에너지솔루션 리튬이차전지용 음극의 전리튬화 방법 및 이에 사용되는 리튬 메탈 적층체
KR102400819B1 (ko) 2018-01-26 2022-05-23 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지
WO2019172661A1 (ko) 2018-03-07 2019-09-12 주식회사 엘지화학 음극의 제조 방법
KR102509113B1 (ko) 2018-03-20 2023-03-09 주식회사 엘지에너지솔루션 음극의 제조방법 및 이로부터 제조된 음극
PL3793005T3 (pl) * 2018-09-12 2023-03-20 Lg Energy Solution, Ltd. Sposób wytwarzania elektrody ujemnej dla akumulatora litowego i akumulator litowy
KR102598178B1 (ko) 2018-10-10 2023-11-03 주식회사 엘지에너지솔루션 리튬 이차전지용 음극의 제조방법
KR102598189B1 (ko) * 2018-10-26 2023-11-03 주식회사 엘지에너지솔루션 리튬 이차전지용 음극의 제조방법
JP7074027B2 (ja) * 2018-11-12 2022-05-24 トヨタ自動車株式会社 負極
CN111224162A (zh) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 一种金属离子电池负极预金属化的方法
KR102530195B1 (ko) * 2019-01-18 2023-05-10 주식회사 엘지에너지솔루션 이차전지용 음극의 제조방법
KR102586822B1 (ko) * 2019-01-25 2023-10-11 주식회사 엘지에너지솔루션 이차전지용 음극의 제조방법
KR20200129907A (ko) * 2019-05-10 2020-11-18 주식회사 엘지화학 음극의 제조방법
CN113659112B (zh) * 2019-05-31 2023-01-10 宁德时代新能源科技股份有限公司 负极极片、电芯、锂离子电池、电子产品及电动车辆
KR102398577B1 (ko) * 2019-12-20 2022-05-13 재단법인 포항산업과학연구원 리튬 이차 전지용 음극의 제조 방법과 이에 따라 제조된 음극 및 이를 포함하는 리튬 이차 전지
KR102406390B1 (ko) * 2019-12-20 2022-06-07 주식회사 포스코 리튬 금속 음극의 제조 방법, 이에 따라 제조된 리튬 금속 음극, 및 이를 포함하는 리튬 이차 전지

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012158608A1 (en) * 2011-05-16 2012-11-22 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69605362T2 (de) * 1995-07-03 2000-06-21 General Motors Corp., Detroit Verfahren zur Herstellung von deaktivierten kohlenstoffhaltigen Anoden
JPH10308212A (ja) 1997-05-06 1998-11-17 Ricoh Co Ltd 2次電池用電極板処理装置
KR100291067B1 (ko) 1998-05-27 2001-06-01 박호군 카본전극의전리튬화방법과이를이용한리튬이차전지제조방법
US20050130043A1 (en) 2003-07-29 2005-06-16 Yuan Gao Lithium metal dispersion in electrodes
KR100868256B1 (ko) * 2004-12-16 2008-11-11 주식회사 엘지화학 안전성이 향상된 스택형 발전소자의 파우치형 이차전지
JP2009043624A (ja) * 2007-08-09 2009-02-26 Panasonic Corp 非水電解液およびそれを用いた非水電解液二次電池
JP2010160983A (ja) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd 非水電解液二次電池およびその電極
JP2011060520A (ja) * 2009-09-08 2011-03-24 Nissan Motor Co Ltd リチウムイオン二次電池およびその製造方法
US9490464B2 (en) * 2010-10-01 2016-11-08 Samsung Sdi Co., Ltd. Secondary battery
US9166222B2 (en) 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
DE102010044008A1 (de) * 2010-11-16 2012-05-16 Varta Micro Innovation Gmbh Lithium-Ionen-Zelle mit verbessertem Alterungsverhalten
CN104081573B (zh) * 2011-12-01 2018-01-16 那诺思卡乐康母庞特公司 碱化阳极的方法
US9349542B2 (en) * 2011-12-21 2016-05-24 Nanotek Instruments, Inc. Stacks of internally connected surface-mediated cells and methods of operating same
US20140335400A1 (en) * 2012-02-24 2014-11-13 Amita Technologies Inc Ltd. Lithium battery
JP6314831B2 (ja) 2012-11-13 2018-04-25 日本電気株式会社 負極活物質およびその製造方法、並びにリチウム二次電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012158608A1 (en) * 2011-05-16 2012-11-22 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries

Also Published As

Publication number Publication date
TWI630751B (zh) 2018-07-21
US10581073B2 (en) 2020-03-03
EP3179544A1 (en) 2017-06-14
EP3179544A4 (en) 2018-01-17
CN106716682A (zh) 2017-05-24
JP2018503932A (ja) 2018-02-08
BR112017005881B1 (pt) 2021-07-20
JP6604635B2 (ja) 2019-11-13
US20170338480A1 (en) 2017-11-23
TW201703323A (zh) 2017-01-16
WO2016126046A1 (ko) 2016-08-11
PL3179544T3 (pl) 2020-06-29
EP3179544B1 (en) 2019-12-25
KR20160094652A (ko) 2016-08-10
BR112017005881B8 (pt) 2023-03-21
BR112017005881A2 (pt) 2018-06-26
KR101783447B1 (ko) 2017-10-23

Similar Documents

Publication Publication Date Title
CN106716682B (zh) 包含高容量负极的二次电池及其制造方法
US11811055B2 (en) Multi-layered anode containing silicon-based compound and lithium secondary battery including the same
KR100801637B1 (ko) 양극 활물질 및 그것을 포함하고 있는 리튬 이차전지
JP2008186704A (ja) 非水系二次電池用正極板および非水系二次電池
US11936037B2 (en) Multi-layered anode containing silicon-based compound and lithium secondary battery including the same
JP6249497B2 (ja) 面積が互いに異なる電極を含んでいる電極積層体及びこれを含む二次電池
KR101481993B1 (ko) 시안기를 포함하는 화합물을 포함하는 전극 및 이를 포함하는 리튬이차전지
KR101216572B1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지, 양극 활물질의 제조방법과 이를 포함하는 리튬 이차전지의 제조방법
KR20230079323A (ko) 리튬 이차 전지
JP2015195195A (ja) 非水電解質二次電池
CN109565029A (zh) 制造二次电池的长寿命的电极的方法
KR20130117350A (ko) 향상된 접착력을 가지는 전극 및 이를 포함하는 리튬 이차전지
KR20130117714A (ko) 리튬 확산성이 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
KR100897180B1 (ko) 도전제로서 은 나노 입자를 함유하는 양극 합제 및그것으로 구성된 리튬 이차전지
KR102567400B1 (ko) 이차전지
JP7376348B2 (ja) 正極、リチウムイオン二次電池、正極の製造方法、及びリチウムイオン二次電池の製造方法
CN114792838A (zh) 用于含磷橄榄石正电极的三元盐电解质
JP2022547282A (ja) 電池システム、その使用方法、およびそれを含む電池パック
KR101701415B1 (ko) 음극활물질, 그 제조방법 및 이를 채용한 음극과 리튬전지
CN105264708A (zh) 锂离子二次电池
KR20190031978A (ko) 리튬 이차 전지
KR102480473B1 (ko) 리튬 이차 전지 및 이의 제조 방법
KR20190087854A (ko) 리튬 이차 전지
JP7558608B2 (ja) 電極、その製造方法、およびそれを含む二次電池
KR102147495B1 (ko) 안전성이 향상된 양극 활물질 및 이를 포함하는 리튬이차전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211202

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.