CN106602063A - 一种石墨烯花的制备方法及其在锂硫电池中的应用 - Google Patents

一种石墨烯花的制备方法及其在锂硫电池中的应用 Download PDF

Info

Publication number
CN106602063A
CN106602063A CN201611262275.8A CN201611262275A CN106602063A CN 106602063 A CN106602063 A CN 106602063A CN 201611262275 A CN201611262275 A CN 201611262275A CN 106602063 A CN106602063 A CN 106602063A
Authority
CN
China
Prior art keywords
graphene
lithium
flower
sulfur
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611262275.8A
Other languages
English (en)
Other versions
CN106602063B (zh
Inventor
高超
陈皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changxin De Technology Co Ltd
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201611262275.8A priority Critical patent/CN106602063B/zh
Publication of CN106602063A publication Critical patent/CN106602063A/zh
Priority to PCT/CN2017/119938 priority patent/WO2018121751A1/zh
Priority to EP17888017.5A priority patent/EP3565040A4/en
Priority to JP2019535263A priority patent/JP6847502B2/ja
Priority to US16/473,255 priority patent/US11380897B2/en
Application granted granted Critical
Publication of CN106602063B publication Critical patent/CN106602063B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Abstract

本发明公开了一种石墨烯花的制备方法,主要是将氧化石墨烯溶液进行喷雾干燥,得到氧化石墨烯花;然后对其进行还原即得到石墨烯花。本发明还公开了石墨烯花在锂硫电池中的应用。本发明操作简便、成本低,适于规模化生产,在保证锂硫电池高能量比的同时,可提高锂硫电池的倍率性能,从而大幅提高能量密度,可用于高能量储能材料、器件领域。

Description

一种石墨烯花的制备方法及其在锂硫电池中的应用
技术领域
本发明涉及一种石墨烯花的制备方法及其在锂硫电池中的应用。
背景技术
锂硫电池以其超高的能量密度、循环稳定性以及功率密度成为目前最有希望的下一代能量储存方式。然而由于硫本身导电性较低,如何构建高负载高面密度的锂硫电池正极一直是锂硫领域的一项重要课题。近来,通过添加石墨烯提高正极导电性,进而提高其能量密度也越来越受到研究者的关注。
石墨烯一种厚度只有0.34nm的超薄二维纳米材料。石墨烯具有超高的导电性以及载流子迁移率,使其在锂硫电池材料领域具有极大地应用价值。然而目前大规模制备石墨烯的方法主要是通过氧化法,会对石墨烯的结构进行破坏,而没有缺陷的石墨烯主要以气相沉积法获得,无法大规模生产。
发明内容
本发明的目的是克服现有技术的不足,提供一种石墨烯花的制备方法及其在锂硫电池中的应用,锂硫电池中,硫正极的面积比容量可高达5.2mAh/cm2,极大地提高锂硫电池的电化学性能。
本发明的目的是通过以下技术方案实现的:一种石墨烯花的制备方法,它的步骤如下:
(1)将氧化石墨烯原料溶于溶剂并搅拌,得到质量百分含量在0.01%-2%的氧化石墨烯溶液;
(2)将氧化石墨烯溶液进行喷雾干燥,得到氧化石墨烯花粉末。
(3)使用还原剂或者高温热处理将氧化石墨烯花进行还原,得到石墨烯花。
进一步地,所述步骤1)的溶剂选自去离子水、N-甲基-2-吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲亚砜、环丁砜、乙醇、正丁醇、乙腈,或者它们任意比组成的混合物。
进一步地,所述步骤2)的喷雾干燥温度为60-200℃,喷雾口直径为0.1-100微米。
进一步地,所述步骤3)的还原剂选自体积百分含量5%-50%碘化氢水溶液、抗坏血酸钠溶液、水合肼蒸汽;高温热处理为1000-3000℃氮气或氩气氛围下,时间为10-1000分钟。
一种石墨烯花在锂硫电池中的应用,所述应用具体为:
(1)将石墨烯花与硫进行混合,并在惰性气体氛围下进行共热;
(2)将石墨烯花硫复合物与胶黏剂及导电剂混合制成浆料,涂膜于集流体上,进行烘干;
(3)将烘干所得集流体与负极、隔膜、电解液及电池包装组装,从而得到以石墨烯花硫复合物为正极的锂硫电池。
进一步地,所述步骤1中石墨烯花和硫的质量比为1:9-9:1,惰性气体选自氮气,氩气、混合气等,共热温度为100-400℃,共热时间为10-1000分钟;
进一步地,所述步骤2中,石墨烯花硫复合物与胶黏剂及导电剂混合比例为9:0.5:0.5-5:2.5:2.5,胶黏剂选自聚偏二氟乙烯、羧甲基纤维素钠、丁苯橡胶基、水、N-甲基吡咯烷酮及他们任意比组成的混合物;导电剂选自乙炔黑、科琴黑、SuperP、石墨烯、碳纳米管、C60及他们任意比组成的混合物;集流体选自铝箔、铜箔、镍箔、碳覆铝箔、碳纸、碳布。
进一步地,所述步骤2所述的涂膜厚度在1-100微米,烘干温度为40-100℃,烘干时间为1-100小时。
进一步地,所述步骤3的负极选自锂金属、锂铝合金、锂化硅或者锂化碳,或者他们任意比组成的混合物;隔膜选自玻碳纤维、聚丙烯隔膜、聚乙烯隔膜;电解液溶液的溶质选自六氟磷酸锂、双三氟甲基磺酰亚胺锂、硝酸锂、聚硫化锂或者他们的混合物,溶剂选自1、3-二氧五环、乙二醇二甲醚、三乙二醇二甲醚、碳酸二乙酯或者他们任意比组成的混合物;电池包装包括扣式电池壳,软包电池壳及不锈钢电池壳。
本发明制备的石墨烯花基锂硫电池兼具了石墨烯电池的高倍率性能以及锂硫电池的高能量密度,加之复合物的高负载和高面密度,因此具备了高功率密度和高能量密度。通过组装成锂硫电池后表现出高能量密度,是已报道锂电池能量密度的3倍。该锂硫电池所需材料可大量生产,成本低廉,在未来电动汽车及能量存储方面有极高的实践应用价值。
附图说明
图1是本发明制备的石墨烯花的实物图;
图2是实施例3制备的石墨烯花的扫描电子显微镜照片;
图3是实施例3制备的石墨烯花的透射电子显微镜照片;
图4是实施例3制备的石墨烯花基锂硫电池的循环伏安曲线;
图5是实施例3制备的石墨烯花基锂硫电池在不同的恒流充放电条件下的循环性能曲线。
具体实施方式
通过提高碳材料的缺陷浓度来提高电池的性能是本领域技术人员的重点研究方向,到目前为止,高缺陷浓度的碳材料的导电率还未能达到了100S/cm,由于其较低的导电率,将其应用于锂硫电池,具有无法极大提高活性物质的导电率,进而降低能量密度和功率密度的的缺点。本发明另辟蹊径,克服本领域的技术偏见,利用石墨烯花(导电率大于200S/cm,面密度大于4.5mg/cm2,缺陷密度低于0.0276)为锂硫电池中硫的负载体来提高正极的负载量和性能.下面通过实施例对本发明进行具体描述,本实施例只用于对本发明做进一步的说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的内容做出一些非本质的改变和调整,均属于本发明的保护范围。
实施例1:
1)将1重量份氧化石墨烯溶于1000重量份的去离子水中,搅拌,得到均匀溶解分散的氧化石墨烯水溶液;
2)在120℃使用10微米的喷雾头将氧化石墨烯溶液进行喷雾干燥,得到氧化石墨烯花粉末。
3)使用水合肼蒸汽将氧化石墨烯花进行还原得到4微米直径高缺陷石墨烯花。经测试,其导电率为1.72S/cm,缺陷密度为1.68;
4)将高缺陷石墨烯花与硫以质量比为1:4进行混合,并在氮气气体氛围下进行155℃共热12小时;
5)将8重量份高缺陷石墨烯花硫复合物与1重量份的偏聚二氟乙烯的N-甲基吡咯烷酮溶液及乙炔黑混合制成浆料,涂膜与铝箔上,并进行60℃烘干24小时;
6)将烘干所得极片、金属锂、多孔聚丙烯隔膜、双三氟甲基磺酰亚胺锂的1、3-二氧五环/乙二醇二甲醚溶液及纽扣电池壳组装,从而得到以高缺陷石墨烯花硫复合物为正极的锂硫电池,其正极最高面积比容量仅达1.1mAh/cm2
实施例2:
1)将1重量份氧化石墨烯溶于1000重量份的去离子水中,搅拌,得到均匀溶解分散的氧化石墨烯水溶液;
2)在120℃使用10微米的喷雾头将氧化石墨烯溶液进行喷雾干燥,得到氧化石墨烯花粉末。
3)使用1000摄氏度热处理将氧化石墨烯花进行还原得到4微米直径低缺陷石墨烯花。经测试,其导电率为45S/cm,缺陷密度为0.0521;
4)将低缺陷石墨烯花与硫以质量比为1:4进行混合,并在氮气气体氛围下进行155℃共热12小时;
5)将8重量份低缺陷石墨烯花硫复合物与1重量份的偏聚二氟乙烯的N-甲基吡咯烷酮溶液及乙炔黑混合制成浆料,涂膜与铝箔上,并进行60℃烘干24小时;
6)将烘干所得极片、金属锂、多孔聚丙烯隔膜、双三氟甲基磺酰亚胺锂的1、3-二氧五环/乙二醇二甲醚溶液及纽扣电池壳组装,从而得到以低缺陷石墨烯花硫复合物为正极的锂硫电池,其正极最高面积比容量达2.7mAh/cm2
实施例3:
1)将1重量份氧化石墨烯溶于1000重量份的去离子水中,搅拌,得到均匀溶解分散的氧化石墨烯水溶液;
2)在120℃使用10微米的喷雾头将氧化石墨烯溶液进行喷雾干燥,得到氧化石墨烯花粉末。
3)使用3000摄氏度热处理将氧化石墨烯花进行还原得到4微米直径石墨烯花,经测试,其导电率为212S/cm,缺陷密度为0.0276;
4)将石墨烯花与硫以质量比为1:4进行混合,并在氮气气体氛围下进行155℃共热12小时;
5)将8重量份石墨烯花硫复合物与1重量份的偏聚二氟乙烯的N-甲基吡咯烷酮溶液及乙炔黑混合制成浆料,涂膜与铝箔上,并进行60℃烘干24小时;
6)将烘干所得极片、金属锂、多孔聚丙烯隔膜、双三氟甲基磺酰亚胺锂的1、3-二氧五环/乙二醇二甲醚溶液及纽扣电池壳组装,从而得到以石墨烯花硫复合物为正极的锂硫电池,其正极最高面积比容量可达5.2mAh/cm2
实施例4:
1)将2重量份氧化石墨烯溶于100重量份的去离子水中,搅拌,得到均匀溶解分散的氧化石墨烯水溶液;
2)在60℃使用0.1微米的喷雾头将氧化石墨烯溶液进行喷雾干燥,得到氧化石墨烯花粉末。
3)用体积百分含量5%碘化氢水溶液将氧化石墨烯花进行充分还原,得到3微米直径石墨烯花,经测试,其导电率为30S/cm,缺陷密度为1.3;
4)将石墨烯花与硫以质量比为1:9进行混合,并在氮气气体氛围下进行400℃共热10分钟;
5)将5重量份石墨烯花硫复合物与2.5重量份的偏聚二氟乙烯的N-甲基吡咯烷酮溶液及2.5重量份的科琴黑混合制成浆料,涂膜与铝箔上,并进行60℃烘干24小时;
6)将烘干所得极片、金属锂、多孔聚丙烯隔膜、双三氟甲基磺酰亚胺锂的1、3-二氧五环/乙二醇二甲醚溶液及纽扣电池壳组装,从而得到以石墨烯花硫复合物为正极的锂硫电池,其正极最高面积比容量可达4mAh/cm2
实施例5:
(1)将氧化石墨烯原料溶于正丁醇并搅拌,得到质量百分含量为0.01%的氧化石墨烯溶液;
(2)将氧化石墨烯溶液进行喷雾干燥,得到氧化石墨烯花粉末。喷雾干燥温度为200℃,喷雾口直径为100微米
(3)用水合肼蒸汽将氧化石墨烯花进行还原,得到石墨烯花。经测试,其导电率为27S/cm,缺陷密度为1.44;
(4)将石墨烯花与硫进行混合,并在惰性气体氛围下100℃共热1000分钟;石墨烯花和硫的质量比为9:1
(5)将石墨烯花硫复合物与丁苯橡胶基及SuperP混合制成浆料,涂膜于集流体上,进行烘干;石墨烯花硫复合物与丁苯橡胶基及SuperP混合比例为9:0.5:0.5。
(6)将烘干所得集流体与负极、隔膜、电解液及电池包装组装,从而得到以石墨烯花硫复合物为正极的锂硫电池。其正极最高面积比容量可达5.4mAh/cm2

Claims (10)

1.一种石墨烯花的制备方法,其特征在于,它的步骤如下:
(1)将氧化石墨烯原料溶于溶剂并搅拌,得到氧化石墨烯溶液;
(2)将氧化石墨烯溶液进行喷雾干燥,得到氧化石墨烯花粉末。
(3)使用还原剂或者高温热处理将氧化石墨烯花进行还原,得到石墨烯花。
2.如权利要求1所述的制备方法,其特征在于:所述步骤1)的溶剂选自去离子水、N-甲基-2-吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲亚砜、环丁砜、乙醇、正丁醇、乙腈,或者它们任意比组成的混合物,氧化石墨烯是质量百分含量为0.01%-2%。
3.如权利要求1所述的制备方法,其特征在于:所述步骤2)的喷雾干燥温度为60-200℃,喷雾口直径为0.1-100微米。
4.如权利要求1所述的制备方法,其特征在于:所述步骤3)的还原剂选自体积百分含量5%-50%碘化氢水溶液、抗坏血酸钠溶液、水合肼蒸汽;高温热处理为1000-3000℃氮气或氩气氛围下,时间为10-1000分钟。
5.一种权利要求1所述方法制备的石墨烯花在锂硫电池中的应用。
6.根据权利要求5所述的应用,其特征在于,所述应用具体为:
(1)将石墨烯花与硫进行混合,并在惰性气体氛围下进行共热;
(2)将石墨烯花硫复合物与胶黏剂及导电剂混合制成浆料,涂膜于集流体上,进行烘干;
(3)将烘干所得集流体与负极、隔膜、电解液及电池包装组装,从而得到以石墨烯花硫复合物为正极的锂硫电池。
7.如权利要求6所述的应用,其特征在于:所述步骤1中石墨烯花和硫的质量比为1:9-9:1,惰性气体选自氮气,氩气及其任意比组成的混合气等,共热温度为100-400℃,共热时间为10-1000分钟。
8.如权利要求6所述的应用,其特征在于:所述步骤2中,石墨烯花硫复合物与胶黏剂及导电剂混合比例为9:0.5:0.5-5:2.5:2.5,胶黏剂选自聚偏二氟乙烯、羧甲基纤维素钠、丁苯橡胶基、水、N-甲基吡咯烷酮及他们任意比组成的混合物;导电剂选自乙炔黑、科琴黑、SuperP、石墨烯、碳纳米管、C60及他们任意比组成的混合物;集流体选自铝箔、铜箔、镍箔、碳覆铝箔、碳纸、碳布。
9.如权利要求6所述的应用,其特征在于:所述步骤2所述的涂膜厚度在1-100微米,烘干温度为40-100℃,烘干时间为1-100小时。
10.如权利要求6所述的应用,其特征在于:所述步骤3的负极选自锂金属、锂铝合金、锂化硅或者锂化碳;隔膜选自玻碳纤维、聚丙烯隔膜、聚乙烯隔膜; 电解液溶液的溶质选自六氟磷酸锂、双三氟甲基磺酰亚胺锂、硝酸锂、聚硫化锂或者他们任意比组成的混合物,溶剂选自1、3-二氧五环、乙二醇二甲醚、三乙二醇二甲醚、碳酸二乙酯或者他们任意比组成的混合物;电池包装包括扣式电池壳、软包电池壳及不锈钢电池壳。
CN201611262275.8A 2016-12-30 2016-12-30 一种石墨烯花的制备方法及其在锂硫电池中的应用 Active CN106602063B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201611262275.8A CN106602063B (zh) 2016-12-30 2016-12-30 一种石墨烯花的制备方法及其在锂硫电池中的应用
PCT/CN2017/119938 WO2018121751A1 (zh) 2016-12-30 2017-12-29 一种石墨烯花的制备方法及其在锂硫电池中的应用
EP17888017.5A EP3565040A4 (en) 2016-12-30 2017-12-29 PROCESS FOR PREPARING A GRAPHENE FLOWER AND ITS APPLICATION IN A LITHIUM-SULFUR BATTERY
JP2019535263A JP6847502B2 (ja) 2016-12-30 2017-12-29 グラフェンフラワーの製造方法及びリチウム硫電池へのその使用
US16/473,255 US11380897B2 (en) 2016-12-30 2017-12-29 Preparation method of graphene flower and use of graphene flower in lithium sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611262275.8A CN106602063B (zh) 2016-12-30 2016-12-30 一种石墨烯花的制备方法及其在锂硫电池中的应用

Publications (2)

Publication Number Publication Date
CN106602063A true CN106602063A (zh) 2017-04-26
CN106602063B CN106602063B (zh) 2020-08-11

Family

ID=58582872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611262275.8A Active CN106602063B (zh) 2016-12-30 2016-12-30 一种石墨烯花的制备方法及其在锂硫电池中的应用

Country Status (5)

Country Link
US (1) US11380897B2 (zh)
EP (1) EP3565040A4 (zh)
JP (1) JP6847502B2 (zh)
CN (1) CN106602063B (zh)
WO (1) WO2018121751A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018121751A1 (zh) * 2016-12-30 2018-07-05 浙江大学 一种石墨烯花的制备方法及其在锂硫电池中的应用
CN111653777A (zh) * 2020-05-20 2020-09-11 佛山科学技术学院 一种作为锂硫电池正极的石墨烯/硫多孔微球复合材料及其制备方法
CN111933948A (zh) * 2020-08-18 2020-11-13 武汉先见科技有限公司 一种锂硫电池、锂硫电池正级和负极材料及其制备方法
CN112481644A (zh) * 2020-11-10 2021-03-12 中国航发北京航空材料研究院 花状石墨烯、熔喷布及二者制备方法和一种口罩
JP2021517110A (ja) * 2018-09-20 2021-07-15 エルジー・ケム・リミテッド 硫黄−炭素複合体、この製造方法、これを含むリチウム二次電池用正極及びリチウム二次電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109796008B (zh) * 2019-01-19 2020-07-03 东莞市长瑞精密设备制造有限公司 一种石墨烯电池负极材料及其处理工装
CN112643036B (zh) * 2019-10-10 2024-02-23 中国科学技术大学 一种石墨烯基锂金属复合材料的制备方法
KR20210087622A (ko) * 2020-01-03 2021-07-13 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
CN112687873B (zh) * 2020-12-23 2021-12-07 湖南永盛新材料股份有限公司 一种高比能量锂电池的制备方法
CN113991091B (zh) * 2021-07-06 2024-04-05 盐城工学院 一种锂硫电池正极的mof材料及其应用
US11814292B2 (en) 2021-07-23 2023-11-14 Nanotech Energy, Inc. Methods of graphene production and compositions thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204497A (zh) * 2013-04-16 2013-07-17 中国科学院福建物质结构研究所 一种制备石墨烯材料的方法及其在化学储能和/或转化中的用途
CN104953102A (zh) * 2015-06-29 2015-09-30 北京理工大学 一种适用于工业化生产的锂硫电池的制备
CN105217622A (zh) * 2015-11-13 2016-01-06 武汉大学 一种可控三维石墨烯微球的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511934B1 (en) * 2000-10-17 2003-01-28 Union Carbide Chemicals & Plastics Technology Corporation Transition metal precursors containing sulfur ligands, and polyolefin production processes using them
US8182917B2 (en) * 2008-03-20 2012-05-22 The United States Of America, As Represented By The Secretary Of The Navy Reduced graphene oxide film
JP5577136B2 (ja) 2010-04-05 2014-08-20 長三 井上 グラフェン前駆体化合物及びその製造方法、並びにナノグラフェン構造体の製造方法
US8753772B2 (en) 2010-10-07 2014-06-17 Battelle Memorial Institute Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes
CN101993065B (zh) * 2010-12-17 2012-09-05 中国科学院上海微系统与信息技术研究所 一种制备石墨烯粉体的方法
CN102674315B (zh) * 2012-04-25 2014-08-13 浙江大学 一种石墨烯-碳纳米管复合全碳超轻弹性气凝胶及其制备方法
JP2014009104A (ja) * 2012-06-27 2014-01-20 Unitika Ltd グラフェン分散液とその製造方法
US9590248B2 (en) * 2013-03-12 2017-03-07 Uchicago Argonne, Llc Porous graphene nanocages for battery applications
CN104752682B (zh) 2015-03-16 2017-11-14 山东玉皇新能源科技有限公司 一种锂硫电池的硫/碳复合正极材料制备方法
CN106602063B (zh) 2016-12-30 2020-08-11 长兴德烯科技有限公司 一种石墨烯花的制备方法及其在锂硫电池中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204497A (zh) * 2013-04-16 2013-07-17 中国科学院福建物质结构研究所 一种制备石墨烯材料的方法及其在化学储能和/或转化中的用途
CN104953102A (zh) * 2015-06-29 2015-09-30 北京理工大学 一种适用于工业化生产的锂硫电池的制备
CN105217622A (zh) * 2015-11-13 2016-01-06 武汉大学 一种可控三维石墨烯微球的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018121751A1 (zh) * 2016-12-30 2018-07-05 浙江大学 一种石墨烯花的制备方法及其在锂硫电池中的应用
US11380897B2 (en) 2016-12-30 2022-07-05 Zhejiang University Preparation method of graphene flower and use of graphene flower in lithium sulfur battery
JP2021517110A (ja) * 2018-09-20 2021-07-15 エルジー・ケム・リミテッド 硫黄−炭素複合体、この製造方法、これを含むリチウム二次電池用正極及びリチウム二次電池
JP7167299B2 (ja) 2018-09-20 2022-11-08 エルジー エナジー ソリューション リミテッド 硫黄-炭素複合体、この製造方法、これを含むリチウム二次電池用正極及びリチウム二次電池
CN111653777A (zh) * 2020-05-20 2020-09-11 佛山科学技术学院 一种作为锂硫电池正极的石墨烯/硫多孔微球复合材料及其制备方法
CN111653777B (zh) * 2020-05-20 2022-10-04 佛山科学技术学院 一种作为锂硫电池正极的石墨烯/硫多孔微球复合材料及其制备方法
CN111933948A (zh) * 2020-08-18 2020-11-13 武汉先见科技有限公司 一种锂硫电池、锂硫电池正级和负极材料及其制备方法
CN112481644A (zh) * 2020-11-10 2021-03-12 中国航发北京航空材料研究院 花状石墨烯、熔喷布及二者制备方法和一种口罩
CN112481644B (zh) * 2020-11-10 2024-05-24 中国航发北京航空材料研究院 花状石墨烯、熔喷布及二者制备方法和一种口罩

Also Published As

Publication number Publication date
EP3565040A1 (en) 2019-11-06
EP3565040A4 (en) 2020-08-05
CN106602063B (zh) 2020-08-11
WO2018121751A1 (zh) 2018-07-05
JP2020503232A (ja) 2020-01-30
US11380897B2 (en) 2022-07-05
JP6847502B2 (ja) 2021-03-24
US20200152988A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
CN106602063A (zh) 一种石墨烯花的制备方法及其在锂硫电池中的应用
JP6445585B2 (ja) 多孔質カーボンナノチューブミクロスフェア及びその製造方法と使用、金属リチウム‐骨格炭素複合材料及びその製造方法、負極、及び電池
Zhang et al. Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium-sulfur battery
EP3128585B1 (en) Composite cathode material and preparation method thereof, cathode pole piece of lithium ion secondary battery, and lithium ion secondary battery
Chen et al. Performance of through-hole anodic aluminum oxide membrane as a separator for lithium-ion battery
CN107634207B (zh) 一种硅镶嵌氧化还原石墨烯/石墨相氮化碳复合材料及其制备和应用
CN107221654B (zh) 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法
CN104157909B (zh) 一种锂硫电池膜电极的制备方法
CN103390752B (zh) 石墨烯基复合材料,其制备方法及其在锂硫电池中的应用
CN104701588A (zh) 一种基于高致密度固体电解质的新型锂空气电池
CN106602062A (zh) 一种石墨烯气凝胶正极材料的制备方法及其在铝离子电池中的应用
CN101894940A (zh) 用于锂离子电池的多孔硅基负极及其制备方法
Kazazi et al. Improving the self-discharge behavior of sulfur-polypyrrole cathode material by LiNO3 electrolyte additive
Deng et al. Highly improved electrochemical performance of Li-S batteries with heavily nitrogen-doped three-dimensional porous graphene interlayers
CN107919461A (zh) 一类氮掺杂多孔炭负极材料的制备方法与应用
CN103050729A (zh) 一种锂硫电池
Wang et al. Reduced polysulfide shuttle effect by using polyimide separators with ionic liquid-based electrolytes in lithium-sulfur battery
CN102569725A (zh) 氟化石墨烯-氟磷酸钒锂复合材料及其制备方法与应用
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
CN110957486A (zh) 超结构锡碳-氧化钼复合材料的制备方法及其应用于电极
He et al. Boosting the electrocatalytic performance of carbon nanotubes toward V (V)/V (IV) reaction by sulfonation treatment
CN104752682A (zh) 一种锂硫电池的硫/碳复合正极材料制备方法
CN109671907B (zh) 锂硫电池用复合正极片、其制备方法及应用
Hou et al. Gaseous-phase, silica-coated sulfur particles as a cathode material for high-performance lithium/sulfur batteries
CN108899211B (zh) 一种兼备高能量密度与高功率密度的钠离子电容器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190903

Address after: 313199 Room 830, 8th Floor, Changxing World Trade Building, 1278 Mingzhu Road, Changxing Economic Development Zone, Huzhou City, Zhejiang Province

Applicant after: Changxin de Technology Co., Ltd.

Address before: 310058 Xihu District, Zhejiang, Yuhang Tong Road, No. 866, No.

Applicant before: Zhejiang University

GR01 Patent grant
GR01 Patent grant