CN109671907B - 锂硫电池用复合正极片、其制备方法及应用 - Google Patents

锂硫电池用复合正极片、其制备方法及应用 Download PDF

Info

Publication number
CN109671907B
CN109671907B CN201811449059.3A CN201811449059A CN109671907B CN 109671907 B CN109671907 B CN 109671907B CN 201811449059 A CN201811449059 A CN 201811449059A CN 109671907 B CN109671907 B CN 109671907B
Authority
CN
China
Prior art keywords
sulfur
lithium
carbon
microporous carbon
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811449059.3A
Other languages
English (en)
Other versions
CN109671907A (zh
Inventor
易若玮
杨莉
赵策洲
袁宇丹
刘晨光
赵胤超
林向飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong Liverpool University
Original Assignee
Xian Jiaotong Liverpool University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong Liverpool University filed Critical Xian Jiaotong Liverpool University
Priority to CN201811449059.3A priority Critical patent/CN109671907B/zh
Publication of CN109671907A publication Critical patent/CN109671907A/zh
Application granted granted Critical
Publication of CN109671907B publication Critical patent/CN109671907B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种电化学能源技术领域的锂硫电池用复合正极片、其制备方法及应用,包括纳米微孔碳‑硫复合材料、导电剂和聚偏氟乙烯;所述复合材料中纳米微孔碳的孔径小于0.8nm。本发明将常见的升华硫的存在形式S8转换为短链的硫分子S2‑4,避免锂硫电池在放电过程中生成易溶解的高阶多硫化物,杜绝了穿梭效应的发生,提高了锂硫电池的循环稳定性。

Description

锂硫电池用复合正极片、其制备方法及应用
技术领域
本发明涉及的是一种电化学能源领域的技术,具体是一种锂硫电池用复合正极片、其制备方法及应用。
背景技术
目前急速发展的电动汽车行业受到的最大制约来自电池容量的不足。为了提高单次充电后的行驶里程,人们迫切需求更大单位重量比容量的电源来替代传统的锂离子电池。而锂硫电池是以硫元素作为电池正极的一种二次化学电源,其比容量高达1675mAh/g,远远高于商业上广泛应用的钴酸锂电池的容量(<300mAh/g),对于电动汽车行业具有巨大的吸引力。同时,正极活性材料使用的硫单质是一种对环境友好的元素,毒性极低,而且成本低于传统的锂离子电池正极材料,因此,锂硫电池是一种非常有前景的二次电源。
但是硫单质本身的一些缺陷制约了锂硫电池的商业化应用。其中最主要的问题在于硫与锂进行反应的中间产物多硫化锂在有机电解液中容易溶解,并在充放电过程中随着电解液在正负极之间来回穿梭,即“穿梭效应”。这最终导致正极活性材料的不断减少,电池充放电效率的不断降低。
目前主流的解决方案大多基于抑制多硫化物的溶解以控制穿梭效应,而对于穿梭效应的根源,即易溶解高阶多硫化物离子(S6-8 2-)的产生并没有实质性的解决方案。
有研究致力于制作具有微孔(孔径<1nm)的硫载体,在此小孔径的限制下硫只能以短链同位素形式存在(S2-4),因此在反应过程中就杜绝了高阶多硫化物的生成,杜绝了穿梭效应的发生。但目前微孔硫载体的制备步骤繁多,条件严苛。
发明内容
本发明针对现有技术存在的上述不足,提出了一种锂硫电池用复合正极片、其制备方法及应用,将常见的升华硫的存在形式S8转换为短链的硫分子S2-4,避免锂硫电池在放电过程中生成易溶解的高阶多硫化物,杜绝了穿梭效应的发生。
本发明是通过以下技术方案实现的:
本发明涉及一种锂硫电池用复合正极片,包括纳米微孔碳-硫复合材料、导电剂和聚偏氟乙烯;所述纳米微孔碳-硫复合材料中纳米微孔碳材料的孔径小于0.8nm。
所述纳米微孔碳-硫复合材料、导电剂、聚偏氟乙烯的重量比为5~8:1~2:1~2。
所述导电剂包括但不限于导电碳黑、碳纳米管、石墨烯。
本发明涉及上述锂硫电池用复合正极片的制备方法,包括以下步骤:
S1,纳米微孔碳材料制备;
将碳纳米材料与聚偏氟乙烯(PVDF)按照重量比1:1~1:3的比例混合均匀,加入N-甲基-2-吡咯烷酮(NMP)使得聚偏氟乙烯完全溶解,充分搅拌后,将混合物在氮气气流保护下,加热至700~900℃,保温0.5~4h,降温至室温(20~30℃)后取出用去离子水彻底冲洗,50~80℃下真空干燥8~36h后得到表面含有纳米级微孔的纳米微孔碳材料;
S2,纳米微孔碳-硫复合材料制备;
将得到的纳米微孔碳材料与硫粉按照重量比1:0.5~1:2的比例混合均匀,封入真空容器中,加热到120~200℃,保温8~12h,冷却至室温后取出,得到纳米微孔碳-硫复合材料;
S3,复合正极片制备;
将纳米微孔碳-硫复合材料、导电剂和聚偏氟乙烯按重量比5~8:1~2:1~2的比例混合均匀,再加入NMP作为溶剂,充分搅拌均匀,得到纳米微孔碳-硫复合材料浆料;
将上述纳米微孔碳-硫复合材料浆料均匀地涂在电极用铝箔表面,在60~70℃下真空干燥12~24h彻底除去NMP,再剪切成型得到复合正极片。
所述碳纳米材料包括但不限于碳纳米球、碳纳米空心球、单壁碳纳米管、多壁碳纳米管、碳纳米纤维、石墨烯。
本发明涉及一种锂硫电池,包括由下而上顺序设置的复合正极片、锂硫电池用隔膜和锂负极片。
技术效果
与现有技术相比,本发明具有如下技术效果:
1)将硫限制在孔径小于0.8nm的微孔碳内,通过空间尺寸限制使得硫的分子尺寸被限制在S4以下,避免穿梭效应导致的活性硫流失;同时,掺杂氟元素提供了额外的吸附位点,进一步减少了高阶多硫化物的流失,大大提高了电池的循环稳定性。具有工艺流程短、制备条件要求宽松的优点,适合规模化生产;
2)纳米微孔碳提高了硫与电解液的接触面积,减少锂离子扩散途径,从而提高了正极活性材料的利用率;
3)纳米微孔碳具有高导电性,能够促进硫的反应动力学,提高电池效率。
具体实施方式
下面结合具体实施方式对本发明进行详细描述。
本发明实施例涉及一种锂硫电池用复合正极片,包括纳米微孔碳-硫复合材料、导电剂和聚偏氟乙烯;所述纳米微孔碳-硫复合材料中纳米微孔碳材料的孔径小于0.8nm。
所述纳米微孔碳-硫复合材料、导电剂、聚偏氟乙烯的重量比为5~8:1~2:1~2。
所述导电剂包括但不限于导电碳黑、碳纳米管、石墨烯。
本发明涉及上述锂硫电池用复合正极片的制备方法,包括以下步骤:
S1,纳米微孔碳材料制备;
将碳纳米材料与聚偏氟乙烯按照重量比1:1~1:3的比例混合均匀,加入N-甲基-2-吡咯烷酮使得聚偏氟乙烯完全溶解,充分搅拌后,将混合物在氮气气流保护下,加热至700~900℃,保温0.5~4h,降温至室温后取出用去离子水彻底冲洗,50~80℃下真空干燥8~36h后得到表面含有纳米级微孔的纳米微孔碳材料;
S2,纳米微孔碳-硫复合材料制备;
将得到的纳米微孔碳材料与硫粉按照重量比1:0.5~1:2的比例混合均匀,封入真空容器中,加热到120~200℃,保温8~12h,冷却至室温后取出,得到纳米微孔碳-硫复合材料;
S3,复合正极片制备;
将纳米微孔碳-硫复合材料、导电剂和聚偏氟乙烯按重量比5~8:1~2:1~2的比例混合均匀,再加入NMP作为溶剂,充分搅拌均匀,得到纳米微孔碳-硫复合材料浆料;
将上述纳米微孔碳-硫复合材料浆料均匀地涂在电极用铝箔表面,在60~70℃下真空干燥12~24h彻底除去NMP,再剪切成型得到复合正极片。
所述碳纳米材料包括但不限于碳纳米球、碳纳米空心球、单壁碳纳米管、多壁碳纳米管、碳纳米纤维、石墨烯。
本发明涉及一种锂硫电池,包括由下而上顺序设置的复合正极片、锂硫电池用隔膜和锂负极片。
实施例1
本实施例涉及一种锂硫电池的制备方法,包括以下步骤:
S1,一维结构纳米微孔碳材料制备;
将单壁碳纳米管与聚偏氟乙烯按照重量比1:1.5的比例混合均匀,加入NMP使得聚偏氟乙烯完全溶解,充分搅拌后,将混合物在氮气气流保护下,加热至700℃,保温2h,降温至室温后取出用去离子水彻底冲洗,70℃下真空干燥24h后得到表面含有纳米级微孔(孔径<0.8nm)的一维结构纳米微孔碳材料;
S2,一维结构纳米微孔碳-硫复合材料制备;
将得到的一维结构纳米微孔碳材料与硫粉按照重量比1:1的比例混合均匀,封入真空容器中,加热到155℃,保温12h,冷却至室温后取出,得到一维结构纳米微孔碳-硫复合材料;
S3,复合正极片制备;
将一维结构纳米微孔碳-硫复合材料、导电碳黑和聚偏氟乙烯按重量比8:2:1的比例混合均匀,再加入NMP作为溶剂,充分搅拌均匀,得到一维结构纳米微孔碳-硫复合材料浆料;
将上述一维结构纳米微孔碳-硫复合材料浆料均匀地涂在电极用铝箔表面,在60℃下真空干燥24h彻底除去NMP,再剪切成型得到复合正极片;
S4,电池组装;
在氩气气氛保护下,按照由下而上的顺序组装复合正极片、锂硫电池用隔膜和锂负极片,在此过程中在正负极两侧滴加足量的锂硫电池专用电解液,得到锂硫电池。
采用通行的电池测试仪器与方法测试上述锂硫电池的充放电性能:0.2C电流下首次充放电比容量约1100mAh/g,后充放电比容量约为750mAh/g(100次循环),电池平均充放电库仑效率约为97%(100次循环)。
实施例2
本实施例涉及一种锂硫电池的制备方法,包括以下步骤:
S1,二维结构纳米微孔碳材料制备;
将薄层石墨烯与聚偏氟乙烯按照重量比1:2的比例混合均匀,加入NMP使得聚偏氟乙烯完全溶解,充分搅拌后,将混合物在氮气气流保护下,加热至800℃,保温2h,降温至室温后取出用去离子水彻底冲洗,70℃下真空干燥24h后得到表面含有纳米级微孔(孔径<0.8nm)的二维结构纳米微孔碳材料;
S2,二维结构纳米微孔碳-硫复合材料制备;
将得到的二维结构纳米微孔碳材料与硫粉按照重量比1:2的比例混合均匀,封入真空容器中,加热到155℃,保温12h,冷却至室温后取出,得到二维结构纳米微孔碳-硫复合材料;
S3,复合正极片制备;
将二维结构纳米微孔碳-硫复合材料、导电碳黑和聚偏氟乙烯按重量比8:2:1的比例混合均匀,再加入NMP作为溶剂,充分搅拌均匀,得到二维结构纳米微孔碳-硫复合材料浆料;
将上述二维结构纳米微孔碳-硫复合材料浆料均匀地涂在电极用铝箔表面,在65℃下真空干燥24h彻底除去NMP,再剪切成型得到复合正极片;
S4,电池组装;
在氩气气氛保护下,按照由下而上的顺序组装复合正极片、锂硫电池用隔膜和锂负极片,在此过程中在正负极两侧滴加足量的锂硫电池专用电解液,得到锂硫电池。
采用通行的电池测试仪器与方法测试上述锂硫电池的充放电性能:0.2C电流下首次充放电比容量约1200mAh/g,后充放电比容量约为830mAh/g(100次循环),电池平均充放电库仑效率约为97%(100次循环)。
实施例3
本实施例涉及一种锂硫电池的制备方法,包括以下步骤:
S1,三维结构纳米微孔碳材料制备;
将空心纳米碳球与聚偏氟乙烯按照重量比1:2的比例混合均匀,加入NMP使得聚偏氟乙烯完全溶解,充分搅拌后,将混合物在氮气气流保护下,加热至900℃,保温2h,降温至室温后取出用去离子水彻底冲洗,70℃下真空干燥24h后得到表面含有纳米级微孔(孔径<0.8nm)的三维结构纳米微孔碳材料;
S2,三维结构纳米微孔碳-硫复合材料制备;
将得到的三维结构纳米微孔碳材料与硫粉按照重量比1:2的比例混合均匀,封入真空容器中,加热到155℃,保温12h,冷却至室温后取出,得到三维结构纳米微孔碳-硫复合材料;
S3,复合正极片制备;
将三维结构纳米微孔碳-硫复合材料、导电碳黑和聚偏氟乙烯按重量比8:2:1的比例混合均匀,再加入NMP作为溶剂,充分搅拌均匀,得到三维结构纳米微孔碳-硫复合材料浆料;
将上述三维结构纳米微孔碳-硫复合材料浆料均匀地涂在电极用铝箔表面,在70℃下真空干燥24h彻底除去NMP,再剪切成型得到复合正极片;
S4,电池组装;
在氩气气氛保护下,按照由下而上的顺序组装复合正极片、锂硫电池用隔膜和锂负极片,在此过程中在正负极两侧滴加足量的锂硫电池专用电解液,得到锂硫电池。
采用通行的电池测试仪器与方法测试上述锂硫电池的充放电性能:0.2C电流下首次充放电比容量约1100mAh/g,后充放电比容量约为750mAh/g(100次循环),电池平均充放电库仑效率约为97%(100次循环)。
需要强调的是:以上仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (5)

1.一种锂硫电池用复合正极片的制备方法,其特征在于,包括以下步骤:
S1,纳米微孔碳材料制备;
将碳纳米材料与聚偏氟乙烯按照重量比1:1~1:3的比例混合均匀,加入N-甲基-2-吡咯烷酮使得聚偏氟乙烯完全溶解,充分搅拌后,将混合物在氮气气流保护下,加热至700~900℃,保温0.5~4h,降温至室温后取出用去离子水彻底冲洗,50~80℃下真空干燥8~36h后得到表面含有纳米级微孔的纳米微孔碳材料,纳米微孔碳材料的孔径小于0.8nm;
S2,纳米微孔碳-硫复合材料制备;
将得到的纳米微孔碳材料与硫粉按照重量比1:0.5~1:2的比例混合均匀,封入真空容器中,加热到120~200℃,保温8~12h,冷却至室温后取出,得到纳米微孔碳-硫复合材料;
S3,复合正极片制备;
将纳米微孔碳-硫复合材料、导电剂和聚偏氟乙烯按重量比5~8:1~2:1~2的比例混合均匀,再加入N-甲基吡咯烷酮作为溶剂,充分搅拌均匀,得到纳米微孔碳-硫复合材料浆料;
将上述纳米微孔碳-硫复合材料浆料均匀地涂在铝箔表面,在50~70℃下真空干燥12~24h彻底除去N-甲基吡咯烷酮,再剪切成型得到复合正极片。
2.根据权利要求1所述锂硫电池用复合正极片的制备方法,其特征是,所述纳米微孔碳-硫复合材料、导电剂、聚偏氟乙烯的重量比为5~8:1~2:1~2。
3.根据权利要求1所述锂硫电池用复合正极片的制备方法,其特征是,所述导电剂包括导电碳黑、碳纳米管和石墨烯中至少一种。
4.根据权利要求1所述锂硫电池用复合正极片的制备方法,其特征是,所述碳纳米材料选自碳纳米颗粒、单壁碳纳米管、多壁碳纳米管和碳纳米纤维中至少一种。
5.一种锂硫电池,其特征在于,包括由下而上顺序设置的锂硫电池用复合正极片、锂硫电池隔膜和锂负极片,锂硫电池用复合正极片采用权利要求1~4任一项所述制备方法制成。
CN201811449059.3A 2018-11-29 2018-11-29 锂硫电池用复合正极片、其制备方法及应用 Active CN109671907B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811449059.3A CN109671907B (zh) 2018-11-29 2018-11-29 锂硫电池用复合正极片、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811449059.3A CN109671907B (zh) 2018-11-29 2018-11-29 锂硫电池用复合正极片、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN109671907A CN109671907A (zh) 2019-04-23
CN109671907B true CN109671907B (zh) 2021-12-31

Family

ID=66144634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811449059.3A Active CN109671907B (zh) 2018-11-29 2018-11-29 锂硫电池用复合正极片、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN109671907B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556509A (zh) * 2019-08-14 2019-12-10 南京大学 一种利用含氟有机物进行金属锂负极表面保护和钝化处理的方法、产品及应用
CN111446418B (zh) * 2020-04-17 2021-08-03 中国航发北京航空材料研究院 一种高载硫量锂硫电池正极片及制备方法
CN112038620B (zh) * 2020-09-28 2021-11-02 中航锂电技术研究院有限公司 锂硫电池正极材料及锂硫电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185127A (zh) * 2011-04-07 2011-09-14 武汉理工大学 一种添加吸附剂的锂硫电池正极极片及锂硫电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045484A (ko) * 2012-08-17 2015-04-28 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 리튬-황 배터리용 다공성 카본 간층

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185127A (zh) * 2011-04-07 2011-09-14 武汉理工大学 一种添加吸附剂的锂硫电池正极极片及锂硫电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Sen Xin等.Smaller Sulfur Molecules Promise Better Lithium-Sulfur Batteries.《Journal of the American Chemical Society》.2012,第134卷(第45期),第18510-18513页. *
Smaller Sulfur Molecules Promise Better Lithium-Sulfur Batteries;Sen Xin等;《Journal of the American Chemical Society》;20121026;第134卷(第45期);第18510-18513页 *
Ultramicroporous Carbon through an Activation-Free Approach for Li-S and Na-S Batteries in Carbonate-Based Electrolyte;Lei Hu等;《ACS Applied Materials & Interfaces》;20170407;第9卷(第16期);第13813-13818页 *

Also Published As

Publication number Publication date
CN109671907A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
JP6445585B2 (ja) 多孔質カーボンナノチューブミクロスフェア及びその製造方法と使用、金属リチウム‐骨格炭素複合材料及びその製造方法、負極、及び電池
Wang et al. Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries
Ren et al. Nitrogen-doped carbon fiber foam enabled sulfur vapor deposited cathode for high performance lithium sulfur batteries
CN102544459B (zh) 氧化石墨烯包覆碳微球制备石墨烯包覆碳微球材料的方法
CN107615526B (zh) 用于锂-硫电池的包含微孔碳纳米片的硫-碳复合材料及其制备方法
CN103500820B (zh) 一种用于锂硫电池的硫/多孔碳包覆碳纳米管复合正极材料及其制备方法
Chen et al. Constructing layered double hydroxide fences onto porous carbons as high-performance cathodes for lithium–sulfur batteries
CN107221654B (zh) 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法
Gao et al. Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries
WO2020164353A1 (zh) 一种金属原子掺杂多孔碳纳米复合材料及其制备方法和应用
Chen et al. Chemical modification of pristine carbon nanotubes and their exploitation as the carbon hosts for lithium-sulfur batteries
CN109671907B (zh) 锂硫电池用复合正极片、其制备方法及应用
Tu et al. Monodisperse LiFePO4 microspheres embedded with well-dispersed nitrogen-doped carbon nanotubes as high-performance positive electrode material for lithium-ion batteries
Zhang et al. High-performance lithium sulfur batteries based on nitrogen-doped graphitic carbon derived from covalent organic frameworks
Lei et al. High-Performance Li-CO 2 Batteries with α-MnO 2/CNT Cathodes
Saji et al. One-dimensional (1D) nanostructured and nanocomposited LiFePO 4: its perspective advantages for cathode materials of lithium ion batteries
CN110042503B (zh) 一种MoSe2@C电纺中空纳米纤维及其制备方法和应用
CN105702958B (zh) 一种二氧化锡量子点溶液及其复合材料的制备方法与应用
Jin et al. Pomegranate-like Li3VO4/3D graphene networks nanocomposite as lithium ion battery anode with long cycle life and high-rate capability
CN111162261A (zh) 一种二硫化铁/氧化石墨烯/氮掺杂多壁碳纳米管复合材料及其制备方法和应用
CN109473643A (zh) 一种CoSe2/石墨烯复合材料制备方法和用途
Zhao et al. A phthalocyanine-grafted MA–VA framework polymer as a high performance anode material for lithium/sodium-ion batteries
CN112366298B (zh) 碳组装硫化锌硫化钴空心纳米多面体框架材料及其制备和应用
CN109742338B (zh) G-四链体/血红素酶/碳纳米管复合材料的制备方法及其在锂硫电池中的应用
Chu et al. Increasing N active sites by in-situ growing conformal C3N4 layer in hierarchical porous carbon-based networks for fast Li+ transfer and polysulfide anchoring in lithium-sulfur batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant