CN106571239B - 生物质基氧化钙活化煤沥青一步制备超级电容器及锂离子电池用分级多孔炭电极材料的方法 - Google Patents

生物质基氧化钙活化煤沥青一步制备超级电容器及锂离子电池用分级多孔炭电极材料的方法 Download PDF

Info

Publication number
CN106571239B
CN106571239B CN201610952956.0A CN201610952956A CN106571239B CN 106571239 B CN106571239 B CN 106571239B CN 201610952956 A CN201610952956 A CN 201610952956A CN 106571239 B CN106571239 B CN 106571239B
Authority
CN
China
Prior art keywords
electrode material
classifying porous
coal tar
tar pitch
calcium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610952956.0A
Other languages
English (en)
Other versions
CN106571239A (zh
Inventor
曲江英
耿闯
高峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Normal University
Original Assignee
Liaoning Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Normal University filed Critical Liaoning Normal University
Priority to CN201610952956.0A priority Critical patent/CN106571239B/zh
Publication of CN106571239A publication Critical patent/CN106571239A/zh
Application granted granted Critical
Publication of CN106571239B publication Critical patent/CN106571239B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种制备工艺简单、成本低、电化学性能优良的分级多孔炭电极材料的制备方法,依次按照如下步骤进行:用蒸馏水将海产品壳体洗净,烘干待用;将煤沥青与海产品壳体分别研磨,按质量比1:1~5混合均匀;将上述混合物放入管式炉,在惰性气氛中升温到150 oC,升温速率为5 oC/min,恒温0.5 h。继续以5 oC/min升温速率升至900 oC恒温1~6 h。最后将产物用10%的盐酸或醋酸溶液浸泡三次,用蒸馏水离心洗涤至中性,80 oC烘干得到分级多孔炭。所得分级多孔炭用作超级电容器电极材料,在100 mA/g电流密度下其比电容值为74~279 F/g。将其用做锂离子电池电极材料,在100 mA/g的电流密度下,其可逆容量可高达1251 mA h/g。

Description

生物质基氧化钙活化煤沥青一步制备超级电容器及锂离子电 池用分级多孔炭电极材料的方法
技术领域
本发明涉及一种超级电容器及锂离子电池电极材料领域,尤其涉及一种制备工艺简单、成本低、电化学性能优良的分级多孔炭电极材料的制备方法。
背景技术
随着全球煤、石油等不可再生资源的日益枯竭和环境污染日益严重,人类对可再生能源的需求与日俱增。在众多能量储存与转换器件中,超级电容器和锂离子电池因具有能量转换效率高及绿色环保等特点成为研究热点。电极材料是决定超级电容器和锂离子电池性能的关键因素之一,多孔炭因其价格低廉、比表面积大、导电性好、化学稳定性高等优点成为首选材料。化学活化法是制备多孔炭广泛采用的方法,它具有反应步骤简单、产品孔结构发达和比表面积大等特点,常采用KOH和H3PO4等作为活化剂。He等以煤沥青为碳源,KOH为活化剂,制备得到比表面积为1143 m2/g的微孔炭(Carbon, 50, 2012, 4911-4921);Cheng等采用香菇为前驱体,以H3PO4、KOH两步活化制备了含有微、介和大孔的分级孔炭电极材料(Carbon, 93, 2015, 315-324)。虽然KOH等活化剂可以有效活化制备多孔炭,但它们容易导致设备腐蚀和环境污染。为了解决这一问题,采用腐蚀性较弱的碱替代KOH的方法在近些年得到了关注,如柴卉等人以Ca(OH)2部分取代KOH制备活性炭(中国专利CN104495842A),刘洪波等人以复合碱金属氢氧化物(KOH或NaOH与Ca(OH)2的混合物)为活化剂制备超级电容器用多孔炭材料(中国专利CN101973542A)。高占虎采用酚醛树脂为碳源,纳米碳酸钙为二次成孔剂,通过煅烧、刻蚀、KOH活化等工艺制备出分级孔炭,经后续处理后应用于锂离子电极材料(中国专利CN104638266A)。上述制备炭材料的研究中,虽然在一定程度上减弱了KOH用量对设备的腐蚀,但所用活化剂仍为商品化试剂(500g KOH为15到20元左右),为了降低成本、减少污染,开发以生物质替代化学活化剂制备多孔炭的方法刻不容缓。
我国甲壳类和贝类海产品资源极其丰富,它们经过加工或食用后的壳体主要成分是碳酸钙,如虾、蟹及贝壳的碳酸钙含量分别为45~62%,65~78%及95%以上,除少量可作为补钙产品,大部分为废弃物,造成资源浪费和环境污染。liu等以天然螃蟹壳为硬模板与P123软模板剂协同制备高度有序介孔碳纳米纤维阵列(J. Mater. Chem., 20, 2010, 4223-4230);申请人课题组以H3PO4活化虾壳制备杂原子掺杂多孔炭,比表面积为726 m2/g,在100mA/g电流密度下其比电容值为206 F/g(Electrochim. Acta, 176, 2015, 982-988)。申请人发现,海产品壳体除了做模板制备介孔和大孔外,本身分解的氧化钙可作为活化剂创制微孔结构。因此本发明采用海产品壳体经高温后生成的氧化钙兼作活化剂和模板剂,选取廉价易得的煤沥青为碳源一步制备超级电容器及锂离子电池用分级多孔炭电极材料。相关研究未见报道。
发明内容
本发明是为了解决现有技术所存在的上述技术问题,提供一种制备工艺简单、成本低、电化学性能优良的分级多孔炭电极材料的制备方法。
本发明的技术解决方案是:一种生物质基氧化钙活化煤沥青一步制备超级电容器及锂离子电池用分级多孔炭电极材料的方法,其特征在于:按如下步骤进行:
a. 用蒸馏水将海产品壳体洗净,烘干待用;
b. 将煤沥青与海产品壳体分别研磨,研磨后的粒度至少为150目,并按质量比1:1~5混合均匀;
c. 将上述混合物放入管式炉,在惰性气氛中升温到150 oC,升温速率为5 oC/min,然后恒温0.5 h;继续以5 oC/min升温速率升至900 oC恒温1~6 h;将产物用浓度为10%的盐酸或醋酸溶液浸泡三次,使其中氧化钙全部反应完毕,用蒸馏水离心洗涤至中性,在80 oC条件下烘干8~12小时,得到分级多孔炭。
所述的海产品壳体为甲壳类和/或贝类海产品壳体。
所述的海产品壳体为蚬子壳或虾壳或螃蟹壳或牡蛎壳。
本发明的方法在于生物质基氧化钙替代传统的化学活化剂,同时将其作为模板剂一步制备分级多孔炭电极材料。生物质基氧化钙来自于海产品天然碳酸钙的高温分解,它可作为一种廉价的天然活化剂和模板剂:(1)氧化钙为碱性氧化物可作为活化剂创制微孔结构,同时其碱性弱于氢氧化钾,可起到减弱设备腐蚀的作用;(2)氧化钙为天然模板剂,碳源前驱体经炭化后,去除模板剂可得到兼有介孔和大孔的产品;(3)氧化钙来源于自然,廉价易得,有效实现了废弃资源的高附加值利用。所得分级孔炭材料集微、介和大孔于一身,且其孔隙结构和比表面积可通过反应时间与活化温度进行调控。本发明具有原料丰富、方法简单、制备成本低、资源友好、便于实用化等优点,所得炭材料在超级电容器中表现出较优异的电化学性能,在100 mA/g的电流密度下比电容值为74~279 F/g。将其用做锂离子电池电极材料,在100 mA/g的电流密度下,其可逆容量高达1251 mA h/g。
附图说明
图1为本发明实施例的工艺流程图;
图2为本发明实施例1制备的分级多孔炭电极材料的氮气吸附曲线和孔径分布曲线;
图3为本发明实施例1制备的分级多孔炭电极材料在三电极测试中100 mA/g下恒流充放电曲线和10 mV/s扫速下的循环伏安曲线;
图4为本发明实施例5制备的分级多孔炭电极材料在锂离子电池测试中100 mA/g下恒流充放电曲线及不同电流密度下倍率图。
具体实施方式
实施例1:
如图1、2、3所示,制备流程如下:
a. 用蒸馏水将蚬子壳洗净,烘干待用;
b. 将煤沥青与蚬子壳分别研磨,按质量比1:3混合均匀;
c. 将上述混合物放入管式炉,在惰性气氛中升温到150 oC,升温速率为5 oC/min,恒温0.5 h。继续以5 oC/min升温速率升至900 oC恒温煅烧1 h。最后将产物用浓度为业10%的盐酸溶液浸泡三次,用蒸馏水离心洗涤至中性,80 oC烘干得到分级多孔炭。
制备的分级多孔炭电极材料氮气吸附曲线如图2a所示,表明所制备的样品具有微、介和大孔结构;其孔径分布如图2b所示,可以看出微介孔的分布范围。相应的孔结构性质如表1所示,比表面积为759 m2/g,其中微孔面积为80.8 m2/g,孔径分布为0.8~9.5 nm;
表1
电化学性能测试:将上述分级多孔炭分别和乙炔黑、0.6wt%聚四氟乙烯乳液按质量比为75:20:5的比例混合,80 oC烘干,制备成电极片,在100 oC真空烘箱内干燥5 h,选择泡沫镍集流体与电极片组装成工作电极。在6 M KOH电解液中进行三电极恒流充放电测试。如图3a所示,所制备分级多孔炭在100 mA/g电流密度下的恒流充放电曲线具有明显的三角对称分布,表明电极反应的可逆性很好,电容器比容量可达219 F/g。在6 M KOH溶液中采用循环伏安法在不同扫速下进行比电容测试,结果如图3b,该分级多孔炭电极的循环伏安曲线呈现类矩形,展现了良好的电容性能。
实施例2:
制备方法基本同实施例1,不同之处在步骤a为虾壳,步骤b中煤沥青与虾壳的质量比为1:5,及步骤c中以5 oC/min升温速率升温到100 oC,恒温1 h,所制得的分级多孔炭的比表面积为246 m2/g。
电化学性能测试:将所制得的分级多孔炭按实施例1的方法制成电极,进行恒流充放电测试。测试结果为:在100 mA/g电流密度下的比电容为105 F/g。
实施例3:
制备方法基本同实施例1,不同之处在步骤a为螃蟹壳,步骤b中煤沥青与螃蟹壳的质量比为1:1,及步骤c中以5 oC/min升温速率升温到900 oC,恒温1 h,最后将产物用10%的醋酸溶液浸泡三次,所制得的分级多孔炭的比表面积为63 m2/g。
电化学性能测试:将所制得的分级多孔炭按实施例1的方法制成电极,分别进行恒流充放电测试。测试结果为:在100 mA/g电流密度下的比电容为74 F/g。
实施例 4:
制备方法基本同实施例1,不同之处在步骤a为螃蟹壳,步骤b中煤沥青与牡蛎壳的质量比为1:3,及步骤c中以5 oC/min升温速率升温到900 oC,恒温5 h,所制得的分级多孔炭的比表面积为1258 m2/g。
电化学性能测试:将所制得的分级多孔炭按实施例1的方法制成电极,分别进行恒流充放电测试。测试结果为:在100 mA/g电流密度下的比电容为279 F/g。
实施例 5:
如图4所示:制备方法基本同实施例1,不同之处在步骤a为螃蟹壳,步骤b中煤沥青与牡蛎壳的质量比为1:3,及步骤c中以5 oC/min升温速率升温到900 oC,恒温3 h,所制得的分级多孔炭的比表面积为920 m2/g。
电化学性能测试:将上述分级多孔炭分别和乙炔黑、PVDF按质量比为8:1:1的比例混合,滴加NMP至适宜粘度,通过刮涂方式将浆料涂在铜箔上,在真空烘箱内真空状态下120oC保持12h,裁剪成直径为12mm的电极片。将电极片置于正极壳(CR2016)内,滴加电解液(1.0 M LiPF6 分散在体积比为1:1的EC/DEC混合溶剂中),在其上放置隔膜,再滴加一滴电解液,放置锂片、垫片,最后将负极壳扣上,经封装机压制后得到密封的纽扣电池。将电池进行恒流充放电测试。测试结果为:在100 mA/g电流密度下的可逆容量为1251 mA h/g。
实施例 6:
制备方法基本同实施例1,不同之处在步骤a为螃蟹壳,步骤b中煤沥青与牡蛎壳的质量比为1:3,及步骤c中以5 oC/min升温速率升温到900 oC,恒温6 h,所制得的分级多孔炭的比表面积为612 m2/g。
电化学性能测试:将所制得的分级多孔炭按实施例5的方法制成电极,分别进行恒流充放电测试。测试结果为:在100 mA/g电流密度下的可逆比电容为466 mA h/g。

Claims (3)

1.一种生物质基氧化钙活化煤沥青一步制备超级电容器及锂离子电池用分级多孔炭电极材料的方法,其特征在于:按如下步骤进行:
a. 用蒸馏水将海产品壳体洗净,烘干待用;
b. 将煤沥青与海产品壳体分别研磨,研磨后的粒度至少为150目,并按质量比1:1~5混合均匀;
c. 将上述混合物放入管式炉,在惰性气氛中升温到150 oC,升温速率为5 oC/min,然后恒温0.5 h;继续以5 oC/min升温速率升至900 oC恒温1~6 h;将产物用浓度为10%的盐酸或醋酸溶液浸泡三次,使其中氧化钙全部反应完毕,用蒸馏水离心洗涤至中性,在80 oC条件下烘干8~12小时,得到分级多孔炭。
2.根据权利要求1所述的生物质基氧化钙活化煤沥青一步制备超级电容器及锂离子电池用分级多孔炭电极材料的方法,其特征在于:所述的海产品壳体为甲壳类和/或贝类海产品壳体。
3.根据权利要求2所述的生物质基氧化钙活化煤沥青一步制备超级电容器及锂离子电池用分级多孔炭电极材料的方法,其特征在于:所述的海产品壳体为蚬子壳或虾壳或螃蟹壳或牡蛎壳。
CN201610952956.0A 2016-11-03 2016-11-03 生物质基氧化钙活化煤沥青一步制备超级电容器及锂离子电池用分级多孔炭电极材料的方法 Expired - Fee Related CN106571239B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610952956.0A CN106571239B (zh) 2016-11-03 2016-11-03 生物质基氧化钙活化煤沥青一步制备超级电容器及锂离子电池用分级多孔炭电极材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610952956.0A CN106571239B (zh) 2016-11-03 2016-11-03 生物质基氧化钙活化煤沥青一步制备超级电容器及锂离子电池用分级多孔炭电极材料的方法

Publications (2)

Publication Number Publication Date
CN106571239A CN106571239A (zh) 2017-04-19
CN106571239B true CN106571239B (zh) 2018-07-03

Family

ID=58535145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610952956.0A Expired - Fee Related CN106571239B (zh) 2016-11-03 2016-11-03 生物质基氧化钙活化煤沥青一步制备超级电容器及锂离子电池用分级多孔炭电极材料的方法

Country Status (1)

Country Link
CN (1) CN106571239B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108002360A (zh) * 2017-11-30 2018-05-08 浙江海洋大学 一种基于虾蟹壳生物质炭超级电容器电极材料的制备
CN107946606A (zh) * 2017-12-27 2018-04-20 东北师范大学 铁氮共掺杂介孔碳纤维及其制备方法及在燃料电池中应用
CN110437638B (zh) * 2019-09-20 2021-03-30 长沙理工大学 一种沥青改性剂、改性沥青及沥青改性方法
CN111128565A (zh) * 2019-11-19 2020-05-08 国网浙江省电力有限公司杭州供电公司 一种可调电容器用碳膜复合材料及其制备方法
CN111420645B (zh) * 2020-03-31 2023-06-13 河海大学 一种水处理吸附材料及其制备方法
CN116666585B (zh) * 2023-06-08 2023-12-05 江苏久泰电池科技有限公司 一种钠离子电池负极材料、负极片及钠离子电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103395781A (zh) * 2013-07-25 2013-11-20 隋吴彬 蟹壳生物模板法制备三维有序大孔-介孔炭材料
CN103420353A (zh) * 2012-05-15 2013-12-04 北京化工大学 一种多孔炭材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103420353A (zh) * 2012-05-15 2013-12-04 北京化工大学 一种多孔炭材料及其制备方法和应用
CN103395781A (zh) * 2013-07-25 2013-11-20 隋吴彬 蟹壳生物模板法制备三维有序大孔-介孔炭材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells;Hai-Jing Liu等;《Journal of Materials Chemistry》;20100408;第20卷;全文 *
Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors;Gao Feng等;《Journal of Materials Chemistry A》;20160407;第4卷;全文 *

Also Published As

Publication number Publication date
CN106571239A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
CN106571239B (zh) 生物质基氧化钙活化煤沥青一步制备超级电容器及锂离子电池用分级多孔炭电极材料的方法
CN105948036B (zh) 一种葛根基互联层次孔径结构多孔活性炭材料的制备方法及其应用
CN103236560B (zh) 一种锂硫电池的硫/碳复合正极材料及其制备方法和应用
Guo et al. NiCo 2 O 4 nanosheets grown on interconnected honeycomb-like porous biomass carbon for high performance asymmetric supercapacitors
CN104803383B (zh) 一种利用樟树叶制备超级电容器活性炭的方法
CN104600251A (zh) 一种锂硫电池正极及其制备方法
CN103183329B (zh) 一种多级孔道碳电极材料的制备方法
CN104701546B (zh) 一种多孔石墨烯纳米片、制备方法及其作为电极材料的应用
CN108529587A (zh) 一种磷掺杂生物质分级孔炭材料的制备方法及其应用
CN103824702A (zh) 氮/磷共掺杂的虾壳基多孔炭电极材料的制备方法
Guo et al. Preparation and characterization of peanut shell-based microporous carbons as electrode materials for supercapacitors
CN110330016A (zh) 一种无烟煤基多孔碳石墨微晶和孔隙的一步协同发展方法
CN103979530A (zh) 一种以鸡蛋蛋清为原料制备电化学电容器用多孔炭的方法
CN104495788A (zh) 一种多孔碳的制备方法
CN104715936B (zh) 一种用于超级电容器的分级多孔碳电极材料及制备方法
CN108682813A (zh) 一种硅碳复合材料的制备方法及应用
CN109081340A (zh) 一种松树基生物质活性炭及其制备方法和在电化学储能中的应用
CN108963207A (zh) 一种多孔金属掺杂的碳复合物材料及其制备方法和应用
CN108074751A (zh) 一种柔性三维多孔碳材料及其制备方法和应用
CN109019598A (zh) 一种混合生物质制备高比电容的三维多孔碳材料的方法和制成的三维多孔碳材料及其应用
CN110155981A (zh) 一种超级电容器用氮硫共掺杂的多孔炭纳米片的制备方法
CN109301191A (zh) 一种新型锂硫电池正极材料及其制备方法
CN105226244A (zh) 三维多孔硅-纳米银复合材料及其制备和作为锂离子电池负极材料的应用
CN107123550A (zh) 一种鸡蛋壳衍生三维蜂窝状碳材料的制备方法
CN108134055A (zh) 钛酸钠纳米带/碳化钛纳米片复合物的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180703

Termination date: 20191103

CF01 Termination of patent right due to non-payment of annual fee