CN106103383A - 高长径比氮化硼,方法和含有所述高长径比氮化硼的组合物 - Google Patents

高长径比氮化硼,方法和含有所述高长径比氮化硼的组合物 Download PDF

Info

Publication number
CN106103383A
CN106103383A CN201580012157.9A CN201580012157A CN106103383A CN 106103383 A CN106103383 A CN 106103383A CN 201580012157 A CN201580012157 A CN 201580012157A CN 106103383 A CN106103383 A CN 106103383A
Authority
CN
China
Prior art keywords
boron nitride
compositions
nitride particle
silane
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580012157.9A
Other languages
English (en)
Inventor
瞿浩
阿南德·穆鲁加亚
向北
钱德拉谢卡尔·拉曼
林冈颐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Momentive Performance Materials Inc
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN106103383A publication Critical patent/CN106103383A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/14Compounds containing boron and nitrogen, phosphorus, sulfur, selenium or tellurium
    • C01B35/146Compounds containing boron and nitrogen, e.g. borazoles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

一种包括高长径比氮化硼颗粒的多功能组合物,提供改进的性质,如热导率,电绝缘性,对湿气、蒸气和气体的阻隔,润滑,摩擦改性,光学性质,悬浮稳定性,和一种用于形成这样的组合物的系统和方法。所述高长径比氮化硼颗粒具有大于300的平均长径比。所述多功能组合物可包含聚合物材料、流体、金属、陶瓷、玻璃、其他非BN填料和高长径比氮化硼。还提供了用于制备这样的氮化硼颗粒和组合物的方法。

Description

高长径比氮化硼,方法和含有所述高长径比氮化硼的组合物
相关申请的交叉引用
本申请要求于2014年1月6日提交的题为“高长径比氮化硼,方法和含有所述高长径比氮化硼的组合物”的美国临时申请号61/923,974的优先权,其公开内容通过引用整体并入本文。
技术领域
本发明主题提供了高长径比氮化硼颗粒、含有所述高长径比氮化硼颗粒的组合物以及用于生产这样的颗粒和组合物的方法。本发明主题还提供了用于形成包含高长径氮化硼片的多功能组合物的方法,所述多功能组合物具有例如但不限于导热性、电绝缘性、阻气/湿气、光学材料、润滑/摩擦改性、晶体成核等特性。
背景技术
各种电子和光电子设备的热管理由于缩小尺寸和增加的功能性的趋势(例如在个人手持式电子设备中)越来越具有挑战性。功率密度,以及因此需要被消散的热量密度已显著增加,这给在这些设备中提供良好的热管理带来重大挑战。小型化和更高性能处理器(诸如,例如,平板电脑(tablets)、智能电话等)的增加导致了热负载的大幅增加和可用来消散增加的热量的区域的减少。热管理问题在其他应用如LED、汽车中的电子元件、可再充电电池系统、用于混合动力车的电源逆变器等中也非常普遍。不充分或无效的热管理可对设备的性能和长期可靠性有强烈的和有害的影响。
这些问题带来对具有比目前可用的材料导电性能更好的热管理材料的需求,如热界面材料、导热聚合物、LED封装材料等。目前可用的填料受限于其性能,且通常不足以满足这些增加的需求。当前氮化硼填料在复合系统、流体和固体中实现高性能中存在几个局限性。氮化硼具有感兴趣的众多特性,包括增强的热导率、电绝缘性、对各种波长包括光谱的透明性、对气体/湿气渗透的阻隔以及润滑和磨损、不粘特性、中子吸收和散射、深UV发射和提高机械性能的潜力。然而,相对于可能的替代填料,氮化硼的成本是非常高的。可使用更便宜的填料,如氧化铝、二氧化硅、氧化镁、氧化锌、金属粉末、玻璃、石墨等得到用于这些应用的成本更低的复合材料。然而,这些材料需要非常高的负载,导致其他不期望的性质,如硬且脆的组合物。在硬度(或柔软度)是性能标准时,如在模具粘合、热界面材料等中,解决热胀冷缩是重要的情况时这样的组合物可能不被使用。此外,这些填料与由六方氮化硼填充的体系提供的优点,如非磨蚀性、更高的性能和低的密度不能匹配。
碳纳米管和石墨烯填料提高机械性能和表面光洁度。然而,这些材料是导电的和黑色的,因此在电绝缘性和色彩灵活性是重要的情况下是不理想的。经球磨形成的具有适度的高长径比氮化硼粉末具有差的产率,因此也是不合需要的。
此外,目前市售的六方氮化硼粉末要求在复合材料和流体中的高固体负载以获得在性能如热导率上的显著改进。这些昂贵填料的这样的高负载增加了复合材料的成本,也不利地影响加工和机械性能。这些属性限制了h-BN在利基应用中的采用。
发明内容
本发明主题提供了高长径比氮化硼颗粒和包含这样的颗粒(在基体如聚合物、金属、陶瓷、流体等中)的组合物。由本发明主题所提供的高长径比氮化硼允许在组合物中的填料较低的负载且还提供了相比于现有填料提高的性能性质。这可以提供在相似的负载下比现有填料具有更低的成本性能比的材料。氮化硼的表面处理和功能化也使这些材料更容易处理,并且进一步增强这些材料/复合材料的性能。
本发明主题提供了包含高长径比氮化硼颗粒的组合物。所述组合物提供了优异的导热性,也可表现出其他期望的性质,诸如,例如,保持电隔离,在复合材料中提高对潮湿和气体的阻隔,摩擦改性,机械和光学性能,或其两种或更多种的组合。高长径比六方氮化硼颗粒为片的形式。
在一个方面,本发明主题提供了用于形成包含高长径比h-BN片的导热组合物的方法。在一个方面,本发明主题提供了一种生产导热组合物的方法。所述组合物包含聚合物基体和导热填料。
在一个实施方案中,组合物中的导热填料是氮化硼。在一个实施方案中,氮化硼可选自具有随机取向的层的半晶状或乱层状氮化硼(称为t-BN);具有结晶层状六方结构的氮化硼(称为h-BN);片状氮化硼;氮化物团聚颗粒;或其组合。在一个实施方案中,氮化硼选自片状、乱层状形式,六边形形式,或者其两种或更多种的混合物。
在另一个实施方案中,填料的组合被用来提供显示优异导热性的组合物。在又一个实施方案中,组合物包含功能化添加剂,所述功能化添加剂提供增加的热导率并使导热填料的浓度最小化。处理所述组合物的方法,例如均匀地分散填料、母料,还提供了生产具有高热导率的组合物的方法。
在一个实施方案中,所述组合物在面内方向、通过面方向或两者提供了良好的导热性,即使在导热填料如氮化硼相对低的负载下。这使得导热组合物的生产以总显著降低的经营成本进行。
在另一方面,本发明主题提供了一种包含聚合物材料和分散在聚合物材料中的高长径比填料的导热组合物,其中所述组合物具有约1W/mK或更高的面内热导率。
在一个方面,用于生产导热组合物的方法包括分散在聚合物基体中的氮化硼填料材料。
在一个实施方案中,氮化硼颗粒具有大于300的平均长径比。在一个实施方案中,氮化硼颗粒具有约305至约2500,约310至约2000,约325至约1500,约350至约1000,甚至约400至约800的平均长径比。
在一个实施方案中,至少25%的氮化硼颗粒具有大于300的平均长径比。
在一个实施方案中,氮化硼颗粒具有约5m2/g至约500m2/g,约10m2/g至约250m2/g,约15至约100m2/g,或约20m2/g至约100m2/g的表面积。
在一个实施方案中,氮化硼颗粒具有约0.01至约2.5重量%的氧含量。在一个实施方案中,氮化硼颗粒至少包含具有小于7的石墨化指数的h-BN颗粒。
在一个实施方案中,氮化硼颗粒包含结晶的或部分结晶的氮化硼颗粒。
在一个实施方案中,所述方法使用机械剥离方法生产h-BN颗粒。在一个实施方案中,所述h-BN颗粒在机械剥离之前可预先处理,以增强对于剥离的敏感性。
在一个实施方案中,氮化硼材料包含高长径比氮化硼颗粒和氮化硼团聚物。
在一个实施方案中,高长径比BN可通过使用各种的基体系统、热固性材料、热塑性塑料或者这些的组合,无机材料中的金属、陶瓷、玻璃及其他,水性体系中的润滑脂、糊剂和悬浮体、流体、有机物或一种或多种的组合按配方制造。在一个实施方案中,h-BN被表面处理以提供在所述表面上的特定基团,其可然后与上述材料体系的任何一种或多种一起直接使用,或所述材料体系可额外地被功能化以与BN表面或表面处理的BN相兼容。
在一个实施方案中,合适的填料,如陶瓷粉末(例如,氧化铝、二氧化硅、氮化铝、氧化锌、氧化镁等)、各种无机材料(例如,玻璃等)、纤维(例如,玻璃纤维、碳纤维、纤维素纤维、聚合物纤维、氧化铝纤维等)、金属粉末(例如,铜、铝、硼、硅等)、类金属、有机材料、石墨、石墨烯、金刚石/纳米金刚石可与h-BN粉末共混。在一个实施方案中,填料选自硼化物,如二硼化钛。
在一个实施方案中,氮化硼负载小于1wt%。
附图说明
图1示出机械剥离之前氮化硼等级PT110的图像;
图2示出机械剥离后表2的实施例1中氮化硼的图像;
图3示出机械剥离后表2的实施例2中氮化硼的图像;
图4示出机械剥离后表2的实施例3中氮化硼的图像;和
图5示出机械剥离后表2的实施例4中氮化硼的图像;
具体实施方式
本发明主题提供了高长径比氮化硼颗粒和包含这样的颗粒的组合物。所述高长径比颗粒可提供具有大量优异性质的组合物,使得它们适合用于各种应用,包括热管理、电绝缘、气体和潮湿的阻隔、光学性质、润滑等。高长径比氮化硼可在相对于现有可用的替代氮化硼材料在相对低的氮化硼负载下提供具有良好导热性和其他期望的性质的组合物。
在一个方面,本发明主题提供了高长径比氮化硼颗粒。氮化硼颗粒包含使用氮化硼片或高度剥离的氮化硼粉末生产的结晶或部分结晶的氮化硼。
长径比被定义为颗粒的最大尺寸与最小尺寸的比值。在本文中,被提及的颗粒是与纤维或具有纤维的形态截然相反的片状或圆盘状。因此,如本文中所使用的长宽比指的是圆盘的直径除以这些颗粒的厚度。如本文所用,高长径比氮化硼指的是具有大于300的长径比的氮化硼,例如,BN片。短语高长径比氮化硼颗粒,BN纳米片(BN nanoflakes)和BN纳米片(BN nanosheets)在本文中可以交换使用。
这里所指的长径比是片状颗粒的计算出的平均长径比。它是基于体积平均粒度和表面积测量计算的:
A R = D t = S ρ D 2 - 2
其中,AR是长径比,D是片的直径(平均粒度,在这种情况下为D50),t是片的厚度,S是颗粒的表面积,ρ是片的密度。
对于相似重量负载,相比于更低的长径比,较高长径比颗粒经由多个传导路径通过最小化热界面提供更好的热传导路径;这样的界面对于实现良好的导热性是关键障碍。这种行为在相比于更小直径的晶体的更大晶体(直径或x-y尺寸)中进一步增强,且热传导(通过h-BN情况下的声子传输)在更大距离下而不中断地发生。
在一个实施方案中,氮化硼颗粒具有大于300的平均长径比。在一个实施方案中,氮化硼颗粒具有约305至约2500,约310至约2000,约325至约1500,约350至约1000,甚至约400至800的平均长径比。在一个实施方案中,长径比为约320至约2350。在一个实施方案中,长径比为约305至约800。在又一个实施方案中,长径比为约305至500。这里如同说明书和权利要求书中其他地方,数值可以组合形成新的和未公开的范围。
高长径比氮化硼颗粒包含六方氮化硼(h-BN)。这样的h-BN颗粒允许仅h-BN填充的体系或还包括高长径比h-BN的包含多种填料的体系。
氮化硼颗粒可具有约0.1微米至约500微米,约1微米至50微米,约5微米至约20微米,甚至约10微米至约15微米的直径(在颗粒的x-y尺寸上评估的)。这里如同说明书和权利要求书中其他地方一样,数值可以组合形成新的和未公开的范围。
氮化硼颗粒可具有约25m2/g至约500m2/g,约10至约2500m2/g,约m2/g至约200m2/g,或约20m2/g至约1000m2/g的表面积。在一个实施方案中,氮化硼颗粒具有约5至约20m2/g的表面积。这里如同说明书和权利要求书中其他地方一样,数值可以组合形成新的和未公开的范围。
在一个实施方案中,氮化硼颗粒具有范围从约0.05g/cc至约1.5g/cc,约0.1g/cc至约1g/cc,甚至约0.1g/cc至约为0.5g/cc的粉末振实密度。这里如同说明书和权利要求书中其他地方一样,数值可以组合形成新的和未公开的范围。
高长径比BN可由多种氮化硼原材料得到或生产。高长径比BN可选自多种原材料,包括但不限于,具有随机取向的层的半晶状或乱层状氮化硼(称为t-BN);具有结晶层状六方结构的氮化硼(称为h-BN);或其两种或更多种的组合。在一个实施方案中,氮化硼选自乱层状形式、团聚形式、结晶的片形式或者其两种或更多种的混合物。
在另一实施方案中,氮化硼颗粒具有约0.01至约5wt%,0.05至3wt%,0.1至2wt%,0.2至0.6重量%的氧含量。在一个实施方案中,h-BN颗粒具有小于10,小于7,更进一步地小于2的石墨化指数。
在一个实施方案中,氮化硼组分可包含通过已知方法制得的结晶或部分结晶的氮化硼颗粒,如高度剥离的氮化硼粉末,或通过其他合适的方法制得的片状形态的氮化硼颗粒。
颗粒的各种特征可以根据h-BN的应用来定制。例如,在面内热导率优先的情况下,所述形态可被选择具有高长径比,同时保持大的x-y尺寸。在还期望光学透明度的情况下,可选择非常高的长径比和更小的x-y尺寸以最小化散射效应。可以对阻隔性、润滑性以及其他应用作出类似的适当选择。在对于预期应用选择氮化硼时可考虑如表面积、振实密度、通过基体的氮化硼颗粒的湿润性、加工性等的附加性能。
在一个实施方案中,基于氮化硼颗粒的应用,根据相对重要性,一个性质可与另一性质交换。例如,较大的x-y尺寸和较低的表面积可以被认为是非常高的长径比的替代,以在聚合物中提供加工性同时保持足够的热导率。
在包含h-BN的复合体系(固体或液体)的一个实施方案中,可考虑的几个特征包括颗粒的分散和颗粒与基体的结合。这些特征可通过额外的表面处理和功能化增强,表面处理和功能化提供与基体良好的结合,提供均匀和稳定的分散,并最小化热界面阻力。
高长径比氮化硼可由包括不同剥离工艺的多种不同方法制得。在一个实施方案中,根据本发明主题用于制备高长径比氮化硼的方法包括h-BN颗粒的机械剥离。例如,高长径比h-BN片可通过向悬浮在载体中的h-BN片施加机械剪切而制得。所述载体可为液体形式,固体形式,或固体和液体的组合。合适的液体载体的实例包括但不限于,水性混悬液、有机溶剂、有机液体、油、熔融聚合物、有机硅、熔融盐、其它低熔点体系等。合适的固体载体的实例包括但不限于,包含有机化合物的粉末,低于其玻璃化转变温度(Tg)、在Tg和/或Tg之上的聚合物粉末或片等,无机粉末如陶瓷和玻璃粉末、金属等,以及液体和固体体系的组合。
可选地,所述h-BN片在机械剥离之前可被处理,以增强对于剥离的敏感性。例如,在一个实施方案中,在熔融聚合物中通过捏合块混合器将机械剪切施加到h-BN片上。在另一个实施方案中,用表面处理剂处理BN,以使与基体更好的结合,然后经受机械剥离。在另一个实施方案中,h-BN与玉米糖浆在离心混合器中混合,然后进一步与捏合块混合以在高剪切混合器中施加剪切。在另一个实施方案中,h-BN与热塑性小球混合,并在挤出机中在高于Tg的温度下经受高剪切。在另一个实施方案中,h-BN粉末在热塑性塑料聚合物中在低于Tg的温度下被挤出伴随机筒的主动冷却。在另一个实施方案中,h-BN与去离子水混合,并通过流经微通道的高压流通过微流体化经受剪切。在另一个实施方案中,h-BN片悬浮在如异丙醇、丁醇、乙二醇、甘油的液体中,并在微流化机中经受高剪切。在另一个实施方案中,氮化硼悬浮于植物油中变为糊状浆体,并在三辊磨机中经受高剪切,经多次通过以剥离氮化硼。在另一个实施方案中,h-BN片与环氧单体混合,并在三辊磨机中经受高剪切。
在一个实施方案中,h-BN在浓硫酸、硝酸和/或高锰酸钾的热混合物中在60℃下搅拌6小时。然后用去离子水(DI)洗涤所得混合物,并用超声变幅杆超声处理2小时以产生h-BN纳米片。在另一个实施方案中,热搅拌后得到的混合物在流动氮气下于1200℃下经受热冲击而不洗涤。在另一个实施方案中,材料被洗涤和过滤,且该材料在DI水中重构以形成浓的糊状物,并通过3辊磨机运行以机械剥离h-BN晶体。在又一个实施方案中,混合物在环氧基体中而无固化剂下重构并在3辊磨机中剥离。
在化学剥离的另一种方法中,对h-BN进行超声处理15分钟,然后在密闭容器中在90℃下在热的氯化铵溶液中搅拌7天。在一个实施方案中,该所得混合物在流动氮气中在1200℃下经受热冲击。在另一个实施方案中,混合物在3辊磨机中经受机械剪切。在另一个实施方案中,混合物在熔融聚碳酸基体中经受捏合块混合器施加的高剪切。
在化学剥离的另一个实施方案中,h-BN与等份的硝酸铝混合并在去离子水中混合并在95℃下在密闭容器中搅拌2天。然后,该混合物经受热冲击形成剥离的h-BN;氧化铝作为副产物形成。在一个实施方案中,对该所得的热冲击的h-BN和氧化铝混合物在DI水中使用超声变幅杆进行超声处理15分钟。在另一个实施方案中,将混合物与聚碳酸酯基体混合并在捏合块混合器中经受高剪切,同时聚合物被熔化。
在化学剥离的又一实施方案中,h-BN与氢氧化铵40%溶液置于压力容器中并在90psi和100℃下加热2小时。在一个实施方案中,将所得混合物在1200℃下在炉中热冲击。在另一个实施方案中,热冲击后的混合物在硅油中重构并在3辊磨机中经受高剪切,以进一步剥离h-BN。在另一个实施方案中,将压力容器出来的混合物洗涤,干燥,并在浓的玉米糖浆中重构并放置在捏合块混合器中,在此它经受高剪切混合。在又一个实施方案中,化学嵌入混合物被置于带有PET基体的挤出机中并使用混合元件使其经受高剪切挤出过程,所述混合元件被选择用于赋予高剪切同时最小化将破坏h-BN的晶体直径的切削作用。
在另一个实施方案中,h-BN与硫酸铝和DI水混合,并在大气压下加热至85℃保持5天,使用冷凝器以最小化水经由蒸发的损失。然后将混合物洗涤以除去过量的盐。在另一个实施方案中,上述过程在超声波处理浴中在密闭容器中在85℃下进行24小时。然后将所得混合物与碳酸氢钠在60℃下在大气压下反应12小时以插入并剥离氮化硼。在一个实施方案中,然后将所得材料在1200℃下在氮气中经受热冲击。
在另外的实施方案中,由上述实施方案所得的剥离的h-BN样品在丙二醇中重构以形成糊状物,并在3辊磨机中进一步机械剥离。
也可将热剥离方法与化学剥离方法一起使用以制备h-BN组合物。在一个实施方案中,h-BN经受插入并然后经受高温冲击,在此插入物在h-BN层内分解引起h-BN层剥离。插入物可选自化学插入途径。热冲击温度的范围可为800℃及以上,如通过炉、微波等离子体、等离子体喷涂或其他类型的热喷涂工艺实现的。
也可选择电化学剥离方法以形成h-BN组合物。在一个实施方案中,h-BN在电化学场存在下经受插入剂或电解质以增强插入。这个过程使插入物渗透氮化硼层,因为难以插入和剥离h-BN。
在一个实施方案中,插入的氮化硼然后通过机械方法或热冲击过程经受额外的剥离。在一个实施方案中,插入物从下列组中选择,在处理条件下为液体状态(例如在高温下熔融),或上述的组合。这样的插入物的实例包括但不限于,氯化物、氟化物、硫酸盐、碳酸盐、磷酸盐、硝酸盐、硫属化物和其两种或更多种的混合物。具体的实例包括硝酸锂、碳酸钠、碳酸钾、硫酸铝、硝酸铝、氯化锌等。有机化合物的实例包括八癸基胺、聚(4-苯乙烯磺酸钠)、碳酸亚乙酯等。上面的实例是此类电解质的非限制性的实施方案。
用于剥离的起始h-BN颗粒可基于特定的尺寸和形状选择,以确保最终剥离的h-BN期望的尺寸和形状。此外,最终的h-BN形态可通过选择起始h-BN和用于剥离的方法来控制。在一个实施方案中,粒度范围可从纳米至微米尺寸颗粒。在一个实施方案中,氮化硼粉末具有约0.1μm至约50μm,约5μm至约20μm;约10μm至约15μm的平均粒度。在一个实施方案中,氮化硼粉末具有至少50μm的平均粒度。这里如同本说明书和权利要求书中其他地方一样,数值可以组合形成新的和未公开的范围。
本发明主题还提供了包含所述高长径比氮化硼颗粒的组合物。高长径比氮化硼颗粒可掺入到各种基体体系中,包括但不限于,有机硅;热塑性塑料,如聚乙烯、聚丙烯、尼龙、聚碳酸酯、PET、PBT等;热固性塑料,如环氧树脂、酚醛树脂、橡胶,或作为可混溶或不可混溶的混合物的上述基体的组合;液体,如油、水、有机物或这些的组合;润滑脂,糊状物和悬浮液;其他有机物;金属;类金属;无机材料如陶瓷、玻璃等;或其两种或更多种的组合。
所述高长径比可根据需要的量存在,以为组合物提供用于特定目的或预期应用的性质。在实施方案中,高长径比氮化硼材料存在的量为约0.1重量%至约60重量%,约1重量%至约40重量%,甚至约5重量%至约20重量%。这里如同说明书和权利要求书中其他地方一样,数值可以组合形成新的和未公开的范围。
在一个实施方案中,组合物中至少25%的氮化硼颗粒具有300或更大的长径比。在一个实施方案中,至少30%,至少40%,至少50%,至少75%,甚至至少90%的氮化硼颗粒具有300或更大的长径比。这里如同说明书和权利要求书中其他地方一样,数值可以组合形成新的和未公开的范围。
可对h-BN进行表面处理,以提供在所述表面上的特定基团,其可然后与上述材料体系的任何一种或多种一起直接使用,或额外地被功能化以提供下面任一种或组合的性质:与基体更好地结合,在加工过程中和之后悬浮液的稳定性,修改流变学,最小化界面损失以提高热导率,提高光学性质,提高机械性质。处理氮化硼颗粒合适的材料的实例包括但不限于,有机物如环氧单体、硅烷、有机硅,各类其他功能化添加剂,包括有机金属化合物,如钛酸盐和锆酸盐(Kenrich的Ken-react),铝酸盐,超分散剂(Lubrizol的Solsperse),马来酸化的低聚物(maleated oligomers)如马来酸聚丁二烯树脂或苯乙烯马来酸酐共聚物(Cray Valley),脂肪酸或蜡及其衍生物,油酸盐(oleate),和离子或非离子表面活性剂,其为物理吸附(physisorbed)或化学吸附(chemisorbed)的、反应性地如离子或共价地或以其他方式接合至BN表面。这些功能化添加剂可以填料的0.5wt%至约15wt%;或约3至12wt%;甚至填料的约5至10wt%使用。
在一个实施方案中,硅烷添加剂可选自烷基丙烯酰氧基硅烷(alkacryloxysilane),乙烯基硅烷,卤代硅烷(例如,氯硅烷),巯基硅烷,封端的巯基硅烷,硫代羧酸酯硅烷,或其两种或更多种的组合。在一个实施方案中,导热组合物可包含约0.5至约10重量%的硅烷;约1.5至约4重量%;甚至约2.7至约3.7重量%的填料。
在一个实施方案中,硅烷可由Y-R1-Si(R2)n(R3)3-n表示,其中Y表示R4R5N-,R7R8N-R6-NR4-或R11R10N-R9-R7N-R6-NR4-;或Y和R1(Y-R1)结合地表示乙烯基,烷基,苯基,3,4-环氧环己基,卤原子,巯基,异氰酸酯基,硫代羧酸酯基,任选地取代的缩水甘油基,环氧丙氧基,任选地取代的乙烯基,甲基丙烯酰氧基(CH2=C(CH3)COO-),丙烯酰氧基(CH2=CHCOO-),脲基(NH2CONH-),任选地取代的甲基丙烯酰基,任选地取代的环氧基,任选地取代的卤化基,任选地取代的卤化铵基,或任选地取代的丙烯酰基;R4、R5、R7、R8、R10和R11独立地表示氢原子或C1-C6烷基;R6和R9独立地表示C2-C6亚烷基;R1是单键,亚烷基,或亚苯基;或者R1和Y(Y-R1)结合地表示乙烯基;每个R2独立地表示烷基或苯基;每个R3独立地表示羟基或烷氧基;并且n为0至2的整数。
合适的乙烯基硅烷包括具有式:R12SiR13 nY(3-n)的那些,其中R12是烯键式不饱和烃基,烃氧基,或(甲基)丙烯酰氧基烃基基团,R13是脂族饱和烃基,Y独立地是可水解的有机基团,且n为0、1或2。在一个实施方案中,Y是具有1至6个碳原子的烷基的烷氧基,如甲氧基、乙氧基、丙氧基和丁氧基。在一个实施方案中,R12可选自乙烯基、烯丙基、异戊二烯基、丁烯基、环己基或(甲基)丙烯酰氧基丙基;Y可选自甲氧基、乙氧基、甲酰氧基、乙酰氧基、丙酰氧基或烷基氨基或芳基氨基;和R13,如果存在,可选自甲基、乙基、丙基、癸基或苯基。
在一个实施方案中,硅烷是式CH2=CHSi(OA)3(2)的化合物,其中,A是具有1至8个碳原子,且在一个实施方案中具有1至4个碳原子的烃基。
在一个实施方案中,硅烷选自辛酰基硫代-1-丙基三乙氧基硅烷,乙烯基三(2-甲氧基-乙氧基)硅烷,乙烯基三甲氧基硅烷,乙烯基三乙氧基硅烷,γ-甲基丙酰氧基丙基三甲氧基硅烷,乙烯基三乙酰氧基硅烷,或其两种或更多种的组合。合适的硅烷的实例包括但不限于,购自Momentive Performance Materials且以商品名NXT出售的那些。NXT是硫代羧酸酯硅烷且是封端的巯基硅烷的更大范围的一个实例。合适的硅烷还包括在美国专利号6,608,125、7,078,551、7,074,876和7,301,042中描述的那些。
其他合适的填料可与高长径比h-BN颗粒混合以提供对如热导率、机械增强、增强的光学性质等的性质额外的增强。合适的填料的实例包括但不限于,陶瓷粉末(例如,氧化铝、二氧化硅、氮化铝、氧化锌、氧化镁等),各种无机材料(例如,玻璃、石墨、石墨烯、金刚石等),纤维(例如,玻璃纤维、碳纤维、纤维素纤维、聚合物纤维、氧化铝纤维、碳纳米管/纳米纤维、BN纳米管/纳米纤维等),金属粉末(例如,铜、铝、硼、硅等),有机材料等。在一个实施方案中,填料选自氮化硼,二氧化硅,玻璃纤维,氧化锌,氧化镁,二氧化钛,氧化钇,氧化铪,碳酸钙,滑石,云母,硅灰石,氧化铝,氮化铝,石墨,金属粉末,如铝、铜、青铜、黄铜等,碳的纤维或晶须,石墨,碳化硅,氮化硅,氧化铝,氮化铝,氧化锌,纳米级纤维,如碳纳米管,石墨烯,氮化硼纳米管,氮化硼纳米片,氧化锌纳米管等,复合氧化物(一类其中许多在电荷、磁性和晶格自由度之间显示强关系的材料,如钙钛矿材料);碳/石墨/金刚石/立方氮化硼,硼化物如TiB2、ZrB2或其两种或更多种的组合。
在一个实施方案中,至少一种非BN填料以约0.1重量%至约50重量%;约2重量%至约25重量%;甚至约5重量%至约15重量%的量存在。这里如同说明书和权利要求书中其他地方一样,数值可以组合形成新的和未公开的范围。
在一个实施方案中,h-BN颗粒增强的性质可包括提高的热导率,热传递,电绝缘性,透明性,对各种波长包括光谱的透明性,对气体/湿气渗透的阻隔,润滑和磨损,不粘特性,中子吸收和散射,深UV发射,机械性能,化学惰性和稳定性,生物相容性,耐高温氧化性,高温稳定性和用于聚合物的晶体成核剂。
高长径比h-BN和对应的使用高长径h-BN的制剂可用在许多应用中,如用于LED的导热密封材料,它们也提供有或没有光学透明性气体和湿气渗透阻隔,热界面材料(TIM)TIM-I和TIM-2,如模具粘合、底部填充剂、灌封化合物、润滑脂等,电子,计算机,移动设备,医疗器械,汽车,工业,照明,近海(off-shore),激光,航天,热塑性塑料,导热流体(热流体),结构材料,透明材料,阻隔材料,润滑剂,不粘材料(用于如熔融金属、玻璃加工应用),防腐蚀等。
实施例
在一个实施例中,在合适载体中使用3辊磨机将h-BN剥离:将具有50微米的平均晶体尺寸的hBN与各种载体混合。可选择任何合适的载体或选自为氮化硼表面提供有益的静摩擦的基体、溶剂、表面活性剂、添加剂的族的载体的结合。可选择有机材料、无机材料或其两种或更多种的组合。在这个实施例中,使用蜂蜜、水中的玉米淀粉、水中的聚-2-乙基-2-恶唑啉和水溶液中的聚醋酸乙烯酯。hBN首先与溶剂以不同负载在离心混合器中混合以得到均匀的分散体,然后通过3辊磨机处理。3辊磨机以15微米的辊间距离以400RPM的最大速度运行。至少运行一个3辊磨机,但多达并包括多次。所得剥离的BN然后灰化以除去载体(有机物含量)。用蜂蜜剥离的hBN样品具有330的长径比。
下面的结果来自通过向聚合物基体熔体(热塑性塑料)中的起始氮化硼颗粒施加剪切的机械剥离。在这些试验中,各种聚碳酸酯与氮化硼在不同的实验中混合,在高于其熔点/软化点的温度下在具有辊刀片配置的三件式熔融混合器中处理。试验包括变量如氮化硼固体负载、混合速度、混合时间、混合温度、混合物的总体积、施加的扭矩、基体的分子量和提高基体和氮化硼之间结合的添加剂。试验结果示于下表1中:
表1
在表1中,平均长径比是基于体积平均粒度和表面积测量计算的。长径比通过如下关系(对于片状颗粒)给出:
A R = D t = S ρ D 2 - 2
其中,AR是长径比,D是片的直径(平均粒度,在这种情况下为D50),t是片的厚度,S是颗粒的表面积,ρ是片的密度。
额外的试验结果来自通过向起始氮化硼颗粒施加剪切的不同机械剥离,包括使用不同的仪器和载体类型。试验结果示于下面表2中:
表2
额外的试验结果来自通过向起始BN颗粒施加剪切(双刃片间歇式混合器/具有高剪切刀片的混合器)的机械剥离,包括使用两种不同的聚碳酸酯基体(聚碳酸酯-4和聚碳酸酯-5)和一种类型的氮化硼起始材料。试验结果示于下面表3中:
表3
在这些试验中,氮化硼级别是PT110(具有大约45微米的平均粒径D50),“处理体积”是样品在其中被处理的处理器或混合器的空腔体积,SA是表面面积,D50是体积平均粒度,AR是长径比,MFR是在300℃测得的熔体流动速率。
氮化硼级别PT110的图像示于图1中(剥离前);经机械剥离的氮化硼(表2实施例1)的图像示于图2中;表2中实施例3、4和5机械剥离后的图像示于图3、4和5中。
粒度可使用Microtrac(Model#X100)粒度分布分析仪测量,其中待分析的颗粒(例如,BN)以被调节至满足所需的传输的量被引入。可以添加几滴2%Rhodapex CO-436以改善粉末的分散性,粒度可在3秒超声处理后使用激光衍射测量。从测量得到的粒度分布可以体积基准绘制,D50表示分布的第50百分位数。
比表面积是通过ASTM C1069方法测量,对氮化硼使用特定脱气程序。由该方法计算表面积是基于Brunauer-Emmett-Teller(BET)方程。
通过面的热导率使用激光闪光法(ASTM E1461)利用基于组合物的理论比热容(CP)值测量,其中,跨越样品的厚度测量&评估对闪光能量的响应。
面内热导率使用改进的激光闪光法采用特定的样品架和面内掩模(Netzsch仪器)测量。对于给定的组合物,测定面内热导率的这两种方法获得可比的结果。
面内热导率还使用热盘法(热盘)采用夹在2个样品之间充当加热器并测量热损失/衰减的传感器测量。
配制的产品可为粉末,其是可由最终用户修饰的最终制剂,母料,或可被修饰以形成母料或最终制剂的中间物的形式。
虽然以上描述包含许多细节,但是这些细节不应被解释为对本发明主题的范围的限制,而仅仅是作为其优选实施方案的范例。本领域技术人员可以设想在由所附权利要求限定的本发明主题的范围和精神内的许多其他可能的变化。

Claims (38)

1.一种组合物,其包含具有大于300的平均长径比的氮化硼颗粒。
2.权利要求1所述的组合物,其中所述氮化硼颗粒具有约305至约2500的平均长径比。
3.权利要求1所述的组合物,其中至少25%的所述氮化硼颗粒具有大于300的平均长径比。
4.权利要求1所述的组合物,其中所述氮化硼颗粒具有0.1微米至5毫米范围的x-y尺寸。
5.权利要求1所述的组合物,其中所述氮化硼颗粒具有约0.1μm至500μm的平均粒度。
6.权利要求1所述的组合物,其中所述氮化硼颗粒包含具有小于7的石墨化指数的h-BN颗粒。
7.权利要求1所述的组合物,其中所述氮化硼颗粒具有约0.05至约5重量%的氧含量。
8.权利要求1所述的组合物,其中所述氮化硼颗粒具有约5m2/g至约500m2/g的表面积。
9.权利要求1所述的组合物,其中所述氮化硼颗粒选自半晶状或乱层状氮化硼、六方氮化硼或其两种或更多种的组合。
10.权利要求1所述的组合物,其中所述氮化硼颗粒选自乱层状氮化硼、片状六方氮化硼、团聚的氮化硼颗粒或其两种或更多种的组合。
11.权利要求1所述的组合物,其中所述组合物进一步包含选自热固性材料、热塑性材料或其组合的聚合物。
12.权利要求11所述的组合物,其中所述组合物包含约0.1wt%至75wt%的总氮化硼负载。
13.权利要求1所述的组合物,其中所述组合物进一步包含填料;所述填料选自氮化硼;二氧化硅;玻璃纤维;氧化锌;氧化镁;二氧化钛;氧化钇;氧化铪;碳酸钙;滑石;云母;硅灰石;氧化铝;氮化铝;金属粉末,如铝、铜、青铜、黄铜;碳的纤维或晶须,石墨,碳化硅,氮化硅,氧化铝,氮化铝,氧化锌;纳米级纤维,选自碳纳米管/纳米纤维,纤维素纤维,石墨烯,氮化硼纳米管/纳米纤维,氧化锌纳米管/纳米纤维;属于碱和碱土金属元素的氧化物;过渡金属氧化物;来自后过渡金属的氧化物;来自类金属的氧化物;来自镧系和锕系元素的氧化物;复合氧化物;属于过渡元素的碳化物;属于类金属元素的碳化物;属于镧系元素和锕系元素的碳化物;属于过渡元素的氮化物;属于后过渡元素的氮化物;属于类金属元素氮化物;属于镧系元素和锕系元素的氮化物,金属,类金属,碳;或这些材料任何两种或更多种的组合。
14.权利要求1所述的组合物,其中所述组合物在25wt%BN或更低的负载下具有至少0.3W/mK的通过平面的热导率。
15.权利要求1所述的组合物,其中所述组合物在25wt%BN或更低的负载下具有至少0.3W/mK的面内热导率。
16.权利要求1所述的组合物,其中所述组合物具有约0.3W/mK至30W/mK的通过平面的热导率。
17.权利要求1所述的组合物,其中所述组合物具有约0.3W/mK至30W/mK的面内热导率。
18.权利要求1所述的组合物,其中所述组合物进一步包含选自油、水、有机物或其两种或更多种的组合的流体,具有或不具有其他BN和非BN填料。
19.权利要求1所述的组合物,其中所述组合物进一步包含金属或金属/其合金的组合,具有或不具有其他BN和非BN填料。
20.权利要求1所述的组合物,其中所述组合物进一步包含选自陶瓷、硼化物、玻璃或其两种或更多种的组合的无机基体,具有或不具有其他BN和非BN填料。
21.权利要求1所述的组合物,其中所述组合物进一步包含选自纤维素、BN纤维、玻璃纤维或其两种或更多种的组合的纤维预制体,具有或不具有其他BN和非BN填料。
22.权利要求1所述的组合物,包含选自硅氧烷,硅烷,聚酯,乙烯基聚合物,丙烯酸酯,尿烷,环氧基树脂,聚酰胺,聚酰亚胺,聚酰胺酰亚胺,聚碳酸酯,聚邻苯二甲酰胺,聚砜,聚醚醚酮,热塑性聚氨酯,含氟聚合物,含氟弹性体,含氯氟聚合物,含氯聚合物,酚醛树脂,芳族聚酰胺聚合物,三聚氰胺甲醛树脂,聚对苯二甲酸乙二醇酯,或其两种或更多种的组合的基体材料。
23.一种用于制备高长径比氮化硼颗粒的方法,所述方法包括在机械剪切下处理悬浮在载体中的氮化硼原材料,其中所述载体为液体形式、固体形式或固体和液体相的组合,以产生具有大于300的平均长径比的氮化硼颗粒。
24.权利要求23所述的方法,其中所述氮化硼颗粒具有约300至约2500的平均长径比。
25.权利要求23所述的方法,其中至少20%的所述氮化硼颗粒具有大于300的平均长径比。
26.权利要求23所述的方法,其中所述氮化硼颗粒选自片状六方氮化硼、乱层状氮化硼、团聚的氮化硼颗粒或其两种或更多种的组合。
27.权利要求23所述的方法,其中机械剪切通过选自挤出、捏合、微通道中的流体流动或其两种或更多种的组合的工艺施加到载体中的BN颗粒上,其中剪切力比冲击或其他类型的力更显著。
28.权利要求23所述的方法,其中所述氮化硼原材料在机械剥离之前被预处理。
29.权利要求23所述的方法,处理氮化硼原材料包括使所述氮化硼原材料经受化学剥离工艺。
30.一种具有300或更大的平均长径比的氮化硼颗粒。
31.权利要求30所述的氮化硼颗粒,其中所述氮化硼颗粒具有约305至约2500的平均长径比。
32.权利要求30所述的氮化硼颗粒,其中使用表面处理剂处理所述氮化硼颗粒,所述表面处理剂选自表面功能剂、偶联剂、分散剂或其两种或更多种的组合。
33.权利要求32所述的氮化硼颗粒,其中所述表面处理剂选自环氧单体、硅烷、有机硅、锆酸盐、油酸盐、磷酸盐或其两种或更多种的组合。
34.权利要求33所述的氮化硼颗粒,其中所述表面处理剂包含有机硅、硅烷,所述硅烷选自烷基丙烯酰氧基硅烷,乙烯基硅烷,卤代硅烷,巯基硅烷,硫代羧酸酯硅烷,封端的巯基硅烷,3-辛酰基硫代-1-丙基三乙氧基硅烷;乙烯基三(2-甲氧基-乙氧基)硅烷;γ-甲基丙烯酰氧基丙基三甲氧基硅烷,巯基硅烷,烷基丙烯酰氧基硅烷,乙烯基硅烷,卤代硅烷,硫代羧酸酯硅烷(thicaraboxylate silane)或其两种或更多种的组合。
35.包含权利要求1-22任一项所述组合物的制品。
36.权利要求35所述的制品,其中所述制品的至少一部分由所述组合物形成。
37.权利要求34所述的制品,其中所述组合物配置在所述制品的至少部分表面上。
38.权利要求35-37任一项所述的制品,其中所述制品选自下面的任一种或组合:用于LED的密封材料,融合到磷光体层的共混物,融合到远程磷光体共混物,融合到LED中密封材料层的共混物,热界面材料(TIMS),固态器件包装材料,光子转换层,磷光材料,透明材料,漫射/散射材料,反射和增白剂(反射所有颜色),具有相似的CTE作为有机硅密封材料能够最小化分层失败的的LED包装基板,用于灯具的聚合物外壳,散热片,热流体,结构材料,气体/蒸气/湿气阻隔材料,热电材料,电子,计算机,移动设备,医疗器械,汽车,工业,照明,近海,激光器和航空航天。
CN201580012157.9A 2014-01-06 2015-01-05 高长径比氮化硼,方法和含有所述高长径比氮化硼的组合物 Pending CN106103383A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461923974P 2014-01-06 2014-01-06
US61/923,974 2014-01-06
PCT/US2015/010122 WO2015103525A1 (en) 2014-01-06 2015-01-05 High aspect boron nitride, methods, and composition containing the same

Publications (1)

Publication Number Publication Date
CN106103383A true CN106103383A (zh) 2016-11-09

Family

ID=53494074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580012157.9A Pending CN106103383A (zh) 2014-01-06 2015-01-05 高长径比氮化硼,方法和含有所述高长径比氮化硼的组合物

Country Status (6)

Country Link
US (1) US20160325994A1 (zh)
EP (1) EP3092207A4 (zh)
JP (1) JP2017510540A (zh)
KR (1) KR20160106676A (zh)
CN (1) CN106103383A (zh)
WO (1) WO2015103525A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109370493A (zh) * 2018-09-18 2019-02-22 中国科学院深圳先进技术研究院 一种热界面材料及其制备方法
CN109593358A (zh) * 2018-11-08 2019-04-09 南方科技大学 一种掺杂改性氮化硼的复合材料及其制备方法
CN109735095A (zh) * 2018-11-28 2019-05-10 宁波墨西科技有限公司 石墨烯复合导热塑料及其制备方法
CN109880230A (zh) * 2019-02-19 2019-06-14 广东烯王科技有限公司 一种白石墨烯复合pp材料、薄膜及其制备方法
CN110114306A (zh) * 2016-12-28 2019-08-09 昭和电工株式会社 六方氮化硼粉末、其生产方法、树脂组合物和树脂片材
CN110168670A (zh) * 2017-11-07 2019-08-23 罗杰斯公司 具有改善的热导率的介电层
CN110283639A (zh) * 2019-07-18 2019-09-27 南京理工大学 一种功能润滑油添加剂及其制备方法和应用
CN110872677A (zh) * 2019-12-05 2020-03-10 北京矿冶科技集团有限公司 一种低烧损可磨耗涂层材料及其应用
CN110982587A (zh) * 2019-11-25 2020-04-10 南京华剑兵科工程技术有限公司 一种新型耐磨润滑油及其制备方法
CN111201004A (zh) * 2017-10-13 2020-05-26 宝洁公司 包含具有改善的热导率的非织造材料的吸收制品
CN111718694A (zh) * 2020-06-19 2020-09-29 宝依德精密模切(无锡)有限公司 一种导热片及其制备方法
CN112094681A (zh) * 2020-08-20 2020-12-18 安徽绿环泵业有限公司 一种耐腐蚀泵用润滑密封填料的制备方法
CN112209354A (zh) * 2019-06-26 2021-01-12 苏州太湖电工新材料股份有限公司 一种制备疏水型六方氮化硼纳米片的方法
CN112424119A (zh) * 2018-07-30 2021-02-26 株式会社艾迪科 复合材料
CN112646636A (zh) * 2020-12-22 2021-04-13 刘超 一种润滑油添加剂及其制备方法
CN112955403A (zh) * 2018-08-16 2021-06-11 Cpi创新服务有限公司 生产含氮化硼的流体的方法
CN115448262A (zh) * 2022-07-27 2022-12-09 山东大学 一种宽温域的长寿命氮化硼磷光材料及其制备方法与应用
CN115477974A (zh) * 2022-08-12 2022-12-16 广州诺拜因化工有限公司 一种含bn添加剂的耐极高温复合锂基脂
CN116102886A (zh) * 2022-09-07 2023-05-12 西北橡胶塑料研究设计院有限公司 高导热绝缘硅橡胶复合材料及其制备方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140023864A1 (en) 2012-07-19 2014-01-23 Anirudha V. Sumant Superlubricating Graphene Films
US10876024B2 (en) * 2013-01-18 2020-12-29 United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Highly thermally conductive hexagonal boron nitride/alumina composite made from commercial hexagonal boron nitride
US9561526B2 (en) 2014-06-19 2017-02-07 Uchicago Argonne, Llc Low friction wear resistant graphene films
JP6588731B2 (ja) * 2015-05-07 2019-10-09 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP6601049B2 (ja) * 2015-08-12 2019-11-06 三菱ケミカル株式会社 蛍光体
MX2018002871A (es) * 2015-09-09 2018-06-15 Pepsico Inc Proceso para proporcionar polimeros que comprenden nitruro de boro hexagonal.
JP6212660B1 (ja) * 2015-11-19 2017-10-11 積水化学工業株式会社 熱硬化性材料及び硬化物
US11058039B2 (en) * 2015-12-29 2021-07-06 3M Innovative Properties Company Composites for high frequency electromagnetic interference (EMI) applications
US20180041086A1 (en) * 2016-08-03 2018-02-08 Schlumberger Technology Corporation Polymeric materials
CN106189602B (zh) * 2016-08-22 2018-10-16 广东纳路纳米科技有限公司 一种改性白石墨烯复合抗氧化涂料及其制备
US10246623B2 (en) 2016-09-21 2019-04-02 NAiEEL Technology Resin composition, article prepared by using the same, and method of preparing the same
KR101966499B1 (ko) * 2016-10-07 2019-04-08 한국세라믹기술원 알루미나 복합체 세라믹스 조성의 열전도도 개선방법
US20180107140A1 (en) * 2016-10-13 2018-04-19 Xerox Corporation Fuser members
CN106513695A (zh) * 2016-10-21 2017-03-22 福州大学 一种铜纳米颗粒/六方氮化硼复合材料及其制备方法
KR101711892B1 (ko) * 2016-10-21 2017-03-03 주식회사 파인테크닉스 열전도율이 우수한 플라스틱 사출수지 조성물 및 이를 적용한 led패키지
WO2018123571A1 (ja) * 2016-12-26 2018-07-05 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
CN106633916B (zh) * 2016-12-26 2019-09-24 中国科学院宁波材料技术与工程研究所 一种石墨烯基导热界面材料及其制备方法
US20180199461A1 (en) * 2017-01-09 2018-07-12 Hamilton Sundstrand Corporation Electronics thermal management
US10745641B2 (en) 2017-02-09 2020-08-18 Uchicago Argonne, Llc Low friction wear resistant graphene films
US10925367B2 (en) * 2017-08-10 2021-02-23 Joe Loose Hair styling device and method of forming the same
KR101898234B1 (ko) * 2018-02-07 2018-09-12 내일테크놀로지 주식회사 수지 조성물, 이로부터 제조된 물품 및 이의 제조 방법
CA3090803A1 (en) 2018-02-19 2019-08-22 Bnnt, Llc Bnnt thermal management materials for high-power systems
CN108384114A (zh) * 2018-03-08 2018-08-10 广东纳路纳米科技有限公司 复合聚丙烯材料及其制备方法
US11232241B2 (en) * 2018-07-16 2022-01-25 Uchicago Argonne, Llc Systems and methods for designing new materials for superlubricity
JP7402410B2 (ja) * 2018-09-20 2023-12-21 株式会社豊田中央研究所 熱伝導性複合材料、熱伝導性複合材料フィルム及びそれらの製造方法
CN109705818B (zh) * 2019-01-07 2020-10-16 南京工业大学 一种高耐候导热胶质材料及其制备方法
CN110194946B (zh) * 2019-05-16 2021-10-12 上海大学 有机硅封装胶及其制备方法
EP3932859A4 (en) * 2019-07-11 2023-01-04 Showa Denko K.K. PROCESS FOR PRODUCTION OF SILICA-COATED BORONITRIDE PARTICLES AND SILICA-COATED BORONITRIDE PARTICLES
CN110373251B (zh) * 2019-07-18 2021-09-28 南京理工大学 石墨烯/硼酸镧/高岭土复合材料润滑油添加剂
CN110586022A (zh) * 2019-09-18 2019-12-20 沈阳航空航天大学 一种用酸碱改性的多孔氮化硼从纺织工业废水中去除脂肪酸的方法
US11155762B2 (en) 2019-09-30 2021-10-26 Uchicago Argonne, Llc Superlubrious high temperature coatings
US11440049B2 (en) 2019-09-30 2022-09-13 Uchicago Argonne, Llc Low friction coatings
KR102430711B1 (ko) * 2020-06-09 2022-08-12 (주)투디엠 절삭유용 필러 및 이를 포함한 절삭유
CN111732869B (zh) * 2020-07-03 2021-10-15 北京航空航天大学 一种抗原子氧剥蚀用组合物及其制备方法、应用
CN111808483B (zh) * 2020-07-31 2021-12-21 南北兄弟药业投资有限公司 一种包含锌改性纳米碳纤维和表面改性剂的涂料
JPWO2022085517A1 (zh) * 2020-10-22 2022-04-28
CN112592576B (zh) * 2020-12-15 2022-08-26 江西省萍乡市轩品塑胶制品有限公司 一种薄膜用生物降解功能母粒及其制备方法
CN112662449B (zh) * 2020-12-23 2022-11-18 陕西科技大学 一种高分散无定形碳包覆六方氮化硼纳米片及其制备方法
KR102432089B1 (ko) * 2020-12-29 2022-08-11 울산대학교 산학협력단 6h-육방정계 망간 산화물 및 이를 포함하는 세라믹 복합체의 제조방법
CN113527998A (zh) * 2021-08-12 2021-10-22 青岛金芳华新型建材科技有限公司 一种阻燃聚氨酯防水涂料及其制备方法
CN114350241B (zh) * 2022-01-14 2022-07-15 江阴市金巨不锈钢制造有限公司 深海用耐高压抗腐蚀法兰及其加工工艺
CN114438426B (zh) * 2022-01-24 2022-07-15 郑州大学 一种pcb微钻/微铣刀用硬质合金及其制备方法
CN115029022B (zh) * 2022-06-08 2023-07-21 郑州新世纪材料基因组工程研究院有限公司 一种高温电加热浆料、电红外致热膜及制备方法
CN115612371B (zh) * 2022-09-22 2023-05-16 江苏萃隆精密铜管股份有限公司 一种海水淡化用铜基合金管及其制备方法
CN116504462B (zh) * 2023-04-12 2024-09-24 广州市明兴电缆有限公司 一种高强度铝合金电缆及其生产工艺
CN117894595B (zh) * 2024-03-13 2024-05-31 深圳新宙邦科技股份有限公司 一种电容器用密封板及其制备方法、电容器
CN118290926B (zh) * 2024-06-03 2024-10-01 上海皆利新材料科技有限公司 一种无卤阻燃聚氨酯电缆护套材料及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003696A (zh) * 2006-01-06 2007-07-25 通用电气公司 增强的氮化硼组合物和用其制造的组合物
CN101535176A (zh) * 2006-10-07 2009-09-16 迈图高新材料公司 混合的氮化硼组合物及其制备方法
US20110045223A1 (en) * 2009-08-24 2011-02-24 United States Of America As Represented By The Administrator Of The National Aeronautics And Spac Method for Exfoliation of Hexagonal Boron Nitride
CN101993602A (zh) * 2009-08-17 2011-03-30 莱尔德电子材料(深圳)有限公司 高导热性可成型热塑性复合材料及组合物
US20130156565A1 (en) * 2011-12-16 2013-06-20 Ticona Llc Boron-Containing Nucleating Agent for Polyphenylene Sulfide
CN103242510A (zh) * 2012-02-08 2013-08-14 日东电工株式会社 导热片

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660241B2 (en) * 2000-05-01 2003-12-09 Saint-Gobain Ceramics & Plastics, Inc. Highly delaminated hexagonal boron nitride powders, process for making, and uses thereof
US20070026221A1 (en) * 2005-06-14 2007-02-01 Siemens Power Generation, Inc. Morphological forms of fillers for electrical insulation
US7527859B2 (en) * 2006-10-08 2009-05-05 Momentive Performance Materials Inc. Enhanced boron nitride composition and compositions made therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003696A (zh) * 2006-01-06 2007-07-25 通用电气公司 增强的氮化硼组合物和用其制造的组合物
CN101535176A (zh) * 2006-10-07 2009-09-16 迈图高新材料公司 混合的氮化硼组合物及其制备方法
CN101993602A (zh) * 2009-08-17 2011-03-30 莱尔德电子材料(深圳)有限公司 高导热性可成型热塑性复合材料及组合物
US20110045223A1 (en) * 2009-08-24 2011-02-24 United States Of America As Represented By The Administrator Of The National Aeronautics And Spac Method for Exfoliation of Hexagonal Boron Nitride
US20130156565A1 (en) * 2011-12-16 2013-06-20 Ticona Llc Boron-Containing Nucleating Agent for Polyphenylene Sulfide
CN103242510A (zh) * 2012-02-08 2013-08-14 日东电工株式会社 导热片

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11305993B2 (en) 2016-12-28 2022-04-19 Showa Denko K.K. Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
CN110114306A (zh) * 2016-12-28 2019-08-09 昭和电工株式会社 六方氮化硼粉末、其生产方法、树脂组合物和树脂片材
CN111201004A (zh) * 2017-10-13 2020-05-26 宝洁公司 包含具有改善的热导率的非织造材料的吸收制品
CN111201004B (zh) * 2017-10-13 2022-10-28 宝洁公司 包含具有改善的热导率的非织造材料的吸收制品
TWI827562B (zh) * 2017-11-07 2024-01-01 美商羅傑斯公司 具有改良之熱傳導性之介電層
CN110168670A (zh) * 2017-11-07 2019-08-23 罗杰斯公司 具有改善的热导率的介电层
CN112424119A (zh) * 2018-07-30 2021-02-26 株式会社艾迪科 复合材料
CN112955403A (zh) * 2018-08-16 2021-06-11 Cpi创新服务有限公司 生产含氮化硼的流体的方法
CN109370493A (zh) * 2018-09-18 2019-02-22 中国科学院深圳先进技术研究院 一种热界面材料及其制备方法
CN109370493B (zh) * 2018-09-18 2021-04-02 中国科学院深圳先进技术研究院 一种热界面材料及其制备方法
CN109593358A (zh) * 2018-11-08 2019-04-09 南方科技大学 一种掺杂改性氮化硼的复合材料及其制备方法
CN109735095A (zh) * 2018-11-28 2019-05-10 宁波墨西科技有限公司 石墨烯复合导热塑料及其制备方法
CN109880230A (zh) * 2019-02-19 2019-06-14 广东烯王科技有限公司 一种白石墨烯复合pp材料、薄膜及其制备方法
CN109880230B (zh) * 2019-02-19 2021-09-28 广东烯王科技有限公司 一种白石墨烯复合pp材料、薄膜及其制备方法
CN112209354A (zh) * 2019-06-26 2021-01-12 苏州太湖电工新材料股份有限公司 一种制备疏水型六方氮化硼纳米片的方法
CN112209354B (zh) * 2019-06-26 2021-11-19 苏州太湖电工新材料股份有限公司 一种制备疏水型六方氮化硼纳米片的方法
CN110283639B (zh) * 2019-07-18 2021-09-28 南京理工大学 一种功能润滑油添加剂及其制备方法和应用
CN110283639A (zh) * 2019-07-18 2019-09-27 南京理工大学 一种功能润滑油添加剂及其制备方法和应用
CN110982587A (zh) * 2019-11-25 2020-04-10 南京华剑兵科工程技术有限公司 一种新型耐磨润滑油及其制备方法
CN110872677B (zh) * 2019-12-05 2020-12-18 北京矿冶科技集团有限公司 一种低烧损可磨耗涂层材料及其应用
CN110872677A (zh) * 2019-12-05 2020-03-10 北京矿冶科技集团有限公司 一种低烧损可磨耗涂层材料及其应用
CN111718694A (zh) * 2020-06-19 2020-09-29 宝依德精密模切(无锡)有限公司 一种导热片及其制备方法
CN112094681B (zh) * 2020-08-20 2022-10-11 安徽绿环泵业有限公司 一种耐腐蚀泵用润滑密封填料的制备方法
CN112094681A (zh) * 2020-08-20 2020-12-18 安徽绿环泵业有限公司 一种耐腐蚀泵用润滑密封填料的制备方法
CN112646636A (zh) * 2020-12-22 2021-04-13 刘超 一种润滑油添加剂及其制备方法
CN115448262A (zh) * 2022-07-27 2022-12-09 山东大学 一种宽温域的长寿命氮化硼磷光材料及其制备方法与应用
CN115477974A (zh) * 2022-08-12 2022-12-16 广州诺拜因化工有限公司 一种含bn添加剂的耐极高温复合锂基脂
CN116102886A (zh) * 2022-09-07 2023-05-12 西北橡胶塑料研究设计院有限公司 高导热绝缘硅橡胶复合材料及其制备方法

Also Published As

Publication number Publication date
WO2015103525A1 (en) 2015-07-09
EP3092207A4 (en) 2017-06-14
JP2017510540A (ja) 2017-04-13
EP3092207A1 (en) 2016-11-16
US20160325994A1 (en) 2016-11-10
KR20160106676A (ko) 2016-09-12

Similar Documents

Publication Publication Date Title
CN106103383A (zh) 高长径比氮化硼,方法和含有所述高长径比氮化硼的组合物
Niu et al. Recent progress on thermally conductive and electrical insulating rubber composites: Design, processing and applications
Wu et al. Cotton candy-templated fabrication of three-dimensional ceramic pathway within polymer composite for enhanced thermal conductivity
Wu et al. Design and preparation of a unique segregated double network with excellent thermal conductive property
Wang et al. A roadmap review of thermally conductive polymer composites: critical factors, progress, and prospects
Kim et al. Thermal and mechanical properties of epoxy composites with a binary particle filler system consisting of aggregated and whisker type boron nitride particles
Cheewawuttipong et al. Thermal and mechanical properties of polypropylene/boron nitride composites
JP6678999B2 (ja) 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
Su et al. Anisotropic thermally conductive flexible polymer composites filled with hexagonal born nitride (h-BN) platelets and ammine carbon nanotubes (CNT-NH2): Effects of the filler distribution and orientation
Cui et al. Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect
US8933157B2 (en) Mixed boron nitride composition and method for making thereof
JP5867426B2 (ja) 窒化ホウ素粉末の製造方法
WO2014055258A1 (en) Compositions comprising exfoliated boron nitride and method for forming such compositions
Li et al. Construction of bi-continuous structure in fPC/ABS-hBN (GB) composites with simultaneous enhanced thermal conductivity and mechanical properties
CN107257825A (zh) 导热塑料组合物、用于制造导热塑料的挤出装置和方法
JP6746443B2 (ja) 六方晶窒化ホウ素粉末
KR101854026B1 (ko) 질화보론 나노시트 분말의 제조방법 및 이를 이용한 질화보론 나노시트/폴리머 나노복합필름의 제조방법
JPWO2020090796A1 (ja) 窒化ホウ素ナノ材料、及び樹脂組成物
WO2011074552A1 (ja) 高放熱性熱可塑性樹脂組成物及びその成形体
Gopakumar et al. Compounding of nanocomposites by thermokinetic mixing
KR20220159974A (ko) 알루미나 분말, 수지 조성물 및 방열 부품
Danial et al. Recent advances on the enhanced thermal conductivity of graphene nanoplatelets composites: a short review
Kumar et al. Temperature dependent thermal conductivity of free-standing reduced graphene oxide/poly (vinylidene fluoride-co-hexafluoropropylene) composite thin film
JP2017014445A (ja) 窒化アルミニウム複合フィラーおよびこれを含む樹脂組成物
Yang et al. Fluorine-terminated functionalized liquid metal/silicon carbide binary nanoparticles for polyvinyl alcohol composite films with high in-plane thermal conductivity and ultra-low dielectric constant

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161109

WD01 Invention patent application deemed withdrawn after publication