WO2011074552A1 - 高放熱性熱可塑性樹脂組成物及びその成形体 - Google Patents
高放熱性熱可塑性樹脂組成物及びその成形体 Download PDFInfo
- Publication number
- WO2011074552A1 WO2011074552A1 PCT/JP2010/072412 JP2010072412W WO2011074552A1 WO 2011074552 A1 WO2011074552 A1 WO 2011074552A1 JP 2010072412 W JP2010072412 W JP 2010072412W WO 2011074552 A1 WO2011074552 A1 WO 2011074552A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boron nitride
- mass
- thermoplastic resin
- resin composition
- parts
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
- C08K2003/382—Boron-containing compounds and nitrogen
- C08K2003/385—Binary compounds of nitrogen with boron
Definitions
- the present invention relates to a high heat dissipation thermoplastic resin composition and a molded body thereof.
- High heat dissipation is also required for members in order to dissipate heat generated from exothermic electronic components.
- a method for improving the heat dissipation of the member a method of blending a thermoplastic resin with a high thermal conductive filler has been proposed.
- a thermoplastic resin composition that is lightweight and capable of efficiently conducting heat in the surface direction to dissipate heat has not been proposed.
- An object of the present invention is to provide a novel thermoplastic resin composition having a low specific gravity and an excellent thermal conductivity in the surface direction, and a molded product thereof.
- the polytetrafluoroethylene resin (D) is preferably contained in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of the total amount of 6-nylon resin (A) and boron nitride (B). In this case, dripping of the resin is suppressed. Moreover, according to this invention, the molded object excellent in heat dissipation which consists of said thermoplastic resin composition is provided.
- thermoplastic resin composition of the present invention has a low specific gravity and excellent thermal conductivity in the surface direction, and is excellent in extrusion kneadability.
- Use of the molded body made of the thermoplastic resin composition of the present invention makes it possible to efficiently dissipate heat from the surface of the molded body that is lightweight and in contact with the heat generating part. is there.
- it can be used suitably for a housing application of a member that is in contact with a heat generating part such as an LED lighting housing, an automobile part, a power adapter, a personal computer part, a mobile phone part, and an optical display device.
- FIG. 1 is a view showing a box-shaped molded product.
- FIG. 2 is a diagram showing a heat dissipation evaluation method using the box-shaped molded product of FIG.
- 6-Nylon resin (A) is a resin composed of a monomer having an amide bond as shown in Chemical Formula 1. Note that n represents the degree of polymerization.
- the weight average molecular weight of the 6-nylon resin (A) is preferably 5000 to 250,000, more preferably 6000 to 24000, and particularly preferably 7000 to 230,000 from the viewpoints of strength and extrusion kneadability with boron nitride.
- the number average molecular weight of the 6-nylon resin (A) is preferably 5000 to 50000, more preferably 5200 to 48000, and particularly preferably 5500 to 45000 from the viewpoints of strength and extrusion kneadability with boron nitride.
- a weight average molecular weight and a number average molecular weight mean what was measured using the gel permeation chromatography (Example: GPC by Nippon Waters).
- Boron nitride (B) is a compound composed of nitrogen atoms and boron atoms, hexagonal boron nitride (h-BN) in which hexagonal network layers are laminated in a two-layer cycle, and hexagonal network layers are three.
- Rhombohedral boron nitride (r-BN) laminated with a layer period turbulent structure boron nitride (t-BN) with hexagonal network layers randomly laminated, amorphous amorphous boron (t-BN) a-BN) and cubic boron nitride (c-BN) which is a high-pressure phase, and hexagonal boron nitride (h-BN) is preferably used.
- Boron nitride (B) has an average particle size of 1 to 30 ⁇ m, preferably 5 to 25 ⁇ m, more preferably 10 to 20 ⁇ m from the viewpoint of thermal conductivity in the surface direction and weight reduction. If it is less than 1 ⁇ m, the thermal conductivity in the surface direction becomes small, so that it is necessary to fill more boron nitride (B), which is inferior in terms of weight reduction. If it exceeds 30 ⁇ m, dispersibility in 6-nylon resin (A) is deteriorated and boron nitride (B) is likely to aggregate, so that melt kneading or molding may not be possible.
- the average particle diameter is a volume average particle diameter and means a particle diameter at an integrated value of 50% in a particle size distribution measured by a laser diffraction scattering method.
- GI graphitization Index
- the GI can be obtained from the following equation using the integrated intensity ratio, that is, the area ratio of the (100), (101), and (102) lines of the X-ray diffraction diagram (J. Thomas, et. Al, J. Am Chem. Soc. 84, 4619 (1962)). Since the smaller the value, the higher the crystallinity, and in the case of the same filling amount, the thermal conductivity in the surface direction increases.
- GI [area ⁇ (100) + (101) ⁇ ] / [area (102)]
- a preferable graphitization index (GI) for obtaining a good thermal conductivity in the plane direction is 5 or less, more preferably 4 or less, and particularly preferably 2 or less.
- Boron nitride (B) is a mixture containing boric acid and melamine having a B / N atomic ratio of 1/1 to 1/6, and 5 to 20 with respect to boron nitride formed during crystallization of a calcium (Ca) compound.
- a liquid phase of calcium borate (CaO) x .B 2 O 3 of mass% (where X ⁇ 1) is formed, the temperature T (° C.), the relative humidity ⁇ (%), and the holding time t (Hr) is maintained under conditions satisfying the following relational expression to form melamine borate, and further, calcined and crystallized at a temperature of 1800 to 2200 ° C. in a non-oxidizing gas atmosphere, and pulverized. be able to.
- Boric acid has a general formula (B 2 O 3 ) such as orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), tetraboric acid (H 2 B 4 O 7 ), boric anhydride (B 2 O 3 ), etc.
- B 2 O 3 a general formula
- X 0 to 3
- orthoboric acid is easy to obtain and has good mixing with melamine. Is preferred.
- Melamine (C 3 N 6 H 6 ) is a kind of organic compound, and as shown in Chemical Formula 2, is an organic nitrogen compound having a triazine ring at the center of the structure and three amino groups around it.
- Boric acid and melamine can be mixed using a general mixer such as a ball mill, a ribbon blender, a Henschel mixer.
- the blending ratio of boric acid and melamine is such that the B / N atomic ratio of boron atom of boric acid and nitrogen atom of melamine is 1/1 to 1/6, but preferably from the viewpoint of GI, 1/2 The ratio is ⁇ 1 ⁇ 4. If the ratio exceeds 1/1, the unreacted boric acid remains significantly after firing, and if it is less than 1/6, sublimation of unreacted melamine becomes significant during firing.
- Such an atmosphere can be easily formed by using a constant temperature and humidity machine, a steam heating furnace, or the like. Specific examples of temperature, relative humidity, and time are, for example, 80 ° C., 80%, 10 hours, and the like.
- the gas other than water vapor forming the atmosphere is not particularly limited and includes atmospheric gas, nitrogen gas, inert gas, and the like.
- the Ca compound may be solid calcium borate, but is preferably a compound that can react with boric acid to generate calcium borate, particularly calcium carbonate (CaCO 3 ) that is inexpensive and easily available.
- CaCO 3 calcium carbonate
- boric acid it is necessary to make boric acid function not only as a raw material for boron nitride but also as a raw material for calcium borate liquid phase, but boric acid as a raw material for calcium borate liquid phase is used as a raw material for boron nitride.
- Calcium carbonate is much smaller than boric acid.
- the mixing ratio of boric acid and melamine (C 3 N 6 H 6 ) is such that when boric acid is orthoboric acid (H 3 BO 3 ), the molar ratio of H 3 BO 3 / C 3 N 6 H 6 The ratio may be 6/1 to 1/1, and the mass ratio may be 2.94 / 1 to 0.49 / 1.
- the specific blending ratio of calcium carbonate such that the calcium borate (CaO) X ⁇ B 2 O 3 liquid phase [where X ⁇ 1] is 5 to 20% by mass with respect to boron nitride during crystallization is as follows:
- the amount of melamine volatilized and the number of moles of boric acid that reacts with 1 mole of melamine vary depending on the difference in the firing method, so it is necessary to change appropriately depending on the firing method, but melamine does not volatilize at all, and
- the specific mixing ratio of boric acid, melamine, and calcium carbonate is 22.3-99.7 / mole ratio. 10.1 to 48.2 / 0.1 to 1.0, and the mass ratio is 13.8 to 61.6 / 12.7 to 60.7 / 0.1 to 1.0.
- the Ca compound is uniformly mixed in melamine borate by adding it before holding.
- boric acid, melamine and Ca compound or when mixing Ca compound after forming melamine borate, melamine borate by adding water to boric acid, melamine and Ca compound
- the formation and the Ca compound mixing are performed at the same time, the mixed state of the Ca compound becomes non-uniform, and the boron nitride after crystallization becomes non-uniform including many coarse grains or fine crystals not developed.
- Calcium borate (CaO) X ⁇ B 2 O 3 [where X ⁇ 1] is in a liquid phase at the crystallization temperature.
- Amorphous boron nitride is dissolved therein, and boron nitride is deposited when the amount of dissolution reaches supersaturation.
- the amount of catalyst that is, the amount of liquid phase
- the distance between adjacent boron nitride particles becomes large, so that coarse particles are likely to be generated.
- the amount of the liquid phase is small, the amount of amorphous boron nitride dissolved is also small, so that crystals with undeveloped crystals are likely to be generated.
- the catalyst composition that is, the molar ratio of CaO to B 2 O 3 is related to the shape of the particles.
- a CaO rich composition with X greater than 1 aggregation occurs when the amount of catalyst is relatively small.
- thick particles are likely to be generated.
- nitrogen gas As the gas forming the non-oxidizing gas atmosphere, nitrogen gas, ammonia gas, hydrogen gas, hydrocarbon gas such as methane and propane, and rare gas such as helium and argon are used.
- nitrogen gas which is easily available and inexpensive, and has a large effect of suppressing the decomposition of boron nitride is optimal in the high temperature range of 2000 to 2200 ° C.
- Calcination and crystallization are performed at a temperature of 1800 to 2200 ° C. in a non-oxidizing gas atmosphere. Below 1800 ° C., crystallization does not proceed sufficiently, and highly crystalline boron nitride cannot be obtained. Moreover, when it exceeds 2200 degreeC, boron nitride will decompose
- a batch furnace such as a muffle furnace, a tubular furnace, an atmosphere furnace, or a continuous furnace such as a rotary kiln, a screw conveyor furnace, a tunnel furnace, a belt furnace, a pusher furnace, or a vertical continuous furnace is used.
- a batch furnace is used when small quantities of boron nitride of many varieties are produced, and a continuous furnace is adopted when large quantities of certain varieties are produced.
- Boron nitride (B) is put to practical use after undergoing post-treatment steps such as grinding, classification, removal of residual catalyst by acid treatment (purification), washing, and drying as necessary.
- thermoplastic resin composition of the present invention imparts flame retardancy by containing at least one flame retardant (C) selected from the group of inorganic flame retardants, halogen flame retardants, and phosphorus flame retardants. can do.
- C flame retardant
- the inorganic flame retardant is a flame retardant having no carbon atom in the molecular structure, and examples thereof include aluminum hydroxide, antimony trioxide, and magnesium hydroxide.
- the halogen flame retardant is a flame retardant having a halogen atom in the molecular structure, and examples thereof include decabromodiphenyl oxide, tribromophenyl allyl ether, and chlorinated paraffin.
- the phosphorus-based flame retardant is a flame retardant having a phosphorus atom in the molecular structure, and examples thereof include triphenyl phosphate, tricresyl phosphate, and cresyl diphenyl phosphate.
- magnesium hydroxide for the flame retardant (C). This is because magnesium hydroxide is more compatible with 6-nylon and has better thermal stability than other flame retardants, so that the appearance of the box-shaped molded product is excellent.
- the polytetrafluoroethylene resin (D) is a fluorocarbon resin composed of monomers of fluorine atoms and carbon atoms as shown in Chemical formula 3. Note that n represents the degree of polymerization.
- the polytetrafluoroethylene resin (D) has an action as an anti-dripping agent, and is effective in providing UL94 standard V-2, V-1, or V-0 when used in combination with the flame retardant (C).
- the weight average molecular weight of the polytetrafluoroethylene resin (D) is preferably 100000 to 1100000, more preferably 150,000 to 1050,000, and particularly preferably 200000 to 1000000 from the viewpoint of an anti-drip agent.
- the number average molecular weight of the polytetrafluoroethylene resin (D) is preferably 5000 to 110000, more preferably 5500 to 105000, and particularly preferably 6000 to 100,000 from the viewpoint of an anti-drip agent.
- the molded body made of the thermoplastic resin composition of the present invention is a product that has been processed into a certain shape through a secondary processing step in order to obtain a desired shape, for example, an injection molded product, a press molded product, There are extrudates, films, sheets and the like.
- the blending amount of 6-nylon resin (A) is 25 to 60 parts by mass in 100 parts by mass of the total amount of 6-nylon resin (A) and boron nitride (B). From the viewpoint of conversion, it is preferably 30 to 55 parts by mass, more preferably 35 to 50 parts by mass. If it is less than 25 mass parts, it may be inferior in terms of weight reduction, or extrusion kneading may be impossible. If it exceeds 60 parts by mass, the thermal conductivity in the surface direction becomes small.
- the compounding amount of boron nitride (B) is 40 to 75 parts by mass in 100 parts by mass of the total amount of 6-nylon resin (A) and boron nitride (B). From the viewpoint, it is preferably 45 to 70 parts by mass, and more preferably 50 to 65 parts by mass. If it is less than 40% by mass, the thermal conductivity in the surface direction becomes small, and if it exceeds 75% by mass, it may be inferior in terms of weight reduction or extrusion kneading may not be possible.
- the thermoplastic resin composition of the present invention can contain at least one flame retardant (C) selected from the group consisting of inorganic flame retardants, halogen flame retardants, and phosphorus flame retardants. From the viewpoints of imparting properties, thermal conductivity in the surface direction, and weight reduction, it is preferable to add 10 to 120 parts by mass with respect to 100 parts by mass of the total amount of 6-nylon resin (A) and boron nitride (B). More preferably, it is 20 to 110 parts by mass, and particularly preferably 25 to 60 parts by mass.
- C flame retardant
- the thermoplastic resin composition of the present invention may contain a polytetrafluoroethylene resin (D).
- D polytetrafluoroethylene resin
- 6-nylon resin (A) and boron nitride (B ) Is preferably added in an amount of 0.1 to 5 parts by weight, more preferably 0.3 to 4 parts by weight, and particularly preferably 0.5 to 3 parts by weight.
- the thermal conductivity in the surface direction of the molded body made of the thermoplastic resin composition of the present invention is preferably 1.5 W / mK or more, more preferably 2.0 W / mK or more, particularly preferably from the viewpoint of heat dissipation. Is 2.5 W / mK or more.
- the anisotropy of the molded body made of the thermoplastic resin composition of the present invention is preferably 2 or more, more preferably 2.5 or more, and particularly preferably 3 or more from the viewpoint of heat dissipation.
- the specific gravity of the molded body made of the thermoplastic resin composition of the present invention is preferably 2.0 [g / cm 3 ] or less, more preferably 1.8 [g / cm 3 ] or less from the viewpoint of weight reduction. Particularly preferably, it is 1.7 [g / cm 3 ] or less.
- thermoplastic resin composition of the present invention is a reinforcing material such as a lubricant, an antioxidant, a light stabilizer, an ultraviolet absorber, an inorganic filler, carbon fiber, etc.
- a lubricant such as a lubricant, an antioxidant, a light stabilizer, an ultraviolet absorber, an inorganic filler, carbon fiber, etc.
- Each color coloring agent can be added, and surface modifiers such as silane-based and / or titanate-based coupling agents can be used as the inorganic filler.
- thermoplastic resin composition of the present invention can be obtained using a general melt kneader.
- screw extruders such as a single-screw extruder, a meshing same-direction rotating or a meshing different-direction rotating twin-screw extruder, and a non- or incompletely meshing-type twin-screw extruder.
- thermoplastic resin composition of the present invention can be molded by a general molding method.
- examples include injection molding, press molding, sheet molding, profile extrusion molding, inflation molding, vacuum molding, and two-color molding.
- transfer method of the embossing there are injection molding, press molding, roll transfer, vacuum forming and the like.
- A-1 Ube Industries, product name 1013B, specific gravity 1.14 g / cm 3
- A-2 manufactured by Toray Industries, Inc., trade name CM1017, specific gravity 1.13 g / cm 3
- B-1 average particle size 18 ⁇ m, graphitization index (GI) 0.86, specific gravity 2.27 g / cm 3 Nippon Denko's orthoboric acid (hereinafter, orthoboric acid is the same product) 60 kg, DSM melamine ( Hereafter, 50 kg of melamine is used) and 1 kg of calcium carbonate manufactured by Shiraishi Kogyo Co., Ltd. (hereinafter, the same product is used for calcium carbonate) as a Ca compound is mixed with a Henschel mixer, and then the temperature is 90 ° C. in a constant temperature and humidity machine. The melamine borate was formed by holding at a relative humidity of 85% for 5 hours. Further, B-1 was then produced by calcination and crystallization in a batch atmosphere furnace at 2000 ° C. for 2 hours in a nitrogen atmosphere, followed by pulverization. The results are shown in Table 1.
- B-2 Average particle diameter 8 ⁇ m, graphitization index (GI) 0.86, specific gravity 2.27 g / cm 3 B-2 was produced by firing and crystallization in the same manner as B-1, and adjusting the pulverization. The results are shown in Table 1.
- B-3 An average particle size of 22 ⁇ m, a graphitization index (GI) of 0.86, and a specific gravity of 2.27 g / cm 3 B-3 is produced by firing and crystallization in the same manner as B-1, and adjusting the pulverization. did. The results are shown in Table 1.
- B-4 Average particle size 4 ⁇ m, Graphitization index (GI) 0.86, Specific gravity 2.27 g / cm 3 B-4 is manufactured by firing and crystallization in the same manner as B-1, and adjusting the pulverization. did. The results are shown in Table 1.
- B-5 average particle size 28 ⁇ m, graphitization index (GI) 0.86, specific gravity 2.27 g / cm 3 B-5 is produced by controlling pulverization by firing and crystallization in the same manner as B-1. did. The results are shown in Table 1.
- B-6 Average particle diameter 18 ⁇ m, graphitization index (GI) 3.32, specific gravity 2.27 g / cm 3
- Orthoboric acid 70 kg, melamine 50 kg, calcium carbonate 1 kg were mixed with a Henschel mixer, and then placed in a constant temperature and humidity machine. Then, melamine borate was formed by maintaining at a temperature of 80 ° C. and a relative humidity of 80% for 2 hours. Further, it was fired and crystallized in a batch atmosphere furnace at 1850 ° C. for 2 hours in a nitrogen atmosphere, and then B-6 was produced by pulverization. The results are shown in Table 1.
- B-7 average particle diameter 18 ⁇ m, graphitization index (GI) 4.58, specific gravity 2.27 g / cm 3 Showa Chemical Chemical Co., Ltd. orthoboric anhydride (hereinafter, the same product is used for boric anhydride) 40 kg, melamine 50 kg Then, 1 kg of calcium borate manufactured by Kinsei Matech Co., Ltd. was mixed with a Henschel mixer, and then held in a constant temperature and humidity machine at a temperature of 90 ° C. and a relative humidity of 85% for 5 hours to form melamine borate. Further, in a batch atmosphere furnace, B-7 was produced by calcination and crystallization at 1900 ° C. for 2 hours in a nitrogen atmosphere, and then pulverization. The results are shown in Table 1.
- B-8 Average particle size 0.8 ⁇ m, graphitization index (GI) 0.86, specific gravity 2.27 g / cm 3 B-8 was produced by performing calcination and crystallization in the same manner as B-1, and adjusting the pulverization. The results are shown in Table 1.
- B-9 is produced by controlling the pulverization by firing and crystallization in the same manner as B-1 with an average particle size of 35 ⁇ m, graphitization index (GI) of 0.86, and specific gravity of 2.27 g / cm 3. did. The results are shown in Table 1.
- the average particle diameter of boron nitride (B) was measured using a laser diffraction scattering type particle size distribution analyzer (LA-910) manufactured by Horiba.
- the graphitization index (GI) of boron nitride (B) is the integrated intensity of the (100), (101) and (102) lines of the X-ray diffraction diagram measured with a powder X-ray diffractometer (GF-2013) manufactured by Rigaku Corporation. It calculated
- GI [area ⁇ (100) + (101) ⁇ ] / [area (102)]
- C-1 Inorganic flame retardant, manufactured by Kamishima Chemical Co., Ltd., trade name S-4, specific gravity 2.4 g / cm 3
- C-2 Halogen flame retardant, manufactured by Chemtura Japan, trade name PDBS-80, specific gravity 1.8 g / cm 3
- C-3 Phosphorus flame retardant, manufactured by Phosphor Chemical Industries, trade name Nova Excel F5, specific gravity 2.0 g / cm 3
- D-1 Polytetrafluoroethylene resin manufactured by Mitsui DuPont Chemical Co., specific gravity 2.1 g / cm 3
- ABS resin manufactured by Denki Kagaku Kogyo Co., Ltd., trade name GR-1000, specific gravity 1.05 g / cm 3 PS resin: manufactured by Toyo Styrene Co., Ltd., trade name G200C, specific gravity 1.04 g / cm 3 Nylon 66 resin: manufactured by DuPont, trade name 101, specific gravity 1.14 g / cm 3
- 6-Nylon resin (A) and boron nitride (B) were charged into a Henschel mixer manufactured by Mitsui Miike Co., Ltd. and mixed at low speed for 3 minutes so as to have the composition shown in Table 2. Thereafter, the mixture was melt-kneaded with a twin-screw extruder (TEM-35B) manufactured by Toshiba Machine Co., Ltd. at a set temperature of 240 ° C. to 260 ° C. and a screw rotation speed of 200 rpm to produce pellets. Using this pellet, a test piece for evaluation was produced by an injection molding machine, and various evaluations were performed. The results are shown in Table 2.
- the pellets are prepared by kneading boron nitride and resin in an extruder, then producing a strand from the die port of the extruder, then guiding the strand to the pelletizer device and cutting by the pelletizer device. This was done by pelletizing.
- 6-Nylon resin (A) and polytetrafluoroethylene resin (D) were charged into a Henschel mixer manufactured by Mitsui Miike Co., Ltd. and mixed for 1 minute at a low speed so that the composition shown in Table 3 was obtained.
- flame retardant (C) were added and further mixed for 3 minutes at low speed. Thereafter, pellets were produced in the same manner as in Examples 1 to 11, and various evaluations were performed. The results are shown in Table 3. [Example 23]
- 6-nylon resin (A), boron nitride (B), and flame retardant (C) were charged into a Henschel mixer manufactured by Mitsui Miike Co., Ltd. and mixed for 3 minutes at low speed so that the composition shown in Table 3 was obtained. Thereafter, pellets were produced in the same manner as in Examples 1 to 11, and various evaluations were performed. The results are shown in Table 3. [Comparative Examples 1 to 4]
- 6-Nylon resin (A) and boron nitride (B) were charged into a Henschel mixer manufactured by Mitsui Miike Co., Ltd., and mixed at low speed for 3 minutes so as to have the composition shown in Table 4. Thereafter, the production of pellets was attempted in the same manner as in Examples 1-11.
- Comparative Examples 1 and 4 since pellets could be produced without problems, various evaluations were performed using the produced pellets. On the other hand, in Comparative Examples 2 and 3, the above-described problems occurred, and pellets could not be produced, so that evaluation could not be performed.
- Comparative Example 5 Comparative Example 5
- ABS resin and boron nitride (B) were charged in a Henschel mixer manufactured by Mitsui Miike Co., Ltd. so as to have the composition shown in Table 4, and mixed at low speed for 3 minutes. Thereafter, the mixture was melt-kneaded with a twin-screw extruder (TEM-35B) manufactured by Toshiba Machine Co., Ltd. at a set temperature of 220 ° C. to 240 ° C. and a screw rotation speed of 200 rpm to try to produce pellets.
- TEM-35B twin-screw extruder
- PS resin and boron nitride (B) were charged into a Henschel mixer manufactured by Mitsui Miike Co., Ltd. so as to have the composition shown in Table 4, and mixed at low speed for 3 minutes. Thereafter, the mixture was melt-kneaded with a twin-screw extruder (TEM-35B) manufactured by Toshiba Machine Co., Ltd. at a set temperature of 200 ° C. to 220 ° C. and a screw rotation speed of 200 rpm to try to produce pellets.
- TEM-35B twin-screw extruder
- Nylon 66 resin and boron nitride (B) were charged into a Henschel mixer manufactured by Mitsui Miike Co., Ltd. so as to have the composition shown in Table 4, and mixed at low speed for 3 minutes. Thereafter, the mixture was melt-kneaded with a twin-screw extruder (TEM-35B) manufactured by Toshiba Machine Co., Ltd. at a set temperature of 260 ° C. to 290 ° C. and a screw rotation speed of 200 rpm to try to produce pellets.
- TEM-35B twin-screw extruder
- 6-Nylon resin (A) and spherical alumina were charged into a Henschel mixer manufactured by Mitsui Miike Co. so as to have the composition shown in Table 4, and mixed at low speed for 3 minutes. Thereafter, pellets were produced in the same manner as in Examples 1 to 11, and various evaluations were performed. The results are shown in Table 4. [Comparative Example 9]
- 6-Nylon resin (A) and fused silica were charged into a Henschel mixer manufactured by Mitsui Miike Co., Ltd. and mixed at low speed for 3 minutes so that the composition shown in Table 4 was obtained. Thereafter, pellets were produced in the same manner as in Examples 1 to 11, and various evaluations were performed. The results are shown in Table 4.
- ⁇ Measurement method> Various evaluations were performed by the following measurement methods.
- the thermal conductivity in the surface direction and the thickness direction was measured according to ASTM E 1461 using a thermal conductivity measuring device (LFA447 Nanoflash) manufactured by NETZSCH.
- the flame retardancy test was conducted in accordance with the UL94 standard.
- the heat dissipation evaluation was performed according to the following method. As shown in FIG. 1, a box-shaped molded product having a length of 30 ⁇ width of 30 ⁇ height of 15 mm (2 mm thickness) was produced by an injection molding machine (IS50EPN) manufactured by Toshiba Machine. As shown in FIG. 2, in the heat dissipation evaluation method, a heat conductive spacer 2 (FSL-100B) manufactured by Denki Kagaku Kogyo Co., Ltd., an LED lighting board 3 manufactured by Panasonic Electric Works Co., Ltd. (NNN 24505, number of LEDs: 4) The thermocouple 4 was mounted on the LED illumination board 3 (hereinafter referred to as a heat generating portion).
- a heat generating portion The thermocouple 4 was mounted on the LED illumination board 3 (hereinafter referred to as a heat generating portion).
- the LED illumination 5 was continuously irradiated for 60 minutes from a temperature of the heat generating portion of 23 ° C. (room temperature 23 ° C.), and the temperature of the heat generating portion after 5 minutes, 10 minutes, 20 minutes, and 60 minutes was measured to evaluate heat dissipation.
- the weight of the box-shaped molded product 1 was also measured and used as an indicator for weight reduction, and the appearance of the box-shaped molded product 1 was visually evaluated according to the following criteria. (Appearance evaluation of box-shaped molded product) No appearance defects, beautiful appearance: ⁇ Slight resin burn, poor appearance due to flash: ⁇ Remarkable resin burn, appearance failure due to flash: ⁇
- the resin compositions of the examples of the present invention were found to have excellent extrusion kneading properties, low specific gravity, and excellent surface direction thermal conductivity. It was.
- thermoplastic resin composition of the present invention is excellent in low specific gravity and surface direction thermal conductivity. Therefore, by using the molded body made of the thermoplastic resin composition of the present invention, it is possible to efficiently dissipate heat from the surface of the molded body that is lightweight and in contact with the heat generating part. It can be used suitably.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
低比重でかつ面方向の熱伝導率に優れた新規な熱可塑性樹脂組成物及びその成形体を提供する。本発明によれば、6-ナイロン樹脂(A)25~60質量部と、平均粒子径が1~30μmである窒化ホウ素(B)40~75質量部とを合計で100質量部含有してなる熱可塑性樹脂組成物が提供される。
Description
本発明は、高放熱性熱可塑性樹脂組成物及びその成形体に関するものである。
発熱性電子部品などから発生した熱を放熱させるため、部材にも高い放熱性が要求されている。部材の放熱を向上させる方法として、熱可塑性樹脂に高熱伝導性フィラーを配合する方法等が提案されている。しかしながら、軽量かつ面方向に効率良く熱伝導させて放熱させうる熱可塑性樹脂組成物は提案されていない。
本発明は、低比重でかつ面方向の熱伝導率に優れた新規な熱可塑性樹脂組成物及びその成形体を提供することを課題とする。
本発明によれば、6-ナイロン樹脂(A)25~60質量部と、平均粒子径が1~30μmである窒化ホウ素(B)40~75質量部とを合計で100質量部含有してなる熱可塑性樹脂組成物が提供される。
本発明者らは、放熱性が優れた熱可塑性樹脂組成物を開発すべく鋭意検討を行ったところ、平均粒子径が1~30μmである窒化ホウ素を40~75質量部という比較的高い割合で含有させることによって、放熱性を向上させることを見出した。また、窒化ホウ素の含有割合を高めた場合には、樹脂組成物からペレット等を製造する際の押出混練が困難になる場合があることに気がついた。
そして、窒化ホウ素の含有割合が高い場合でも、押出混練性を良好にすることができる樹脂を探すべく、種々の実験を行ったところ、熱可塑性樹脂として6-ナイロン樹脂を用いた場合には押出混練性が非常に良好になることを見出した。押出混練性が良好になる原理は必ずしも明らかではないが、6-ナイロン樹脂と窒化ホウ素の相性がよく、6-ナイロン樹脂中において窒化ホウ素が均一に分散しやすいため、窒化ホウ素の含有割合が高い場合でも、押出混練性が良好であると推定される。
そして、窒化ホウ素の含有割合が高い場合でも、押出混練性を良好にすることができる樹脂を探すべく、種々の実験を行ったところ、熱可塑性樹脂として6-ナイロン樹脂を用いた場合には押出混練性が非常に良好になることを見出した。押出混練性が良好になる原理は必ずしも明らかではないが、6-ナイロン樹脂と窒化ホウ素の相性がよく、6-ナイロン樹脂中において窒化ホウ素が均一に分散しやすいため、窒化ホウ素の含有割合が高い場合でも、押出混練性が良好であると推定される。
以下、本発明の種々の実施形態を例示する。以下に例示される種々の実施形態は、互いに組み合わせることができる。
窒化ホウ素(B)の黒鉛化指数(GI)は、5以下であることが好ましい。この場合、熱伝導性が特に高くなるからである。
6-ナイロン樹脂(A)と窒化ホウ素(B)の合計量100質量部に対して、無機系難燃剤、ハロゲン系難燃剤、リン系難燃剤の群から選ばれる少なくとも1種以上の難燃剤(C)を10~120質量部含有することが好ましい。この場合、樹脂組成物の難燃性が特に高くなるからである。
難燃剤(C)は、水酸化マグネシウムであることが好ましい。この場合、成形品の外観が特に良好になるからである。
6-ナイロン樹脂(A)と窒化ホウ素(B)の合計量100質量部に対して、ポリテトラフルオロエチレン樹脂(D)を0.1~5質量部含有することが好ましい。この場合、樹脂の滴下が抑制される。
また、本発明によれば、上記記載の熱可塑性樹脂組成物からなる、放熱性に優れた成形体が提供される。
窒化ホウ素(B)の黒鉛化指数(GI)は、5以下であることが好ましい。この場合、熱伝導性が特に高くなるからである。
6-ナイロン樹脂(A)と窒化ホウ素(B)の合計量100質量部に対して、無機系難燃剤、ハロゲン系難燃剤、リン系難燃剤の群から選ばれる少なくとも1種以上の難燃剤(C)を10~120質量部含有することが好ましい。この場合、樹脂組成物の難燃性が特に高くなるからである。
難燃剤(C)は、水酸化マグネシウムであることが好ましい。この場合、成形品の外観が特に良好になるからである。
6-ナイロン樹脂(A)と窒化ホウ素(B)の合計量100質量部に対して、ポリテトラフルオロエチレン樹脂(D)を0.1~5質量部含有することが好ましい。この場合、樹脂の滴下が抑制される。
また、本発明によれば、上記記載の熱可塑性樹脂組成物からなる、放熱性に優れた成形体が提供される。
本発明の熱可塑性樹脂組成物は、低比重かつ面方向の熱伝導率に優れ、さらに押出混練性にも優れている。本発明の熱可塑性樹脂組成物からなる成形体を用いることで、軽量かつ発熱部に接触している成形体の表面から効率的に放熱することができるため、発熱性電子部品の部材に有用である。例えばLED照明筐体、自動車部品、電源アダプター、パソコン用部品、携帯電話用部品及び光学式ディスプレー装置などの発熱部に接触している部材の筐体用途に好適に用いることができる。
<用語の説明>
本願明細書において、「~」という記号は「以上」及び「以下」を意味し。例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。
本願明細書において、「~」という記号は「以上」及び「以下」を意味し。例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。
6-ナイロン樹脂(A)とは、化1に示すようにアミド結合を有する単量体からなる樹脂である。なお、nは重合度を示している。
6-ナイロン樹脂(A)の重量平均分子量は、強度や窒化ホウ素との押出混練性の観点から5000~250000であることが好ましく、更に好ましくは6000~240000、特に好ましくは7000~230000である。6-ナイロン樹脂(A)の数平均分子量は、強度や窒化ホウ素との押出混練性の観点から5000~50000であることが好ましく、更に好ましくは5200~48000、特に好ましくは5500~45000である。本明細書において、重量平均分子量と数平均分子量は、ゲルパーミエーションクロマトグラフィー(例:日本ウォーターズ社製GPC)を用いて測定したものを意味する。
窒化ホウ素(B)とは、窒素原子とホウ素原子からなる化合物であり、六角形の網目層が二層周期で積層している六方晶窒化ホウ素(h-BN)、六角形の網目層が三層周期で積層している菱面体晶窒化ホウ素(r-BN)、六角形の網目層がランダムに積層している乱層構造窒化ホウ素(t-BN)、無定形である無定形化ホウ素(a-BN)、高圧相である立方晶窒化ホウ素(c-BN)などがあり、好ましくは六方晶窒化ホウ素(h-BN)が用いられる。
窒化ホウ素(B)は鱗片状の結晶体であり、面方向の熱伝導率が極めて高い性質がある。更に、6-ナイロン樹脂(A)中では容易に流動方向に配向する性質を有しているため、熱伝導率に異方性を付与することができる。この異方性により、面方向に効率良く放熱させることが可能となる。なお、異方性は、以下の式で算出される。
異方性=面方向の熱伝導率÷厚み方向の熱伝導率
異方性=面方向の熱伝導率÷厚み方向の熱伝導率
窒化ホウ素(B)の平均粒子径は1~30μmであるが、面方向の熱伝導率と軽量化の観点から、好ましくは5~25μm、更に好ましくは10~20μmである。1μm未満であると面方向の熱伝導率が小さくなるため、窒化ホウ素(B)をより多く充填しなければならず、軽量化の面で劣る。30μmを超えると6-ナイロン樹脂(A)への分散性が悪化して窒化ホウ素(B)が凝集し易くなるため溶融混練や成形ができない場合がある。
なお、平均粒子径とは、体積平均粒子径のことであり、レーザー回折散乱法によって測定した粒度分布における積算値50%での粒径を意味する。
なお、平均粒子径とは、体積平均粒子径のことであり、レーザー回折散乱法によって測定した粒度分布における積算値50%での粒径を意味する。
窒化ホウ素(B)の結晶性評価については、粉末X線回折法による黒鉛化指数(GI=Graphitization Index)を用いた。GIは、X線回折図の(100)、(101)及び(102)線の積分強度比すなわち面積比を用いて以下の式から求めることができる(J. Thomas, et. al, J. Am. Chem. Soc. 84, 4619(1962))。この値が小さいほど結晶性が高いため、同じ充填量の場合、面方向の熱伝導率が大きくなる。
GI=[面積{(100)+(101)}]÷[面積(102)]
GI=[面積{(100)+(101)}]÷[面積(102)]
良好な面方向の熱伝導率を得るための好ましい黒鉛化指数(GI)は5以下であり、更に好ましくは4以下、特に好ましくは2以下である。
窒化ホウ素(B)は、B/N原子比が1/1~1/6であるホウ酸とメラミンを含む混合物に、カルシウム(Ca)化合物を結晶化時に生成する窒化ホウ素に対して5~20質量%のホウ酸カルシウム(CaO)x ・B2O3の液相(但し、X≦1)が生成するように添加した後、温度T(℃)、相対湿度Ψ(%)及び保持時間t(hr)が以下の関係式を満たす条件で保持してホウ酸メラミンを形成させ、更にそれを非酸化性ガス雰囲気下、温度1800~2200℃で焼成・結晶化させ、粉砕することによって製造することができる。
T≧-20・log10(t/4)+{(Ψ-100)2/20}+60
T≧-20・log10(t/4)+{(Ψ-100)2/20}+60
ホウ酸は、オルトホウ酸(H3 BO3 )、メタホウ酸(HBO2 )、テトラホウ酸(H2 B4 O7 )、無水ホウ酸(B2 O3 )など、一般式(B2 O3 )・(H2 O)X 〔但し、X=0~3〕で示される化合物の一種又は二種以上であるが、なかでもオルトホウ酸は入手が容易でメラミンとの混合性が良好であるため、好適である。
メラミン(C3 N6 H6)は、有機化合物の一種であり、化2に示すように構造の中心にトリアジン環、その周辺にアミノ基3個を持つ有機窒素化合物である。
ホウ酸とメラミンの混合は、ボールミル、リボンブレンダー、ヘンシェルミキサーなどの一般的な混合機を用いて行うことができる。
ホウ酸とメラミンの配合割合は、ホウ酸のホウ素原子とメラミンの窒素原子のB/N原子比が1/1~1/6となる割合であるが、GIの観点から、好ましくは1/2~1/4となる割合である。1/1を越えると焼成後に未反応ホウ酸の残留が顕著となり、1/6未満では焼成時に未反応メラミンの昇華が顕著となる。
窒化ホウ素(B)の結晶化触媒であるホウ酸カルシウム(CaO)X ・B2 O3 の液相 [但し、X≦1]が結晶化時の窒化ホウ素に対して5~20質量%生成するようにあらかじめホウ酸とメラミンの混合物にCa化合物を添加した後、温度T(℃)、相対湿度Ψ(%)及び保持時間t(hr)が以下の関係式を満たす雰囲気で上記混合物を保持してホウ酸メラミンを形成させる。温度(T)、相対湿度(Ψ)及び保持時間(t)のいずれかが以下の式の範囲外であるとホウ酸メラミンは形成されない。
T≧-20・log10(t/4)+{(Ψ-100)2/20}+60
T≧-20・log10(t/4)+{(Ψ-100)2/20}+60
このような雰囲気は、恒温恒湿機、スチーム加熱炉などを用いて容易に形成させることができる。温度、相対湿度、時間の具体例としては、例えば80℃、80%、10時間などである。雰囲気を形成する水蒸気以外のガスについては特に制限はなく、大気ガス、窒素ガス、不活性ガスなどがある。
Ca化合物は、固体のホウ酸カルシウムでもよいが、ホウ酸と反応してホウ酸カルシウムを生成し得る化合物、特に安価で入手が容易な炭酸カルシウム(CaCO3 )が好ましい。炭酸カルシウム を用いる場合、ホウ酸を窒化ホウ素用原料だけでなく、ホウ酸カルシウム液相用原料としても機能させる必要があるが、ホウ酸カルシウム液相用原料のホウ酸は、窒化ホウ素用原料のホウ酸よりも大幅に少量で済むので、炭酸カルシウム を用いた場合でもホウ酸とメラミン(C3 N6 H6 )の配合割合は、ホウ酸がオルトホウ酸(H3 BO3 )である場合、H3 BO3 /C3 N6 H6 をモル比では6/1~1/1、質量比では2.94/1~0.49/1としてよい。
ホウ酸カルシウム(CaO)X・B2O3の液相[但し、X≦1]が結晶化時の窒化ホウ素に対して5~20質量%となるような炭酸カルシウム の具体的な配合割合は、焼成方法の違いによってメラミンの揮発量や、メラミン1モルに反応するホウ酸のモル数が変動するため、焼成方法に応じて適宜変化させる必要があるが、仮にメラミンが全く揮発せず、かつメラミン1モルに対して常にホウ酸2モルが反応して窒化ホウ素が生成するとした場合、ホウ酸、メラミン、及び炭酸カルシウムの具体的な配合割合は、モル比で22.3~99.7/10.1~48.2/0.1~1.0、質量比で13.8~61.6/12.7~60.7/0.1~1.0になる。
Ca化合物は、保持の前に添加しておくことによって、均一にホウ酸メラミン中に混合される。ホウ酸とメラミンとCa化合物を単に機械的に混合した場合や、ホウ酸メラミンを形成させた後にCa化合物を混合した場合、更にはホウ酸とメラミンとCa化合物に水を添加してホウ酸メラミン形成とCa化合物混合を同時に行った場合は、Ca化合物の混合状態が不均一となり、結晶化後の窒化ホウ素は、粗粒、あるいは結晶未発達の微粒を多く含む不均一なものとなる。
ホウ酸カルシウム(CaO)X・B2O3[但し、X≦1]は、結晶化温度においては液相である。この中に非晶質窒化ホウ素が溶解し、溶解量が過飽和に達した時点で窒化ホウ素が析出する。この際、触媒量すなわち液相の量が多いと、隣り合う窒化ホウ素粒子同士の距離が大きくなるので、粗粒が生成しやすい。反対に液相の量が少ないと非晶質窒化ホウ素の溶解量も少なくなるため結晶未発達な微粒が生成しやすい。一方、触媒の組成すなわちCaOとB2 O3 のモル比は粒子の形状に関与する。Xが1以下すなわちB2 O3 リッチな組成においては生成する窒化ホウ素粒子は鱗片形状が発達するが、Xが1よりも大きいCaOリッチな組成においては、触媒の量が比較的少ない場合は凝集粒子が、触媒の量が比較的多い場合は肉厚な粒子が生成しやすい。
非酸化性ガス雰囲気を形成するガスとしては、窒素ガス、アンモニアガス、水素ガス、メタンやプロパンなどの炭化水素ガス、ヘリウムやアルゴンなどの希ガスが使用される。これらのうち、入手しやすく安価であり、しかも2000~2200℃の高温域においては、窒化ホウ素の分解を抑制する効果の大きい窒素ガスが最適である。
焼成・結晶化は、非酸化性ガス雰囲気下、温度1800~2200℃で行われる。1800℃未満では結晶化が充分に進行せず、高結晶な窒化ホウ素を得ることができない。また、2200℃を超えると窒化ホウ素が分解する。
焼成炉としては、マッフル炉、管状炉、雰囲気炉などのバッチ式炉や、ロータリーキルン、スクリューコンベヤ炉、トンネル炉、ベルト炉、プッシャー炉、竪型連続炉などの連続式炉が用いられる。これらは目的に応じて使い分けられ、例えば多くの品種の窒化ホウ素を少量ずつ製造するときはバッチ式炉が、一定の品種を多量製造するときは連続式炉が採用される。
窒化ホウ素(B)は、必要に応じて粉砕、分級、酸処理による残留触媒の除去(精製)、洗浄、乾燥などの後処理工程を経た後、実用に供される。
本発明の熱可塑性樹脂組成物は、無機系難燃剤、ハロゲン系難燃剤、リン系難燃剤の群から選ばれる少なくとも1種以上の難燃剤(C)を含有させることにより、難燃性を付与することができる。
無機系難燃剤とは、分子構造中に炭素原子を有しない難燃剤のことであり、例えば、水酸化アルミニウムや三酸化アンチモン、水酸化マグネシウムなどがある。
ハロゲン系難燃剤とは、分子構造中にハロゲン原子を有する難燃剤のことであり、例えば、デカブロモジフェニルオキサイドやトリブロモフェニルアリルエーテル、塩素化パラフィンなどがある。
リン系難燃剤とは、分子構造中にリン原子を有する難燃剤のことであり、例えば、トリフェニルホスフェートやトリクレジルホスフェート、クレジルジフェニルホスフェートなどがある。
難燃剤(C)には、水酸化マグネシウムを使用することが好ましい。水酸化マグネシウムは、他の難燃剤と比較して6-ナイロンと相性が良く、かつ熱安定性も良い為、箱型成形品の外観が優れているからである。
ポリテトラフルオロエチレン樹脂(D)とは、化3に示すようにフッ素原子と炭素原子の単量体からなるフッ化炭素樹脂のことである。なお、nは重合度を示している。
ポリテトラフルオロエチレン樹脂(D)は、滴下防止剤としての作用があり、難燃剤(C)と併用させることでUL94規格V-2又はV-1又はV-0の付与に効果的である。
ポリテトラフルオロエチレン樹脂(D)の重量平均分子量は、滴下防止剤としての観点から100000~1100000であることが好ましく、更に好ましくは150000~1050000、特に好ましくは200000~1000000である。ポリテトラフルオロエチレン樹脂(D)の数平均分子量は、滴下防止剤としての観点から5000~110000であることが好ましく、更に好ましくは5500~105000、特に好ましくは6000~100000である。
本発明の熱可塑性樹脂組成物からなる成形体とは、所望の形状を得るために二次的な加工工程を経て一定の形状に加工したものであり、例えば、射出成形品、プレス成形品、押出成形品、フィルム、シートなどがある。
6-ナイロン樹脂(A)の配合量は、6-ナイロン樹脂(A)と窒化ホウ素(B)の合計量100質量部中、25~60質量部であるが、面方向の熱伝導率と軽量化の観点から、好ましくは30~55質量部、更に好ましくは35~50質量部である。25質量部未満では軽量化の面で劣るか又は押出混練ができない場合がある。60質量部を超えると面方向の熱伝導率が小さくなる。
窒化ホウ素(B)の配合量は、6-ナイロン樹脂(A)と窒化ホウ素(B)の合計量100質量部中、40~75質量部であるが、面方向の熱伝導率と軽量化の観点から、好ましくは45~70質量部、更に好ましくは50~65質量部である。40質量%未満であると面方向の熱伝導率が小さくなり、75質量%を超えると軽量化の面で劣る又は押出混練ができない場合がある。
本発明の熱可塑性樹脂組成物には、無機系難燃剤、ハロゲン系難燃剤、リン系難燃剤の群から選ばれる少なくとも1種以上の難燃剤(C)を含有させることが出来るが、難燃性付与と面方向の熱伝導率、軽量化の観点から、6-ナイロン樹脂(A)と窒化ホウ素(B)の合計量100質量部に対して、10~120質量部添加することが好ましく、更に好ましくは20~110質量部であり、特に好ましくは25~60質量部である。
本発明の熱可塑性樹脂組成物には、ポリテトラフルオロエチレン樹脂(D)を含有させることが出来るが、滴下防止効果と成形加工性の観点から、6-ナイロン樹脂(A)と窒化ホウ素(B)の合計量100質量部に対して、0.1~5質量部添加することが好ましく、更に好ましくは0.3~4質量部であり、特に好ましくは0.5~3質量部である。
本発明の熱可塑性樹脂組成物からなる成形体の面方向の熱伝導率は、放熱性の観点から1.5W/mK以上であることが好ましく、更に好ましくは2.0W/mK以上、特に好ましくは2.5W/mK以上である。
本発明の熱可塑性樹脂組成物からなる成形体の異方性は、放熱性の観点から2以上であることが好ましく、更に好ましくは2.5以上、特に好ましくは3以上である。
本発明の熱可塑性樹脂組成物からなる成形体の比重は、軽量化の観点から2.0[g/cm3]以下であることが好ましく、更に好ましくは1.8[g/cm3]以下、特に好ましくは1.7[g/cm3]以下である。
本発明の熱可塑性樹脂組成物は、放熱性、比重に影響のない範囲であれば、必要に応じて滑剤、酸化防止剤、光安定剤、紫外線吸収剤、無機フィラー、カーボン繊維等の補強材、各色着色剤等を添加することができ、無機フィラーには、シラン系および又はチタネート系カップリング剤などの表面改質剤を使用することも可能である。
本発明の熱可塑性樹脂組成物は、一般的な溶融混練装置を用いて得ることができる。例えば、単軸押出機、噛合形同方向回転または噛合形異方向回転二軸押出機、非または不完全噛合形二軸押出機等のスクリュー押出機などがある。
本発明の熱可塑性樹脂組成物は、一般的な成形方法で成形することができる。例えば、射出成形、プレス成形、シート成形、異形押出成形、インフレーション成形、真空成形、二色成形などがある。シボの転写方法についても射出成形、プレス成形、ロール転写、真空成形などがある。
以下、詳細な内容について実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。
6-ナイロン樹脂(A)は以下のものを使用した。
A-1:宇部興産社製、商品名1013B、 比重1.14g/cm3
A-2:東レ社製、商品名CM1017、比重1.13g/cm3
A-1:宇部興産社製、商品名1013B、 比重1.14g/cm3
A-2:東レ社製、商品名CM1017、比重1.13g/cm3
窒化ホウ素(B)は、以下のものを使用した。
B-1:平均粒子径18μm、黒鉛化指数(GI)0.86、比重2.27g/cm3日本電工社製オルトホウ酸(以下、オルトホウ酸は同製品を使用)60kg、DSM社製メラミン(以下、メラミンは同製品を使用)50kg、Ca化合物として白石工業社製炭酸カルシウム(以下、炭酸カルシウムは同製品を使用)1kgをヘンシェルミキサーで混合した後、恒温恒湿機中にて温度90℃、相対湿度85%で5時間保持してホウ酸メラミンを形成させた。更に、その後バッチ式雰囲気炉にて、窒素雰囲気下、2000℃で2時間焼成・結晶化し、その後粉砕によりB-1を製造した。結果を表1に示す。
B-1:平均粒子径18μm、黒鉛化指数(GI)0.86、比重2.27g/cm3日本電工社製オルトホウ酸(以下、オルトホウ酸は同製品を使用)60kg、DSM社製メラミン(以下、メラミンは同製品を使用)50kg、Ca化合物として白石工業社製炭酸カルシウム(以下、炭酸カルシウムは同製品を使用)1kgをヘンシェルミキサーで混合した後、恒温恒湿機中にて温度90℃、相対湿度85%で5時間保持してホウ酸メラミンを形成させた。更に、その後バッチ式雰囲気炉にて、窒素雰囲気下、2000℃で2時間焼成・結晶化し、その後粉砕によりB-1を製造した。結果を表1に示す。
B-2:平均粒子径8μm、黒鉛化指数(GI)0.86、比重2.27g/cm3
B-1と同様に焼成・結晶化を行い、粉砕を調節することでB-2を製造した。結果を表1に示す。
B-1と同様に焼成・結晶化を行い、粉砕を調節することでB-2を製造した。結果を表1に示す。
B-3:平均粒子径22μm、黒鉛化指数(GI)0.86、比重2.27g/cm3B-1と同様に焼成・結晶化を行い、粉砕を調節することでB-3を製造した。結果を表1に示す。
B-4:平均粒子径4μm、黒鉛化指数(GI)0.86、比重2.27g/cm3B-1と同様に焼成・結晶化を行い、粉砕を調節することでB-4を製造した。結果を表1に示す。
B-5:平均粒子径28μm、黒鉛化指数(GI)0.86、比重2.27g/cm3B-1と同様に焼成・結晶化を行い、粉砕を調節することでB-5を製造した。結果を表1に示す。
B-6:平均粒子径18μm、黒鉛化指数(GI)3.32、比重2.27g/cm3オルトホウ酸70kg、メラミン50kg、炭酸カルシウム1kgをヘンシェルミキサーで混合した後、恒温恒湿機中にて温度80℃、相対湿度80%で2時間保持してホウ酸メラミンを形成させた。更に、その後バッチ式雰囲気炉にて、窒素雰囲気下、1850℃で2時間焼成・結晶化し、その後粉砕によりB-6を製造した。結果を表1に示す。
B-7:平均粒子径18μm、黒鉛化指数(GI)4.58、比重2.27g/cm3昭和化学ケミカル社製無水オルトホウ酸(以下、無水ホウ酸は同製品を使用)40kg、メラミン50kg、キンセイマテック社製ホウ酸カルシウム1kgをヘンシェルミキサーで混合した後、恒温恒湿機中にて温度90℃、相対湿度85%で5時間保持してホウ酸メラミンを形成させた。更に、その後バッチ式雰囲気炉にて、窒素雰囲気下、1900℃で2時間焼成・結晶化し、その後粉砕によりB-7を製造した。結果を表1に示す。
B-8:平均粒子径0.8μm、黒鉛化指数(GI)0.86、比重2.27g/cm3
B-1と同様に焼成・結晶化を行い、粉砕を調節することでB-8を製造した。結果を表1に示す。
B-1と同様に焼成・結晶化を行い、粉砕を調節することでB-8を製造した。結果を表1に示す。
B-9: 平均粒子径35μm、黒鉛化指数(GI)0.86、比重2.27g/cm3B-1と同様に焼成・結晶化を行い、粉砕を調節することでB-9を製造した。結果を表1に示す。
窒化ホウ素(B)の平均粒子径は、堀場製作所社製レーザー回折散乱式粒度分布測定装置(LA-910)を用いて測定した。
窒化ホウ素(B)の黒鉛化指数(GI)は、リガク社製粉末X線回折装置(GF-2013)により測定したX線回折図の(100)、(101)及び(102)線の積分強度比すなわち面積比を用いて、以下の式から求めた。
GI=[面積{(100)+(101)}]÷[面積(102)]
GI=[面積{(100)+(101)}]÷[面積(102)]
焼成物中の結晶化触媒(Ca化合物)は、焼成物を硝酸で洗浄することで除去し、焼成物中の結晶化触媒含有量[質量%]は、以下の式より求めた。
結晶化触媒含有量[質量%]
=(焼成物[kg]-硝酸で洗浄後の焼成物[kg])÷焼成物[kg]×100
結晶化触媒含有量[質量%]
=(焼成物[kg]-硝酸で洗浄後の焼成物[kg])÷焼成物[kg]×100
難燃剤(C)は以下のものを使用した。
C-1:無機系難燃剤、神島化学工業社製、商品名S-4、比重2.4g/cm3
C-2:ハロゲン系難燃剤、ケムチュラ・ジャパン社製、商品名PDBS-80、比重1.8g/cm3
C-3:リン系難燃剤、燐化学工業社製、商品名ノーバエクセルF5、比重2.0g/cm3
C-1:無機系難燃剤、神島化学工業社製、商品名S-4、比重2.4g/cm3
C-2:ハロゲン系難燃剤、ケムチュラ・ジャパン社製、商品名PDBS-80、比重1.8g/cm3
C-3:リン系難燃剤、燐化学工業社製、商品名ノーバエクセルF5、比重2.0g/cm3
ポリテトラフルオロエチレン樹脂(D)は以下のものを使用した。
D-1:三井・デュポンケミカル社製、商品名31-JR、比重2.1g/cm3
D-1:三井・デュポンケミカル社製、商品名31-JR、比重2.1g/cm3
6-ナイロン樹脂(A)との比較として、以下の樹脂を使用した。
ABS樹脂:電気化学工業社製、商品名GR-1000、比重1.05g/cm3
PS樹脂 :東洋スチレン社製、商品名G200C、比重1.04g/cm3
ナイロン66樹脂:デュポン社製、商品名101、比重1.14g/cm3
ABS樹脂:電気化学工業社製、商品名GR-1000、比重1.05g/cm3
PS樹脂 :東洋スチレン社製、商品名G200C、比重1.04g/cm3
ナイロン66樹脂:デュポン社製、商品名101、比重1.14g/cm3
窒化ホウ素(B)との比較として、以下の化合物を使用した。
球状アルミナ:電気化学工業社製、商品名DAW-05、平均粒子径5μm、比重3.9g/cm3
溶融シリカ:電気化学工業社製、商品名FB-7SDC、平均粒子径5.8μm、比重2.2g/cm3
[実施例1~11]
球状アルミナ:電気化学工業社製、商品名DAW-05、平均粒子径5μm、比重3.9g/cm3
溶融シリカ:電気化学工業社製、商品名FB-7SDC、平均粒子径5.8μm、比重2.2g/cm3
[実施例1~11]
表2に示した配合になるように、6-ナイロン樹脂(A)と窒化ホウ素(B)を三井三池社製ヘンシェルミキサーに仕込み、低速回転で3分間混合した。その後、混合物を東芝機械社製二軸押出機(TEM-35B)で設定温度240℃~260℃、スクリュー回転数200rpmで溶融混練し、ペレットを作製した。このペレットを使用して、射出成形機により評価用試験片を作製し、各種評価を行った。その結果を表2に示す。
ペレットの作成は、具体的には、押出機内で窒化ホウ素と樹脂を混練し、次に、押出機ダイス口からストランドを作製し、次に、ストランドをペレタイザー装置まで誘導し、ペレタイザー装置によりカッティングしてペレット化することによって行った。
一般に、ペレット形成時には、(1)押出機のダイス口(先端部)で窒化ホウ素のセラミックス粉が詰まってしまう(押出機内で混練できない)という問題、(2)窒化ホウ素のようなパウダー粉+樹脂を押出混練した場合、混練時の粘度が高い為、押出機への負荷が大きくなり、トルクオーバーが発生(押出機の限界をオーバー)するという問題、(3)押出機のダイス口(先端部)から、ペレット化工程(ペレタイズ)までストランドを誘導することができない(粘度が高く、ストランドの伸びが足りない)という問題がなどが発生する場合があり、このような問題が生じるとペレットを作製することができない。そこで、表2~表4においては、上記の問題の何れかが生じてペレットが作製できなかった場合を押出混練「不可」とし、上記のような問題が生じず、ペレットが作製できた場合を押出混練「可」とした。
[実施例12~22]
ペレットの作成は、具体的には、押出機内で窒化ホウ素と樹脂を混練し、次に、押出機ダイス口からストランドを作製し、次に、ストランドをペレタイザー装置まで誘導し、ペレタイザー装置によりカッティングしてペレット化することによって行った。
一般に、ペレット形成時には、(1)押出機のダイス口(先端部)で窒化ホウ素のセラミックス粉が詰まってしまう(押出機内で混練できない)という問題、(2)窒化ホウ素のようなパウダー粉+樹脂を押出混練した場合、混練時の粘度が高い為、押出機への負荷が大きくなり、トルクオーバーが発生(押出機の限界をオーバー)するという問題、(3)押出機のダイス口(先端部)から、ペレット化工程(ペレタイズ)までストランドを誘導することができない(粘度が高く、ストランドの伸びが足りない)という問題がなどが発生する場合があり、このような問題が生じるとペレットを作製することができない。そこで、表2~表4においては、上記の問題の何れかが生じてペレットが作製できなかった場合を押出混練「不可」とし、上記のような問題が生じず、ペレットが作製できた場合を押出混練「可」とした。
[実施例12~22]
表3に示した配合になるように、6-ナイロン樹脂(A)とポリテトラフルオロエチレン樹脂(D)を三井三池社製ヘンシェルミキサーに仕込み、低速回転で1分間混合した後、窒化ホウ素(B)と難燃剤(C)を加え、更に低速回転で3分間混合した。その後、実施例1~11と同様にペレットを作製し、各種評価を行った。その結果を表3に示す。
[実施例23]
[実施例23]
表3に示した配合になるように、6-ナイロン樹脂(A)と窒化ホウ素(B)と難燃剤(C)を三井三池社製ヘンシェルミキサーに仕込み、低速回転で3分間混合した。その後、実施例1~11と同様にペレットを作製し、各種評価を行った。その結果を表3に示す。
[比較例1~4]
[比較例1~4]
表4に示した配合になるように、6-ナイロン樹脂(A)と窒化ホウ素(B)を三井三池社製ヘンシェルミキサーに仕込み、低速回転で3分間混合した。その後、実施例1~11と同様にペレットの作製を試みた。比較例1及び4では問題なくペレットを作製することができたので、作製したペレットを用いて各種評価を行った。一方、比較例2及び3では、上述した問題が発生して、ペレットを作製することができなかったので、評価を行うことができなかった。
[比較例5]
[比較例5]
表4に示した配合になるように、ABS樹脂と窒化ホウ素(B)を三井三池社製ヘンシェルミキサーに仕込み、低速回転で3分間混合した。その後、混合物を東芝機械社製二軸押出機(TEM-35B)で設定温度220℃~240℃、スクリュー回転数200rpmで溶融混練し、ペレットの作製を試みた。しかし、上述した問題が発生して、ペレットを作製することができなかったので、評価を行うことができなかった。
[比較例6]
[比較例6]
表4に示した配合になるように、PS樹脂と窒化ホウ素(B)を三井三池社製ヘンシェルミキサーに仕込み、低速回転で3分間混合した。その後、混合物を東芝機械社製二軸押出機(TEM-35B)で設定温度200℃~220℃、スクリュー回転数200rpmで溶融混練し、ペレットの作製を試みた。しかし、上述した問題が発生して、ペレットを作製することができなかったので、評価を行うことができなかった。
[比較例7]
[比較例7]
表4に示した配合になるように、ナイロン66樹脂と窒化ホウ素(B)を三井三池社製ヘンシェルミキサーに仕込み、低速回転で3分間混合した。その後、混合物を東芝機械社製二軸押出機(TEM-35B)で設定温度260℃~290℃、スクリュー回転数200rpmで溶融混練し、ペレットの作製を試みた。しかし、上述した問題が発生して、ペレットを作製することができなかったので、評価を行うことができなかった。
[比較例8]
[比較例8]
表4に示した配合になるように、6-ナイロン樹脂(A)と球状アルミナを三井三池社製ヘンシェルミキサーに仕込み、低速回転で3分間混合した。その後、実施例1~11と同様にペレットを作製し、各種評価を行った。その結果を表4に示す。
[比較例9]
[比較例9]
表4に示した配合になるように、6-ナイロン樹脂(A)と溶融シリカを三井三池社製ヘンシェルミキサーに仕込み、低速回転で3分間混合した。その後、実施例1~11と同様にペレットを作製し、各種評価を行った。その結果を表4に示す。
<測定方法>
各種評価は、以下の測定方法にて行った。
面方向と厚み方向の熱伝導率は、NETZSCH社製熱伝導率測定装置(LFA447 Nanoflash)を用いて、ASTM E 1461に準拠して測定を行った。
各種評価は、以下の測定方法にて行った。
面方向と厚み方向の熱伝導率は、NETZSCH社製熱伝導率測定装置(LFA447 Nanoflash)を用いて、ASTM E 1461に準拠して測定を行った。
比重は、JIS K 7112に準拠して測定した。
難燃性試験は、UL94規格に準拠して行った。
放熱性評価は、次の方法に従って実施した。
図1に示すように箱型成形品は、東芝機械社製射出成形機(IS50EPN)により、縦30×横30×高さ15mm(2mm厚)の箱型成形品を作製した。図2に示すように放熱性評価方法は、箱型成形品1の上部に電気化学工業社製熱伝導スペーサー2(FSL-100B)、パナソニック電工社製LED照明基板3(NNN24505、LED数:4個)の順に密着させ、LED照明基板3(以下、発熱部)上に熱電対4を装着した。発熱部の温度が23℃(室温23℃)からLED照明5を60分連続照射させ、5分、10分、20分、60分後の発熱部の温度を測定し放熱性を評価した。発熱部温度が低いほど(温度上昇が低いほど)外部への熱放出が多く、放熱性に優れることとなる。また、箱型成形品1の重量も測定し軽量化の指標とし、箱型成形品1の外観を以下に示す基準に従って目視で評価した。
(箱型成形品の外観評価)
外観不良は無く、美麗な外観 : ○
わずかな樹脂ヤケ、フラッシュによる外観不良 : △
著しい樹脂ヤケ、フラッシュによる外観不良 : ×
図1に示すように箱型成形品は、東芝機械社製射出成形機(IS50EPN)により、縦30×横30×高さ15mm(2mm厚)の箱型成形品を作製した。図2に示すように放熱性評価方法は、箱型成形品1の上部に電気化学工業社製熱伝導スペーサー2(FSL-100B)、パナソニック電工社製LED照明基板3(NNN24505、LED数:4個)の順に密着させ、LED照明基板3(以下、発熱部)上に熱電対4を装着した。発熱部の温度が23℃(室温23℃)からLED照明5を60分連続照射させ、5分、10分、20分、60分後の発熱部の温度を測定し放熱性を評価した。発熱部温度が低いほど(温度上昇が低いほど)外部への熱放出が多く、放熱性に優れることとなる。また、箱型成形品1の重量も測定し軽量化の指標とし、箱型成形品1の外観を以下に示す基準に従って目視で評価した。
(箱型成形品の外観評価)
外観不良は無く、美麗な外観 : ○
わずかな樹脂ヤケ、フラッシュによる外観不良 : △
著しい樹脂ヤケ、フラッシュによる外観不良 : ×
以上の実施例及び比較例から明らかなように、本発明の実施例の樹脂組成物は、押出混練性に優れており、且つ低比重であり面方向の熱伝導率に優れていることが分かった。
本発明の熱可塑性樹脂組成物は、低比重かつ面方向の熱伝導率に優れる。そのため、本発明の熱可塑性樹脂組成物からなる成形体を用いることで、軽量かつ発熱部に接触している成形体の表面から効率的に放熱することができるので、発熱性電子部品の部材に好適に用いることができる。
1 箱型成形品
2 熱伝導スペーサー
3 LED照明基板
4 熱電対
5 LED照明
2 熱伝導スペーサー
3 LED照明基板
4 熱電対
5 LED照明
Claims (6)
- 6-ナイロン樹脂(A)25~60質量部と、平均粒子径が1~30μmである窒化ホウ素(B)40~75質量部とを合計で100質量部含有してなる熱可塑性樹脂組成物。
- 窒化ホウ素(B)の黒鉛化指数(GI)が5以下である請求項1記載の熱可塑性樹脂組成物。
- 6-ナイロン樹脂(A)と窒化ホウ素(B)の合計量100質量部に対して、無機系難燃剤、ハロゲン系難燃剤、リン系難燃剤の群から選ばれる少なくとも1種以上の難燃剤(C)を10~120質量部含有してなる請求項1又は2に記載の熱可塑性樹脂組成物。
- 難燃剤(C)が水酸化マグネシウムである請求項3記載の熱可塑性樹脂組成物。
- 6-ナイロン樹脂(A)と窒化ホウ素(B)の合計量100質量部に対して、ポリテトラフルオロエチレン樹脂(D)を0.1~5質量部含有してなる請求項3又は4に記載の熱可塑性樹脂組成物。
- 請求項1~5の何れか一項に記載の熱可塑性樹脂組成物からなる成形体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-283819 | 2009-12-15 | ||
JP2009283819A JP2013040220A (ja) | 2009-12-15 | 2009-12-15 | 高放熱性熱可塑性樹脂組成物及びその成形体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011074552A1 true WO2011074552A1 (ja) | 2011-06-23 |
Family
ID=44167305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072412 WO2011074552A1 (ja) | 2009-12-15 | 2010-12-13 | 高放熱性熱可塑性樹脂組成物及びその成形体 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013040220A (ja) |
TW (1) | TW201137009A (ja) |
WO (1) | WO2011074552A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130030105A1 (en) * | 2010-04-07 | 2013-01-31 | Denki Kagaku Kogyo Kabushiki Kaisha | Heat-dissipating resin composition used for led light housing and heat-dissipating housing for led lighting |
JP2013131525A (ja) * | 2011-12-20 | 2013-07-04 | Mitsubishi Electric Corp | 熱伝導性シート用樹脂組成物、熱伝導性シート及びパワーモジュール |
CN104177821A (zh) * | 2013-05-27 | 2014-12-03 | 杜邦公司 | 具有改善的抗冲击性的阻燃性聚酰胺组合物 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6351585B2 (ja) * | 2013-06-03 | 2018-07-04 | デンカ株式会社 | 樹脂含浸窒化ホウ素焼結体およびその用途 |
JP6397180B2 (ja) * | 2013-11-14 | 2018-09-26 | 国立研究開発法人産業技術総合研究所 | 繊維強化樹脂組成物、および繊維強化成形体 |
JP6310240B2 (ja) * | 2013-11-21 | 2018-04-11 | 三菱エンジニアリングプラスチックス株式会社 | レーザーダイレクトストラクチャリング用熱可塑性樹脂組成物、樹脂成形品、および樹脂成形品の製造方法 |
JP2015204352A (ja) * | 2014-04-14 | 2015-11-16 | 株式会社オートネットワーク技術研究所 | リアクトルおよび注型樹脂 |
EP3133103A1 (de) * | 2015-08-21 | 2017-02-22 | LANXESS Deutschland GmbH | Polyamidzusammensetzungen |
CN115991927B (zh) * | 2022-11-15 | 2023-08-11 | 西安建筑科技大学 | 一种阻燃导热环氧树脂复合材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000034107A (ja) * | 1998-07-16 | 2000-02-02 | Denki Kagaku Kogyo Kk | 樹脂添加用窒化硼素とそれを用いた樹脂組成物、放熱部品 |
JP2004035273A (ja) * | 2002-06-28 | 2004-02-05 | Denki Kagaku Kogyo Kk | 六方晶窒化ほう素粉末およびその製造方法、用途 |
JP2007327010A (ja) * | 2006-06-09 | 2007-12-20 | Kaneka Corp | 高熱伝導性熱可塑性樹脂組成物 |
JP2009167359A (ja) * | 2008-01-18 | 2009-07-30 | Techno Polymer Co Ltd | 放熱性樹脂組成物 |
WO2009116357A1 (ja) * | 2008-03-18 | 2009-09-24 | 株式会社カネカ | 高熱伝導性樹脂成形体 |
JP2009263476A (ja) * | 2008-04-24 | 2009-11-12 | Otsuka Chem Co Ltd | 高熱伝導性樹脂組成物 |
JP2010116518A (ja) * | 2008-11-14 | 2010-05-27 | Unitika Ltd | 熱伝導性樹脂組成物およびそれからなる成形体 |
-
2009
- 2009-12-15 JP JP2009283819A patent/JP2013040220A/ja active Pending
-
2010
- 2010-12-13 WO PCT/JP2010/072412 patent/WO2011074552A1/ja active Application Filing
- 2010-12-15 TW TW99144066A patent/TW201137009A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000034107A (ja) * | 1998-07-16 | 2000-02-02 | Denki Kagaku Kogyo Kk | 樹脂添加用窒化硼素とそれを用いた樹脂組成物、放熱部品 |
JP2004035273A (ja) * | 2002-06-28 | 2004-02-05 | Denki Kagaku Kogyo Kk | 六方晶窒化ほう素粉末およびその製造方法、用途 |
JP2007327010A (ja) * | 2006-06-09 | 2007-12-20 | Kaneka Corp | 高熱伝導性熱可塑性樹脂組成物 |
JP2009167359A (ja) * | 2008-01-18 | 2009-07-30 | Techno Polymer Co Ltd | 放熱性樹脂組成物 |
WO2009116357A1 (ja) * | 2008-03-18 | 2009-09-24 | 株式会社カネカ | 高熱伝導性樹脂成形体 |
JP2009263476A (ja) * | 2008-04-24 | 2009-11-12 | Otsuka Chem Co Ltd | 高熱伝導性樹脂組成物 |
JP2010116518A (ja) * | 2008-11-14 | 2010-05-27 | Unitika Ltd | 熱伝導性樹脂組成物およびそれからなる成形体 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130030105A1 (en) * | 2010-04-07 | 2013-01-31 | Denki Kagaku Kogyo Kabushiki Kaisha | Heat-dissipating resin composition used for led light housing and heat-dissipating housing for led lighting |
US8557905B2 (en) * | 2010-04-07 | 2013-10-15 | Denki Kagaku Kogyo Kabushiki Kaisha | Heat-dissipating resin composition used for LED light housing and heat-dissipating housing for LED lighting |
JP2013131525A (ja) * | 2011-12-20 | 2013-07-04 | Mitsubishi Electric Corp | 熱伝導性シート用樹脂組成物、熱伝導性シート及びパワーモジュール |
CN104177821A (zh) * | 2013-05-27 | 2014-12-03 | 杜邦公司 | 具有改善的抗冲击性的阻燃性聚酰胺组合物 |
Also Published As
Publication number | Publication date |
---|---|
JP2013040220A (ja) | 2013-02-28 |
TW201137009A (en) | 2011-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011074552A1 (ja) | 高放熱性熱可塑性樹脂組成物及びその成形体 | |
JP5688409B2 (ja) | Led照明筐体用の放熱性樹脂組成物及びそのled照明用放熱性筐体 | |
US8915617B2 (en) | Thermally conductive thermoplastic for light emitting diode fixture assembly | |
KR101457016B1 (ko) | 내습성 및 열전도성이 우수한 열가소성 수지 조성물 및 성형품 | |
TWI519595B (zh) | 高導熱性樹脂成形體及其製造方法 | |
WO2009116357A1 (ja) | 高熱伝導性樹脂成形体 | |
JP5038257B2 (ja) | 六方晶窒化ホウ素及びその製造方法 | |
JPH08283456A (ja) | 高熱伝導性樹脂組成物及びそのフィルム | |
JP2006328352A (ja) | 絶縁性熱伝導性樹脂組成物及び成形品並びにその製造方法 | |
WO2012049121A1 (en) | Polymer compositions comprising poly(arylether ketone)s and graphene materials | |
JP2008260830A (ja) | 伝熱性樹脂組成物 | |
JP2010001402A (ja) | 高熱伝導性樹脂成形体 | |
KR101675292B1 (ko) | 고열전도 복합소재 | |
JP2016023114A (ja) | 酸化マグネシウム粒子、その製造方法、熱伝導性フィラー、これを用いる熱伝導性樹脂組成物、その成形体及び高熱伝導材料 | |
JP6065922B2 (ja) | 熱伝導性フィラー、その製造方法、これを用いる樹脂組成物、その成形体及び高熱伝導材料 | |
JP6519876B2 (ja) | 六方晶窒化ホウ素の製造方法、及び放熱シートの製造方法 | |
JP2010043229A (ja) | 伝熱性樹脂組成物およびその樹脂成形体 | |
WO2014109134A1 (ja) | 六方晶窒化ホウ素及びそれを用いた高熱伝導性樹脂成形体 | |
JP7495181B2 (ja) | 樹脂成形体 | |
KR20140134756A (ko) | 고분자 수지 조성물과 제조 방법, 및 플라스틱 사출 성형품 | |
JP2016088984A (ja) | ポリフェニレンスルフィド樹脂組成物および成形品 | |
WO2023026997A1 (ja) | 液晶ポリエステルペレット組成物及び射出成形品 | |
WO2023026998A1 (ja) | 液晶ポリエステルペレット組成物及び射出成形品 | |
JP2015107889A (ja) | 分散性が改良された窒化ホウ素及びそれを用いた樹脂組成物 | |
KR20220101220A (ko) | 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10837578 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10837578 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |