CN105385448A - 红光增强的核壳上转换发光纳米载体及制备方法 - Google Patents

红光增强的核壳上转换发光纳米载体及制备方法 Download PDF

Info

Publication number
CN105385448A
CN105385448A CN201510689587.6A CN201510689587A CN105385448A CN 105385448 A CN105385448 A CN 105385448A CN 201510689587 A CN201510689587 A CN 201510689587A CN 105385448 A CN105385448 A CN 105385448A
Authority
CN
China
Prior art keywords
nano
carrier
oleic acid
gelatin
oleate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510689587.6A
Other languages
English (en)
Other versions
CN105385448B (zh
Inventor
杨飘萍
徐加廷
吕锐婵
杨丹
贺飞
盖世丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201510689587.6A priority Critical patent/CN105385448B/zh
Publication of CN105385448A publication Critical patent/CN105385448A/zh
Application granted granted Critical
Publication of CN105385448B publication Critical patent/CN105385448B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media

Abstract

本发明提供的是一种红光增强的核壳上转换发光纳米载体及制备方法。该种材料的其化学表达式为:NaGdF4:Yb,Er,MnNaGdF4:Ybgel。其中,“”表示包覆,“gel”代表明胶。本发明材料的技术特征是采用绿色环保、操作简单易行的高温热解法生成均匀的、单分散的纳米晶,并采用自组装法在纳米粒子疏水表面包覆明胶形成表面亲水且带有大量活性基团的NaGdF4:Yb,Er,MnNaGdF4:Ybgel。该方案制备的纳米复合材料同时具有红光增强发光性能的同时保持较强的发光总强度以及带有大量活性基团的亲水表面。该种纳米载体具有增强的红光发射和较强的荧光强度,同时具有亲水活性表面而可以作为优良的光敏剂载体。

Description

红光增强的核壳上转换发光纳米载体及制备方法
技术领域
本发明涉及的是一种核壳上转换发光纳米载体。本发明也涉及的是一种核壳上转换发光纳米载体的制备方法。
背景技术
稀土氧化物的化学稳定性好、机械强度高、激光损伤阈值高,但是氧化物的声子能量过高,导致了稀土离子掺杂的氧化物发光效率很低;而稀土氟化物由于具有较低的声子能量、无辐射跃迁几率小,掺杂浓度高,对于稀土离子是比较好的基质,在发光材料领域具有潜在的广阔的应用前景。
传统纳米材料的主要合成方法有固相法和液相法,其中液相法由于操作安全、只需简单的设备、具有较均匀的产物而被广泛使用。液相法包括共沉淀法、水热/溶剂热法、溶胶-凝胶法和高温热解法。其中,高温热解法在近几年里脱颖而出并得到了广泛的研究,因为该方法制备的产物具有较高的结晶度高、粒度分布窄、分散性好,且装置简单,易于操作。目前,稀土氟化物的高温热解方法主要是采用稀土油酸盐与氟化钠在过高温溶剂中反应后生成均匀的纳米晶,进而用稀土三氟乙酸盐与三氟乙酸钠在高温溶剂中实现壳层的包覆。而用这种方法生成红光增强的核壳结构的稀土氟化物纳米晶的相关研究还未进行。最近,上海大学纳米科学与技术研究中心用水热法合成了具有红光发射的稀土上转换纳米晶,所得到的NaYF4纳米晶具有分散性良好、尺寸较均匀的特点,但是这种纳米材料是立方晶相,发光效率较低。
作为稀土荧光化合物,仅仅具有一种功能存在很多局限性。为了实现其在生物及其他相关领域的深度应用,对其进行结构改造,如生成核壳、空心、介孔结构等成了一种趋势。中国科学院长春应用化学研究所林君课题组提出了用高温热解法生成纳米级的磁性材料,并对其表面使用荧光分子修饰的明胶进行包覆,从而实现了功能性载药应用于抗癌治疗。而寻求新的具有较优异荧光性能的材料作为内核,仍然需要进一步探讨研究。
综上,具有普遍意义、可适用液相法制备红光增强的高性能多功能稀土氟化物纳米载体的方案或路线还没有报道过。
发明内容
本发明的目的在于提供一种有较好的荧光性能的红光增强的核壳上转换发光纳米载体。本发明的目的还在于提供一种简单易行、所生成的纳米材料粒径分布均匀的红光增强的核壳上转换发光纳米载体的制备方法。
本发明的红光增强的核壳上转换发光纳米载体的化学表达式为:
NaGdF4:Yb,Er,MnNaGdF4:Ybgel,其中,“”表示包覆,“gel”代表明胶。
本发明的红光增强的核壳上转换发光纳米载体的制备方法为:
(1)分别合成含有金属元素钆、锰、镱及铒的油酸盐:取10~30mmol相应金属氯化物、60~90mmol油酸钠40~50mL蒸馏水、60~70mL乙醇和100~110mL正己烷加到入容器中,混合溶液加热到70℃,反应4h,冷却至室温后,将混合溶液倒入分液漏斗中,用蒸馏水洗三次,取上层液体在80℃下烘干,在室温下放置三天,得到的固体蜡状物质为含有相应金属元素的油酸盐前驱体;
(2)采用高温热解法制备NaGdF4:18%Yb/2%Er/40%Mn:将物质的量分数为40%油酸钆、40%油酸锰、18%油酸镱和2%油酸铒和构成的油酸盐前驱体和与油酸钆物质的量3~5倍的氟化钠混合,再加入十八烯和油酸,抽真空,搅拌加热到100~110℃,待不再有气泡,通氮气反应0.5~1h,然后升温至300~310℃,通氮气搅拌反应1~1.5h,随后自然冷却降至室温经乙醇和环己烷洗涤后,所制备的纳米颗粒保存在环己烷液体中;
(3)采用包覆法制备NaGdF4:18%Yb/2%Er/40%MnNaGdF4:20%Yb:将物质的量分数为80%的三氟乙酸钆(Gd(CF3COO)3)、20%三氟乙酸镱(Yb(CF3COO)3)和与三氟乙酸钆物质的量1~2倍的三氟乙酸钠(CF3COONa)与步骤(2)中制得的环己烷溶液混合,再加入十八烯和油酸;在搅拌、抽真空状态下加热至110~120℃,待不再有气泡产生,关闭真空装置,通氮气保持0.5~1h,然后升温至310~320℃反应保持1~1.5h,随后自然冷却降至室温;经乙醇和环己烷离心洗涤后,所制备的纳米颗粒被保存在环己烷液体中;
(4)采用自组装法制备NaGdF4:18%Yb/2%Er/40%MnNaGdF4:20%Ybgel:在容器中加入10~20mg明胶、10~20mL去离子水,在30~40℃水浴中超声1~2h;并将步骤(3)得到的纳米粒子的环己烷溶液加入;强烈搅拌,待有机溶剂完全蒸发掉,离心并用去离子水洗涤,所制备得明胶包覆纳米复合物保存在去离子水中。
本发明提出:①以油酸和十八烯作为混合溶剂,稀土油酸盐和油酸锰作为前驱体,在氟化钠的共同参与下,生成单分散稀土氟化物纳米颗粒为核;继续以稀土三氟乙酸盐和三氟乙酸钠在高温溶剂中共同作用实现壳层稀土氟化物纳米晶的包覆。②利用自组装法在得到的纳米颗粒表面包覆明胶层,将表面疏水的纳米粒子转为亲水,同时明胶表面大量的活性基团可与其他功能分子(例如,光敏剂)轻易连接。其具体制备方案、结构设计以及理论的通用性在国内外尚属空白。
本发明的技术特征主要体现在:
通过两步高温热解法将“活性”层包覆在发光内核上构造核壳结构,实现了粒径较小的核壳结构纳米材料荧光强度的增强(约为5倍),同时还有增强红光的作用。
所采用的液相方法为高温热解法,这种方法绿色环保,操作简单易行,且生成的核壳结构纳米粒子粒径分布窄,形貌好。
所采用的NaGdF4核壳结构纳米材料具有优异的荧光性能,可以通过锰元素与稀土元素的共掺杂(Yb/Er/Mn)和“活性”壳层NaGdF4:Yb的包覆实现红光增强的目的,“活性”壳层的包覆同时具有增强荧光强度的作用。
NaGdF4纳米复合物除了优异的荧光性能,还具有带有大量活性基团的亲水表面,这种特征使得该材料可以作为光动力治疗药物载体,从而在抗癌治疗和生物成像领域应用前景广阔。
本发明采用水相法(高温热解法和自组装法)制备NaGdF4:Yb/Er/MnNaGdF4:Ybgel上转换发光纳米载体材料。这种发明方法有三个特点:一是生成这种材料的制备方法包括高温热解法、自组装法,简单易行,所生成的纳米材料粒径分布均匀。二是稀土氟化物上转换发光材料有较好的荧光性能,而且掺入锰和包覆“活性”壳层使得发光总强度尤其是红光发射增强,是较好的上转换荧光材料。三是最后用明胶包覆后形成带有大量活性基团的亲水表面,使其可以作为一种潜在的药物载体。该合成路线产物纯度高、粒径较均匀、操作简单易行,且绿色环保,最重要的是该种产物可以作为一种潜在的诊疗一体的光成像引导的药物载体。
附图说明
图1为自组装法合成明胶包覆的上转换发光纳米载体的示意图。
图2(a)为生成的NaGdF4:Yb/Er/Mn纳米粒子的透射图,图2(b)为生成的NaGdF4:Yb/Er/MnNaGdF4:Yb核壳结构纳米粒子的透射图,图2(c)为生成的NaGdF4:Yb/Er/MnNaGdF4:Ybgel纳米复合物的透射图,图2(d)为生成的NaGdF4:Yb/Er/MnNaGdF4:Ybgel的高分辨透射图。
图3(a)为生成的NaGdF4:Yb/Er纳米粒子的上转换发射光谱图,图3(b)为NaGdF4:Yb/Er/Mn纳米粒子的上转换发射光谱图,图3(c)为NaGdF4:Yb/Er/MnNaGdF4:Yb核壳结构纳米粒子的上转换发射光谱图,均采用980纳米激光激发,测试环境和参数相同。
具体实施方式
本发明是采用简单易行、绿色环保的高温热解方法生成一种具有红光增强上转换荧光性能的稀土氟化物纳米晶。通过自组装法将带有大量活性基团的明胶包覆在纳米粒子表面,从而形成可以载药的活性亲水表面。该方案制备的纳米复合材料具有红光增强的上转换发光性能的同时还保持了很强的荧光强度。另外,具有大量活性基团的明胶表面层使得其可以作为光敏剂载体。本发明的技术方案主要包括如下步骤:
(1)分别合成油酸钆、油酸锰、油酸镱和油酸铒:取10~30mmol相应金属氯化物、60~90mmol油酸钠、40~50mL蒸馏水、60~70mL乙醇和100~110mL正己烷加到入容器中,混合溶液在恒温加热磁力搅拌器中磁力搅拌下加热到70℃,反应4h,停止加热冷却至室温后,将混合溶液倒入分液漏斗中,用蒸馏水洗三次,取上层液体在80℃下水浴烘干,在室温下放置三天,得到的固体蜡状物质为含有金属元素的油酸盐前驱体;
(2)采用高温热解法制备NaGdF4:18%Yb/2%Er/40%Mn:将物质的量分数为40%油酸钆、40%油酸锰、18%油酸镱和2%油酸铒和构成的油酸盐前驱体和与油酸钆物质的量3~5倍的氟化钠混合,再加入十八烯和油酸,抽真空,搅拌加热到100~110℃,待不再有气泡,通氮气反应0.5~1h,然后升温至300~310℃,通氮气磁力搅拌反应1~1.5h,随后自然冷却降至室温经乙醇和环己烷洗涤三次后,所制备的纳米颗粒被保存在环己烷液体中;
(3)采用包覆法制备NaGdF4:18%Yb/2%Er/40%MnNaGdF4:20%Yb:将物质的量分数为80%的三氟乙酸钆(Gd(CF3COO)3)、20%三氟乙酸镱(Yb(CF3COO)3)和与三氟乙酸钆物质的量1~2倍的三氟乙酸钠(CF3COONa)与(2)中制得的环己烷溶液混合,再加入十八烯和油酸;在搅拌、抽真空状态下加热至110~120℃,待不再有气泡产生,关闭真空装置,通氮气保持0.5~1h,然后升温至310~320℃反应保持1~1.5h,随后自然冷却降至室温;经乙醇和环己烷离心洗涤三次后,所制备的纳米颗粒被保存在环己烷液体中;
(4)采用自组装法制备NaGdF4:18%Yb/2%Er/40%MnNaGdF4:20%Ybgel:在容器中加入10~20mg明胶、10~20mL去离子水,在30~40℃水浴中超声1~2h;并将盛有纳米粒子的环己烷溶液加入烧杯;强烈搅拌,待有机溶剂完全蒸发掉,离心并用去离子水洗涤三次去除多余的明胶,所制备得明胶包覆纳米复合物保存在去离子水中。
下面结合实施实例对本发明的技术方案及效果作进一步描述。但是,所使用的具体方法、配方和说明并不是对本发明的限制。
(1)合成含有金属元素的油酸盐(包括油酸钆、油酸锰、油酸镱和油酸铒):取10mmol金属氯化物、30mmol油酸钠、15mL蒸馏水、20mL乙醇和35mL正己烷加到入容器中,混合溶液在恒温加热磁力搅拌器中磁力搅拌下加热到70℃,反应4h,停止加热冷却至室温后,将混合溶液倒入分液漏斗中,用蒸馏水洗三次,取上层液体在80℃下水浴烘干,在室温下放置三天,得到的固体蜡状物质为含有金属元素的油酸盐前驱体;
(2)采用高温热解法制备NaGdF4:18%Yb/2%Er/40%Mn:称取0.4006g油酸钆、0.1831g油酸镱、0.0202g油酸铒、0.2472g油酸锰和0.21g氟化钠于三口烧瓶中,加入15mL十八烯和15mL油酸;在搅拌、抽真空状态下加热至110℃,待不再有气泡产生,关闭真空装置,通氮气保持10min,然后升温至300℃反应保持1.5h,随后自然冷却降至室温;经乙醇和环己烷洗涤三次后,所制备的纳米颗粒被保存在环己烷液体中;
(3)采用包覆法制备NaGdF4:18%Yb/2%Er/40%MnNaGdF4:20%Yb:在150mL的三口瓶中加入过程(2)中制得的环己烷溶液;同时称取0.1985g三氟乙酸钆(Gd(CF3COO)3)、0.0512g三氟乙酸镱(Yb(CF3COO)3)、0.136g三氟乙酸钠(CF3COONa)于三口烧瓶中,加15mL油酸和15mL十八烯;在搅拌、抽真空状态下加热至120℃,待不再有气泡产生,关闭真空装置,通氮气保持20min,然后升温至310℃反应保持1h,随后自然冷却降至室温;经乙醇和环己烷离心洗涤三次后,所制备的纳米颗粒被保存在环己烷液体中;
(4)采用自组装法制备NaGdF4:18%Yb/2%Er/40%MnNaGdF4:20%Ybgel:在100mL的烧杯中加入15mg明胶、15mL去离子水,在约40℃水浴中超声1h;并将盛有纳米粒子的环己烷溶液(约4mg/mL)5mL加入烧杯;强烈搅拌,待有机溶剂完全蒸发掉,离心并用去离子水离心洗涤三次去除多余的明胶,所制得的纳米复合物保存在去离子水中。

Claims (2)

1.一种红光增强的核壳上转换发光纳米载体,其特征是化学表达式为:
NaGdF4:Yb,Er,MnNaGdF4:Ybgel,其中,“”表示包覆,“gel”代表明胶。
2.一种红光增强的核壳上转换发光纳米载体的制备方法,其特征是:
(1)分别合成含有金属元素钆、锰、镱及铒的油酸盐:取10~30mmol相应金属氯化物、60~90mmol油酸钠40~50mL蒸馏水、60~70mL乙醇和100~110mL正己烷加到入容器中,混合溶液加热到70℃,反应4h,冷却至室温后,将混合溶液倒入分液漏斗中,用蒸馏水洗三次,取上层液体在80℃下烘干,在室温下放置三天,得到的固体蜡状物质为含有相应金属元素的油酸盐前驱体;
(2)采用高温热解法制备NaGdF4:18%Yb/2%Er/40%Mn:将物质的量分数为40%油酸钆、40%油酸锰、18%油酸镱和2%油酸铒和构成的油酸盐前驱体和与油酸钆物质的量3~5倍的氟化钠混合,再加入十八烯和油酸,抽真空,搅拌加热到100~110℃,待不再有气泡,通氮气反应0.5~1h,然后升温至300~310℃,通氮气搅拌反应1~1.5h,随后自然冷却降至室温经乙醇和环己烷洗涤后,所制备的纳米颗粒保存在环己烷液体中;
(3)采用包覆法制备NaGdF4:18%Yb/2%Er/40%MnNaGdF4:20%Yb:将物质的量分数为80%的三氟乙酸钆、20%三氟乙酸镱和与三氟乙酸钆物质的量1~2倍的三氟乙酸钠(CF3COONa)与步骤(2)中制得的环己烷溶液混合,再加入十八烯和油酸;在搅拌、抽真空状态下加热至110~120℃,待不再有气泡产生,关闭真空装置,通氮气保持0.5~1h,然后升温至310~320℃反应保持1~1.5h,随后自然冷却降至室温;经乙醇和环己烷离心洗涤后,所制备的纳米颗粒被保存在环己烷液体中;
(4)采用自组装法制备NaGdF4:18%Yb/2%Er/40%MnNaGdF4:20%Ybgel:在容器中加入10~20mg明胶、10~20mL去离子水,在30~40℃水浴中超声1~2h;并将步骤(3)得到的纳米粒子的环己烷溶液加入;强烈搅拌,待有机溶剂完全蒸发掉,离心并用去离子水洗涤,所制备得明胶包覆纳米复合物保存在去离子水中。
CN201510689587.6A 2015-10-21 2015-10-21 红光增强的核壳上转换发光纳米载体及制备方法 Active CN105385448B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510689587.6A CN105385448B (zh) 2015-10-21 2015-10-21 红光增强的核壳上转换发光纳米载体及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510689587.6A CN105385448B (zh) 2015-10-21 2015-10-21 红光增强的核壳上转换发光纳米载体及制备方法

Publications (2)

Publication Number Publication Date
CN105385448A true CN105385448A (zh) 2016-03-09
CN105385448B CN105385448B (zh) 2017-07-11

Family

ID=55418238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510689587.6A Active CN105385448B (zh) 2015-10-21 2015-10-21 红光增强的核壳上转换发光纳米载体及制备方法

Country Status (1)

Country Link
CN (1) CN105385448B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441220A (zh) * 2018-04-24 2018-08-24 合肥亨纳生物科技有限公司 晶格缺陷调控正交发射稀土上转换纳米颗粒及制备方法
CN108653734A (zh) * 2018-08-28 2018-10-16 北京化工大学 一种高效上转换纳米粒子光敏剂复合物及其制备方法与应用
CN108785745A (zh) * 2018-06-28 2018-11-13 中南大学湘雅医院 具有释氧能力的组织修复材料及其制备方法和应用
CN109813424A (zh) * 2019-01-28 2019-05-28 天津大学 一种活体用柔性上转换绿光传感器及其制备方法
CN113130777A (zh) * 2019-12-30 2021-07-16 Tcl集团股份有限公司 复合材料及其制备方法和发光二极管
CN116814265A (zh) * 2023-06-29 2023-09-29 华南师范大学 一种近红外光增强气体传感复合材料及电阻式室温传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925157A (zh) * 2012-11-27 2013-02-13 哈尔滨工业大学 核壳结构NaY(98-X)% F4:X%Yb,2%Er@NaDyF4的制备方法
CN102977887A (zh) * 2011-09-02 2013-03-20 中国科学院高能物理研究所 一种上转换荧光材料的制备方法
WO2013040464A1 (en) * 2011-09-16 2013-03-21 The Regents Of The University Of California Controlled synthesis of bright and compatible lanthanide-doped upconverting nanocrystals
CN103788952A (zh) * 2014-01-24 2014-05-14 中国科学院长春光学精密机械与物理研究所 高掺杂宽带激发稀土上转换荧光纳米材料及其制备方法
CN104592990A (zh) * 2014-12-15 2015-05-06 中国科学院长春应用化学研究所 非镉基水溶性核壳结构量子点的制备方法及该量子点在银纳米线发光透明导电薄膜中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102977887A (zh) * 2011-09-02 2013-03-20 中国科学院高能物理研究所 一种上转换荧光材料的制备方法
WO2013040464A1 (en) * 2011-09-16 2013-03-21 The Regents Of The University Of California Controlled synthesis of bright and compatible lanthanide-doped upconverting nanocrystals
CN102925157A (zh) * 2012-11-27 2013-02-13 哈尔滨工业大学 核壳结构NaY(98-X)% F4:X%Yb,2%Er@NaDyF4的制备方法
CN103788952A (zh) * 2014-01-24 2014-05-14 中国科学院长春光学精密机械与物理研究所 高掺杂宽带激发稀土上转换荧光纳米材料及其制备方法
CN104592990A (zh) * 2014-12-15 2015-05-06 中国科学院长春应用化学研究所 非镉基水溶性核壳结构量子点的制备方法及该量子点在银纳米线发光透明导电薄膜中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZIYONG CHENG等: "Gelatin-encapsulated iron oxide nanoparticles for platin m (IV) prodru g delivery, enzyme-stimulated release and MRI", 《BIOMATERIALS》 *
霍晓梅: "Mn2+掺杂的NaGdF4:Yb3+,Ln(Ln=Er3+,Tm3+)纳米粒子的制备及性能", 《中国优秀硕士学位论文全文数据库,工程科技Ⅰ辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441220A (zh) * 2018-04-24 2018-08-24 合肥亨纳生物科技有限公司 晶格缺陷调控正交发射稀土上转换纳米颗粒及制备方法
CN108441220B (zh) * 2018-04-24 2020-10-16 合肥亨纳生物科技有限公司 晶格缺陷调控正交发射稀土上转换纳米颗粒及制备方法
CN108785745A (zh) * 2018-06-28 2018-11-13 中南大学湘雅医院 具有释氧能力的组织修复材料及其制备方法和应用
CN108785745B (zh) * 2018-06-28 2021-03-30 中南大学湘雅医院 具有释氧能力的组织修复材料及其制备方法和应用
CN108653734A (zh) * 2018-08-28 2018-10-16 北京化工大学 一种高效上转换纳米粒子光敏剂复合物及其制备方法与应用
CN108653734B (zh) * 2018-08-28 2020-04-03 北京化工大学 一种高效上转换纳米粒子光敏剂复合物及其制备方法与应用
CN109813424A (zh) * 2019-01-28 2019-05-28 天津大学 一种活体用柔性上转换绿光传感器及其制备方法
CN113130777A (zh) * 2019-12-30 2021-07-16 Tcl集团股份有限公司 复合材料及其制备方法和发光二极管
CN113130777B (zh) * 2019-12-30 2022-06-24 Tcl科技集团股份有限公司 复合材料及其制备方法和发光二极管
CN116814265A (zh) * 2023-06-29 2023-09-29 华南师范大学 一种近红外光增强气体传感复合材料及电阻式室温传感器
CN116814265B (zh) * 2023-06-29 2024-04-19 华南师范大学 一种近红外光增强气体传感复合材料及电阻式室温传感器

Also Published As

Publication number Publication date
CN105385448B (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
CN105385448A (zh) 红光增强的核壳上转换发光纳米载体及制备方法
CN105623663B (zh) 一种红色上转换发光纳米载体及制备方法
CN102268259B (zh) 发光中心分区域掺杂稀土上转换荧光材料及其制备方法
CN107739603B (zh) 一种激发光调控的红绿色发光稀土上转换纳米颗粒及其制备方法
CN103623852B (zh) 一种上转换纳米晶/二氧化钛复合纳米材料及其制备方法
CN112080278B (zh) 一种上/下转换双模式发光纳米晶及其制备方法和应用
CN105348890A (zh) 一种发光复合涂料的制备方法
CN102936500B (zh) 核壳结构光磁双功能纳米复合材料及制备方法
CN103589432A (zh) 稀土掺杂氟化镥锂纳米材料及其制备与应用
CN112940726B (zh) 一种蓝紫和近红外二区双模式发光纳米晶及制备方法
CN103980904B (zh) 一种氟化钇锂纳米复合材料及其制备方法和在光动力学治疗中的应用
CN103881720A (zh) 一种利用核壳包覆制备高掺杂的稀土上转换荧光材料的方法
CN104498038A (zh) 一种稀土上转换发光核壳纳米发光材料及其制备方法
CN103215037A (zh) 聚丙烯酸钠微球模板合成上转换荧光中空纳米球的方法
CN106318392A (zh) 一种同时具备上/下转换荧光和光热性能的稀土纳米材料
CN106319661A (zh) 一种制备高分子‑微/纳米发光复合纤维的方法
CN103540310A (zh) 用于多形貌稀土上转换发光纳米晶表面直接介孔修饰的制备方法
CN103788952A (zh) 高掺杂宽带激发稀土上转换荧光纳米材料及其制备方法
CN113549446A (zh) 一种钕敏化的稀土发光多层核壳结构材料、其制备方法和应用
CN104910915A (zh) 一种亲水性稀土纳米材料的制备方法及其应用
CN103102883A (zh) 一维氟化物核壳结构发光材料及其制备方法
CN103289701B (zh) 异质核壳结构CaF2:20Yb,2Ho@NaGdF4纳米晶的制备方法
CN114836216A (zh) 一种能提高单线态氧生成的稀土纳米复合材料、其制备方法及其应用
CN105602566B (zh) 一种稀土掺杂NaGdF4上转换纳米晶及其制备方法
CN102344807B (zh) 溶剂热合成NaLn(MoO4)2微米晶的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant