CN104884668A - 用于切削工具的多层薄膜以及包含其的切削工具 - Google Patents

用于切削工具的多层薄膜以及包含其的切削工具 Download PDF

Info

Publication number
CN104884668A
CN104884668A CN201380068331.2A CN201380068331A CN104884668A CN 104884668 A CN104884668 A CN 104884668A CN 201380068331 A CN201380068331 A CN 201380068331A CN 104884668 A CN104884668 A CN 104884668A
Authority
CN
China
Prior art keywords
multilayer film
thin layer
cutting tool
film
described thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380068331.2A
Other languages
English (en)
Other versions
CN104884668B (zh
Inventor
安承洙
朴帝勋
李成九
安鲜蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korloy Inc
Original Assignee
Korloy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korloy Inc filed Critical Korloy Inc
Publication of CN104884668A publication Critical patent/CN104884668A/zh
Application granted granted Critical
Publication of CN104884668B publication Critical patent/CN104884668B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种用于切削工具的多层薄膜,其中包括总共四个薄层的单元膜被堆叠至少两次,以通过控制四个薄层之间的弹性模量和晶格常数的周期来实现与现存的多层薄膜相比增强的物理性质。在用于切削工具的多层薄膜中,根据本发明,包括薄层A、薄层B、薄层C和薄层D并以此顺序堆叠的单元薄膜被堆叠至少两次,其中,薄膜之间的弹性模量(k)是kA、kCkB、kD,或kB、kDkC、kA,并且薄膜之间的晶格常数(L)是LALB、LDLC或LCLB、LDLA

Description

用于切削工具的多层薄膜以及包含其的切削工具
技术领域
本公开涉及一种用于切削工具的多层薄膜,并且更具体地,涉及一种用于切削工具的多层薄膜,其中每个具有几纳米到几十纳米厚度的超晶格薄膜以A-B-C-D或A-B-C-B的形式被堆叠,其能够实现较小的质量变化和优异的耐磨性。
背景技术
从二十世纪八十年代,为了开发用于具有高硬度的切削工具的材料,已经提出了各种基于TiN的多层膜系统。
例如,通过交替地和重复地堆叠TiN或VN形成的几纳米厚度的多层膜提供了由在层之间具有与每个单层的晶格参数的差异无关的、带有共格界面的单晶格参数的所谓的超晶格形成的涂层,并且在这种情况下,与一般的每个单层的硬度相比,能够实现两倍或更高的硬度。因此,已经有将这种现象应用于用于切削工具的薄膜的各种尝试。
在这些超晶格涂层中改善的物理性质的原理已经被描述为强化机制(诸如,Koehler模型、Hall-Petch关系、以及共格应变模型)。通过控制A和B之间的晶格参数的差异、A和B之间的弹性模量的差异、或根据A和B材料交替沉积的堆叠期间,实现了这些强化机制。
通常,很难通过两种材料的交替堆叠应用两个或更多的强化机制的机制。具体地,在多个批次之间以及一批中的多层薄膜的堆叠期间具有严重偏差的批量生产条件下,难以制造出具有优异的耐磨性、具有均匀质量的多层薄膜。
因此,在通过交替堆叠如美国专利第5,700,551号所公开的两种或更多种材料的多层薄膜的形成中,照惯例常见的是,如图1所示,层被堆叠使得在弹性周期(实线)和晶格周期(虚线)彼此一致。然而,在这种情况下,很难同时利用上述各种强化机制,使得在改善多层薄膜的耐磨性上存在限制。
此外,组成通过交替堆叠形成的多层薄膜的每个薄膜通常具有非常小的大约几纳米到几十纳米的厚度,当这样形成的多层薄膜被长时间暴露于在切割期间产生的高温环境中时,使得在相邻薄膜之间也存在局限性,其在于通过构成薄膜的部件的相互扩散,多层薄膜的物理性质被恶化。
发明内容
技术问题
本公开的目的是在由超晶格形成的多层薄膜的形成中提供一种用于切削工具的多层薄膜,该多层薄膜通过调整多层薄膜的晶格周期和弹性周期具有与传统的超晶格涂层相比改进的耐磨性,使得两种或多种薄膜强化机制对多层薄膜起作用;以及提供一种涂有该多层薄膜的切削工具。
本发明的另一个目的是提供一种多层薄膜,其中,构成多层薄膜的薄层间的相互扩散被阻止,并且多层薄膜的强化效果与传统方法相比可以因此持续很长时间;以及提供一种涂有多层薄膜的切削工具。
技术方案
为了解决上述技术问题,本公开提供一种用于切削工具的多层薄膜,其中,各自以薄层A、B、C和D顺序地堆叠的单元薄膜被堆叠一次以上,其中薄层之间的弹性模量k满足关系kA、kC>kB、kD或kB、kD>kC、kA,以及薄层之间的晶格参数L满足关系LA>LB、LD>LC或LC>LB、LD>LA
在根据本公开的多层薄膜中,优选的是,晶格参数L的最大值和最小值之间的差异为20%或更小。
在根据本公开的多层薄膜中,薄层B和D的组成元素可以与邻近于薄层B和D的薄层A和C的组成元素相同,或可以包括薄层A和C的组成元素中的至少一种。
在根据本公开的多层薄膜中,多层薄膜的平均晶格周期λL可以是它的平均弹性周期λk的两倍大。
在根据本公开的多层薄膜中,单元薄膜可以具有4nm至50nm的厚度。
在根据本公开的多层薄膜中,薄层B和D可以由相同材料形成。
此外,本公开提供了一种包括该多层薄膜的切削工具。
有益效果
通过控制构成多层薄膜的薄层之间的晶格参数的差异以及根据本公开的弹性模量的差异形成的多层薄膜可以同时满足用于强化薄膜的强化条件(诸如,弹性模量的大的差异、单元薄膜间的晶格参数的差异的最小化、以及各层之间的热膨胀系数的差异的最小化),使得因此形成的多层薄膜还可以具有改进的物理性质。
此外,根据本公开的多层薄膜使薄层之间的组成差异最小化,并且因此阻止了层之间的相互扩散,由此即使是在高温下的切割环境中也可有利地保持多层薄膜的物理性质很长时间。
此外,根据本公开的多层薄膜通过应用两个或多个强化机制具有改进的物理性质,使得即使批次之间具有较大的薄膜厚度的差异,质量变化也是小的。因此,多层薄膜在生产率方面也是有利的。
附图说明
图1示出了传统的超晶格多层薄膜中的弹性周期和晶格周期之间的关系。
图2示出了在根据本公开的超晶格多层薄膜中的弹性周期和晶格周期之间的关系。
图3示出了根据本公开的多层薄膜中的薄层间的组成差异。
图4是示出了根据基于(Ti1-xAlx)N的薄膜中铝含量的晶格参数的变化的曲线图。
图5是示出了根据本公开的示例1的多层薄膜和根据比较例的多层薄膜的车削性能测试结果的照片。
图6是示出了根据本公开的示例1的多层薄膜和根据比较例的多层薄膜的铣削性能测试结果的照片。
图7是示出了根据本公开的示例2的多层薄膜和根据比较例的多层薄膜的切削性能测试结果的照片。
具体实施方式
在下文中,将基于其示例性实施方式详细描述本公开,但是本发明构思不限于下面的实施方式。
本发明人发现,当弹性周期和晶格周期在单元薄膜的堆叠中被调整为彼此不同而不是使两个周期彼此一致时,两个或多个强化机制(即,Koehler模型机制和Hall-Petch关系机制)可以有效地起作用,特别是在层压超晶格薄膜上,并且因此改善了多层薄膜的耐磨性,并且在与单个强化机制主要起作用于其上的多层薄膜相比的大批量生产中也减小了质量变化,并且最终完成了本发明。
根据本公开的多层薄膜是多层薄膜,其中,各自以薄层A、B、C和D顺序地堆叠的单元薄膜被堆叠一次以上,其中,薄层之间的弹性模量k满足关系kA、kC>kB、kD或kB、kD>kC、kA,并且薄层之间的晶格参数L满足关系LA>LB、LD>LC或LC>LB、LD>LA
图2示出了根据本公开的超晶格多层薄膜中弹性周期和晶格周期之间的关系的示例。如图2所示,可以看出,根据本公开的超晶格多层薄膜与图1的不同之处在于,弹性周期(实线)大约是晶格周期(虚线)的两倍大,并且弹性周期和晶格周期因此彼此不一致。
在与弹性模量相关的Koehler模型中,描述了当薄膜A和B的厚度变得足够小以至小于或等于对应于大约100个原子层的厚度的20纳米至30纳米时产生的强化效应,这是一种难以产生位错的临界厚度。另一方面,在Hall-petch模型中,其描述了由于晶格参数的差异区分的材料周期,描述了在较低的水平(即,几纳米)产生的强化效应。本发明的概念是弹性周期和晶格周期被调整为相互不一致,使得可以产生两种强化效果。
而且,当晶格参数L的最大值和最小值之差大于20%时,难以形成超晶格。因此,优选的是,调整晶格参数,使得如果可能的话产生的差值在20%或更小的范围内。
根据本公开的多层薄膜目的在于单元薄膜由四层形成,并且每个单元薄膜中的堆叠可以被配置为顺序A-B-C-D或A-B-C-B。也就是说,第二层和第四层可以由不同的材料或相同的材料形成。
此外,平均弹性周期和平均晶格周期之间的差值落在本发明的范围内,并且优选地,平均弹性周期可以是平均晶格周期的两倍大。
如图3A所示,当堆叠的薄层之间的浓度梯度(A层–C层)很大时,引起扩散的驱动力增加,使得在长时间暴露于较高温下的切割环境中的相互扩散的可能性变得更高。另一方面,如图3B所示,当堆叠的薄层之间的浓度梯度(A层-B层、B层-C层)很小时,引起扩散的驱动力减小,并且因此相互扩散也可以被延迟。
因此,为了尽可能多的减少相邻堆叠的薄层之间的组分差异,在根据本公开的多层薄膜中,薄层B和D的构成元素可以与邻近于薄层B和D的薄层A和C的构成元素相同,或者可以包括薄层A和C的构成元素中的至少一种。
[示例1]
在超晶格多层薄膜的形成之前,在该多层薄膜中,每一个是由四层薄层形成的单元薄膜被重复地堆叠至两层或更多层,单层薄膜被沉积,并且为了确定每个薄层的弹性模量,测量了组成单元薄膜的每个薄层的弹性模量。结果如表1所示。
作为物理汽相沉积(PVD)方法中的一种方法的电弧离子镀被用于单元薄膜的沉积。初始真空压强降至8.5*10-5Torr或更低,然后注入N2作为反应气体,并且在反应气体压强为40mTorr或更小(优选为10至35mTorr)、温度为400℃~600℃、以及衬底偏压为-30V至-150V的条件下进行沉积。
[表1]
薄膜 目标成分(at%) 弹性模量(GPa)
TiN Ti=99.9 416
TiAlN Ti:Al=75:25 422
TiAlN Ti:Al=50:50 430
AlTiN Ti:Al=33:67 398
TiAlCrN Ti:Al:Cr=28:67:5 404
TiAlSiN Ti:Al:Si=35:63:2 374
TiCrN Ti:Cr=90:10 421
TiSiN Ti:Si=95:5 382
TiVN Ti:V=95:5 412
TiNbN Ti:Nb=95:5 406
TiZrN Ti:Zr=95:5 377
CrN Cr=99.9 475
CrAlN Cr:Al=50:50 367
AlCrN Cr:Al=30:70 403
AlCrSiN Cr:Al:Si=30:65:5 338
可以使用XRD分析跟随单层薄膜的形成获得构成多层薄膜的每个单元薄膜的晶格参数,但是在本公开的实施方式中,使用现有的实验和从理论获得的原子的、离子的和共价半径确定每个单元薄膜的晶格参数。具体地,通过根据原子比定量地应用共价半径到B1立方结构来计算晶格参数。
如图4所示,在基于(Ti1-xAlx)N的薄膜的情况下,晶格参数倾向于随着铝含量增加而近似地线性降低,并且因此可以通过下面的公式1获得基于(Ti1-xAlx)N的薄膜的晶格参数。
[等式1]
晶格参数:a=4.24-0.125x(x是铝的摩尔比率)。
在本公开的示例1中,由根据本公开的方法形成的基于TiAlN的多层薄膜与由传统方法形成的基于TiAlN的多层薄膜进行比较。作为物理汽相沉积(PVD)方法中的一种方法的电弧离子镀被用于沉积。初始真空压强降至4mPa或更小,在具有-600V的基板上执行离子清洗。N2作为反应气体被注射,并且Ar和Kr被用作惰性气体。沉积压强为500mPa~700mPa,并且为了控制堆叠周期,表格的阴极功率和转速分别被调整为2000W至14000W和0.5RPM至3RPM。在腔室的内部温度为400℃~600℃以及基板偏压为-60V至-150V的条件下执行沉积。
如下表2所示设定多层薄膜的堆叠结构和组成成分。每个由四层薄层组成的单元薄膜被重复地堆叠总共200次,使得由四层薄层形成的单元薄膜的周期为10nm~20nm,并且因此获得具有最终膜厚度为2.5μm至3.5μm的多层薄膜。在这种情况下,可从Korloy得到的P30级A30材料(型号:SPKN1504EDSR-SM)被用作用于铣削的基板,并且可从Korloy得到的M30级PP9030材料(型号:CNMG120408-HS)被用作用于车削的基板。
[表2]
通过铣削和车削的方式进行如上沉积的多层薄膜的切削性能评估。在铣削测试中,SKD11(宽度:100mm、长度:300mm)被用作工件,并且在切削速度是250m/min、每齿进给量0.2mm/tooth、以及进料2mm的干燥条件下进行切削。通过在加工为900mm之后比较磨损状况来评估铣削性能。结果被示于图5中。
如图5所示,可以看到,在SKD11的加工期间磨损主要如月牙洼磨损(crater wear)的方式进行,并且可以确认的是,对比于比较例1-10至1-12,示例1-1至1-9中的月牙洼磨损性能被提高。
在车削测试中,STS316被用作工件,并且在切削速度为200m/min、每齿进给量0.25mm/tooth、进料1.5mm的潮湿条件下进行切削。通过在连续加工3分钟之后比较磨损状况来评估车削性能。结果被示于图6中。
如图6所示,可以看到,在STS316的加工期间磨损主要如月牙洼磨损的方式进行,并且可以确认的是,对比于比较例1-10至1-12,示例1-1至1-9中的月牙洼磨损性能被提高。
优选实施例
[示例2]
在本公开的示例2中,将由根据本公开的方法形成的基于AlCrN的多层薄膜与由传统方法形成的基于AlCrN的多层薄膜进行对比。
如下表3所示设定多层薄膜的堆叠结构和组成成分。各自由四层薄层组成的单元薄膜被重复地堆叠总共180次,使得平均晶格周期为5nm至10nm,并且弹性周期是10nm至20nm,并且因此获得具有最终膜厚度为2.5μm至3.5μm的多层薄膜。在这种情况下,可以从Korloy得到的M30级PP9030材料(型号:CNMG120408-HS)被用作其上沉积有多层薄膜的基板。
[表3]
在如上沉积的多层薄膜的切削性能评估中,SM45C(直径:100mm,高度:120mm)被用作工件,并且在切削速度250m/min、每齿进给量0.25mm/tooth、以及进料1.5mm的干燥条件下进行切削。在加工端面30次之后比较磨损状况。结果被示于图7中。
如图7所示,对比于比较例2-3,本公开的示例2-1和2-2示出了改进的月牙洼磨损形式。
换句话说,可以看出,通过控制根据本公开的弹性周期和晶格周期堆叠的超晶格多层薄膜表现出与其它情况下相比改善的耐磨性。
工业适用性
根据本公开的多层薄膜可以被适当地用作用于切削工具的膜。

Claims (7)

1.一种用于切削工具的多层薄膜,其中,各自以薄层A、B、C和D顺序地堆叠的单元薄膜被堆叠一次以上,
其中,所述薄层之间的弹性模量k满足关系kA、kC>kB、kD,或kB、kD>kC、kA,并且
所述薄层之间的晶格参数L满足关系LA>LB、LD>LC或LC>LB、LD>LA
2.根据权利要求1所述的多层薄膜,其中,所述晶格参数L的最大值和最小值之间的差是20%或更小。
3.根据权利要求1所述的多层薄膜,其中,所述薄层B和所述薄层D的构成元素与邻近于所述薄层B和所述薄层D的所述薄层A和所述薄层C的构成元素相同,或包括所述薄层A和所述薄层C的所述构成元素中的至少一种。
4.根据权利要求1所述的多层薄膜,其中,所述多层薄膜的平均晶格周期λL是所述多层薄膜的平均弹性周期λk的两倍大。
5.根据权利要求1或2所述的多层薄膜,其中,所述单元薄膜具有4nm至50nm的厚度。
6.根据权利要求1或2所述的多层薄膜,其中,所述薄层B和所述薄层D由相同材料形成。
7.一种涂有根据权利要求1或2所述的多层薄膜的切削工具。
CN201380068331.2A 2012-12-27 2013-05-21 用于切削工具的多层薄膜以及包含其的切削工具 Active CN104884668B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2012-0155125 2012-12-27
KR1020120155125A KR101471257B1 (ko) 2012-12-27 2012-12-27 절삭공구용 다층박막과 이를 포함하는 절삭공구
PCT/KR2013/004426 WO2014104495A1 (ko) 2012-12-27 2013-05-21 절삭공구용 다층박막과 이를 포함하는 절삭공구

Publications (2)

Publication Number Publication Date
CN104884668A true CN104884668A (zh) 2015-09-02
CN104884668B CN104884668B (zh) 2017-09-01

Family

ID=51021526

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201380068331.2A Active CN104884668B (zh) 2012-12-27 2013-05-21 用于切削工具的多层薄膜以及包含其的切削工具
CN201380068184.9A Active CN104870684B (zh) 2012-12-27 2013-11-14 切削工具用多层薄膜和包含其的切削工具

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201380068184.9A Active CN104870684B (zh) 2012-12-27 2013-11-14 切削工具用多层薄膜和包含其的切削工具

Country Status (6)

Country Link
US (2) US20150337459A1 (zh)
KR (1) KR101471257B1 (zh)
CN (2) CN104884668B (zh)
DE (2) DE112013006267T5 (zh)
RU (1) RU2613258C2 (zh)
WO (2) WO2014104495A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826611A (zh) * 2020-07-22 2020-10-27 常州夸克涂层科技有限公司 一种AlTiN梯度硬质涂层及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3318656B1 (en) * 2016-03-04 2019-08-07 Kabushiki Kaisha Riken Sliding member and piston ring
JP6181905B1 (ja) * 2016-03-04 2017-08-16 株式会社リケン 摺動部材及びピストンリング
EP3228726A1 (en) * 2016-04-08 2017-10-11 Seco Tools Ab Coated cutting tool
JP6791809B2 (ja) * 2017-05-31 2020-11-25 住友電気工業株式会社 表面被覆切削工具
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
DE102017219639A1 (de) * 2017-11-06 2019-05-09 Siemens Aktiengesellschaft Schichtsystem mit harten und weichen Schichten und Schaufel
MX2021009078A (es) * 2019-02-01 2021-09-08 Oerlikon Surface Solutions Ag Pfaeffikon Revestimiento de herramientas de alto rendimiento para el endurecimiento por presion de metales laminados de acero de ultra alta resistencia revestidos y no revestidos.
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding
DE112021001912T5 (de) * 2020-03-27 2023-01-12 Kyocera Corporation Beschichtetes werkzeug und schneidwerkzeug
US20230173587A1 (en) * 2020-03-27 2023-06-08 Kyocera Corporation Coated tool and cutting tool
JP7312382B2 (ja) * 2021-03-18 2023-07-21 株式会社タンガロイ 被覆切削工具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587434A (zh) * 2004-08-05 2005-03-02 上海交通大学 TiN/SiO2纳米多层膜及其制备方法
JP2006152321A (ja) * 2004-11-25 2006-06-15 Hitachi Tool Engineering Ltd 硬質皮膜被覆部材及びその被覆方法
JP2006159397A (ja) * 2004-11-09 2006-06-22 Mitsubishi Materials Corp 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
CN101200797A (zh) * 2007-11-21 2008-06-18 中南大学 一种切削不锈钢用的pvd纳米多层涂层及其制备方法
KR100876366B1 (ko) * 2008-04-24 2008-12-31 한국야금 주식회사 절삭공구용 다층경질 박막
US20090170415A1 (en) * 2007-12-28 2009-07-02 Mitsubishi Materials Corporation Surface-coated cutting tool with hard coating layer having excellent abrasion resistance
CN102230117A (zh) * 2011-08-01 2011-11-02 重庆大学 一种含稀土钕的镁-铝-钙变形镁合金及其制备方法
JP2011218513A (ja) * 2010-04-13 2011-11-04 Union Tool Co 切削工具用硬質皮膜

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2999346B2 (ja) 1993-07-12 2000-01-17 オリエンタルエンヂニアリング株式会社 基体表面被覆方法及び被覆部材
JP3427448B2 (ja) * 1993-11-08 2003-07-14 住友電気工業株式会社 超薄膜積層体
DE19526387C2 (de) 1994-07-19 1998-12-10 Sumitomo Metal Mining Co Doppelt beschichteter Stahlverbundgegenstand und Verfahren zu dessen Herstellung
US5700551A (en) * 1994-09-16 1997-12-23 Sumitomo Electric Industries, Ltd. Layered film made of ultrafine particles and a hard composite material for tools possessing the film
JP3394021B2 (ja) * 2000-06-30 2003-04-07 日立ツール株式会社 被覆切削工具
JP4427271B2 (ja) * 2003-04-30 2010-03-03 株式会社神戸製鋼所 アルミナ保護膜およびその製造方法
KR100522542B1 (ko) * 2003-06-04 2005-10-20 주식회사 맥스플라즈마 초고경도 텅스텐탄화물-티타늄알루미늄질화물 초격자복합화합물 코팅막
JP4773779B2 (ja) * 2005-09-06 2011-09-14 キヤノン株式会社 画像形成システム、画像形成システムの制御方法、及び画像形成装置
RU2308538C1 (ru) * 2006-06-19 2007-10-20 Общество с ограниченной ответственностью научно-производственная фирма "ЭЛАН-ПРАКТИК" Установка для нанесения многослойных покрытий с периодической структурой методом магнетронного распыления
IL182344A (en) * 2007-04-01 2011-07-31 Iscar Ltd Cutting with a ceramic coating
RU2360032C1 (ru) * 2007-12-10 2009-06-27 Общество с ограниченной ответственностью "Специальные технологии" Способ получения износостойких сверхтвердых покрытий
KR100900529B1 (ko) * 2008-07-16 2009-06-02 한국야금 주식회사 내마모성과 인성이 우수한 복합 다층경질 박막
TW201034774A (en) * 2009-03-03 2010-10-01 Diamond Innovations Inc Thick thermal barrier coating for superabrasive tool
WO2011095292A1 (en) * 2010-02-04 2011-08-11 Oerlikon Trading Ag, Trübbach CUTTING TOOLS WITH Al-Cr-B-N / Ti-Al-N MULTILAYER COATINGS
KR101190324B1 (ko) * 2010-02-11 2012-10-11 대구텍 유한회사 절삭공구
RU2433209C1 (ru) * 2010-06-15 2011-11-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Способ получения износостойкого и термодинамически устойчивого многослойного покрытия на основе тугоплавких металлов и их соединений
WO2012057000A1 (ja) * 2010-10-29 2012-05-03 株式会社神戸製鋼所 硬質皮膜形成部材および硬質皮膜の形成方法
US8409702B2 (en) * 2011-02-07 2013-04-02 Kennametal Inc. Cubic aluminum titanium nitride coating and method of making same
CN102242338B (zh) * 2011-06-28 2013-04-10 株洲钻石切削刀具股份有限公司 含周期性涂层的复合涂层刀具及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587434A (zh) * 2004-08-05 2005-03-02 上海交通大学 TiN/SiO2纳米多层膜及其制备方法
JP2006159397A (ja) * 2004-11-09 2006-06-22 Mitsubishi Materials Corp 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2006152321A (ja) * 2004-11-25 2006-06-15 Hitachi Tool Engineering Ltd 硬質皮膜被覆部材及びその被覆方法
CN101200797A (zh) * 2007-11-21 2008-06-18 中南大学 一种切削不锈钢用的pvd纳米多层涂层及其制备方法
US20090170415A1 (en) * 2007-12-28 2009-07-02 Mitsubishi Materials Corporation Surface-coated cutting tool with hard coating layer having excellent abrasion resistance
KR100876366B1 (ko) * 2008-04-24 2008-12-31 한국야금 주식회사 절삭공구용 다층경질 박막
JP2011218513A (ja) * 2010-04-13 2011-11-04 Union Tool Co 切削工具用硬質皮膜
CN102230117A (zh) * 2011-08-01 2011-11-02 重庆大学 一种含稀土钕的镁-铝-钙变形镁合金及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826611A (zh) * 2020-07-22 2020-10-27 常州夸克涂层科技有限公司 一种AlTiN梯度硬质涂层及其制备方法

Also Published As

Publication number Publication date
RU2015130314A (ru) 2017-01-31
WO2014104573A1 (ko) 2014-07-03
US20150307998A1 (en) 2015-10-29
KR20140085016A (ko) 2014-07-07
CN104884668B (zh) 2017-09-01
DE112013006240B4 (de) 2023-06-29
CN104870684B (zh) 2017-09-08
DE112013006267T5 (de) 2015-09-24
RU2613258C2 (ru) 2017-03-15
US20150337459A1 (en) 2015-11-26
CN104870684A (zh) 2015-08-26
WO2014104495A1 (ko) 2014-07-03
DE112013006240T5 (de) 2015-10-08
KR101471257B1 (ko) 2014-12-09

Similar Documents

Publication Publication Date Title
CN104884668A (zh) 用于切削工具的多层薄膜以及包含其的切削工具
Zhang et al. Tribological properties, oxidation resistance and turning performance of AlTiN/AlCrSiN multilayer coatings by arc ion plating
Sproul Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings
KR100837018B1 (ko) 경질피막
US9388487B2 (en) Nanolaminated coated cutting tool
JP2012528732A (ja) ナノ積層コーティングされた切削工具
US20100260561A1 (en) Surface coated cutting tool
CN103757597B (zh) 一种TiN/CrAlSiN纳米复合多层涂层及其制备方法
CN109072406A (zh) 涂覆的切削工具
CN104213075A (zh) 一种AlTiSiN-AlCrSiN纳米晶-非晶多层复合超硬强韧涂层材料及制备方法
JP2009034781A (ja) 表面被覆切削工具
KR20160050056A (ko) 코팅된 절삭 공구 및 절삭 공구를 코팅하기 위한 방법
CN105312600A (zh) 一种涂层切削工具和一种制造涂层切削工具的方法
US8685530B2 (en) Surface-coated cutting tool
JP2009208155A (ja) 表面被覆切削工具
CN101618614A (zh) TiC/Si3N4纳米多层涂层及其制备方法
CN102586734B (zh) TiAlN/Ta多层膜刀具涂层及其制备方法
CN102785422B (zh) 一种氮化钒刀具涂层及其制备方法
CN107604332A (zh) 一种纳米复合涂层结构及其制备方法
JP2009208156A (ja) 表面被覆切削工具
CN101618615B (zh) VC/Si3N4纳米多层涂层及其制备方法
CN101886242A (zh) 硼化钛/氮化硅纳米多层涂层及其制备方法
CN101157288A (zh) AlN/BN超硬纳米结构多层膜及其制备方法
JP5214392B2 (ja) 被覆切削工具基材
JP6701384B2 (ja) 被膜

Legal Events

Date Code Title Description
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant