CN104519988B - 烯烃或醇的转化方法和丙烯或芳香族化合物的制造方法 - Google Patents

烯烃或醇的转化方法和丙烯或芳香族化合物的制造方法 Download PDF

Info

Publication number
CN104519988B
CN104519988B CN201380041317.3A CN201380041317A CN104519988B CN 104519988 B CN104519988 B CN 104519988B CN 201380041317 A CN201380041317 A CN 201380041317A CN 104519988 B CN104519988 B CN 104519988B
Authority
CN
China
Prior art keywords
catalyst
fluidized
conductive
reactor
alkene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380041317.3A
Other languages
English (en)
Other versions
CN104519988A (zh
Inventor
饭塚健启
高松义和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Publication of CN104519988A publication Critical patent/CN104519988A/zh
Application granted granted Critical
Publication of CN104519988B publication Critical patent/CN104519988B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/42Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/12Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • B01J35/32Bulk density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • B01J37/105Hydropyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/30Treating with free oxygen-containing gas in gaseous suspension, e.g. fluidised bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/54Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed
    • C10G3/55Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed with moving solid particles, e.g. moving beds
    • C10G3/57Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed with moving solid particles, e.g. moving beds according to the fluidised bed technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/60Controlling or regulating the processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/0007Pressure measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00584Controlling the density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00681Agglomeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00734Controlling static charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/12After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/34Reaction with organic or organometallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/14Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/20Carbon compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/703Activation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

烯烃或醇的转化方法具有:通过抑制非导电性催化剂带静电的前处理而得到导电性催化剂的前处理工序、和通过使用了前述导电性催化剂的流化床反应将烯烃或醇转化的工序。

Description

烯烃或醇的转化方法和丙烯或芳香族化合物的制造方法
技术领域
本发明涉及烯烃或醇的转化方法和丙烯或芳香族化合物的制造方法。
背景技术
众所周知,通过流化床反应,由烃原料制造丙烯、芳烃的方法。例如,专利文献1中公开了使用了含有沸石和二氧化硅的含沸石催化剂的丙烯的制造方法。
现有技术文献
专利文献
专利文献1:国际公开第2010/016388号
发明内容
发明要解决的问题
根据专利文献1中记载的技术,利用实验性小规模的设备使用含有沸石和二氧化硅的催化剂实施流化床反应没有实质上的问题。然而,本发明人等放大来实施上述流化床反应时,发现出现催化剂颗粒附着在反应器内壁的现象。对于该原因,本发明人等研究,结果发现,将以像沸石、二氧化硅这样的电阻率高的构成要素作为主成分的催化剂用于流化床反应时,由于催化剂颗粒、反应器和反应气体之间产生的摩擦而产生静电,催化剂带电。上述带电的催化剂容易附着在反应器内壁,一旦带电的催化剂颗粒附着在反应器,则催化剂的流动性大大减少,反应结果恶化。另外,附着在反应器出口附近的催化剂变得容易与生成气体一起向反应器出口配管流出(伴随流出),导致催化剂损失。
本发明是鉴于上述课题而完成的。即,本发明的目的在于提供一种抑制催化剂带静电以及催化剂向反应器的附着,可以实现优异的反应效率的烯烃或醇的转化方法和丙烯或芳香族化合物的制造方法。
用于解决问题的方案
本发明人等为了解决上述课题进行了深入研究,结果发现,通过进行用于抑制非导电性催化剂带静电的前处理可以解决上述课题,从而完成本发明。
即,本发明如下。
[1]一种烯烃或醇的转化方法,其具有:
通过抑制非导电性催化剂带静电的前处理而得到的导电性催化剂的前处理工序、和
通过使用了前述导电性催化剂的流化床反应将烯烃或醇转化的工序。
[2]根据[1]所述的烯烃或醇的转化方法,其中,前述前处理包括使导电性物质附着于前述非导电性催化剂。
[3]根据[1]或[2]所述的烯烃或醇的转化方法,其中,前述前处理使用具有15质量%以上的带电附着率的前述非导电性催化剂。
[4]根据[1]~[3]中任一项所述的烯烃或醇的转化方法,其中,前述非导电性催化剂包含沸石和/或二氧化硅。
[5]根据[2]~[4]中任一项所述的烯烃或醇的转化方法,其中,前述导电性物质包含碳。
[6]根据[1]~[4]中任一项所述的烯烃或醇的转化方法,其中,前述烯烃包含乙烯。
[7]一种丙烯或芳香族化合物的制造方法,其包括通过[1]~[6]中任一项所述的转化方法得到丙烯或芳香族化合物的工序。
发明的效果
根据本发明,在烯烃或醇的转化和丙烯或芳香族化合物的制造时,使催化剂的带静电以及催化剂对反应器的附着受到抑制,可以实现优异的反应效率。
附图说明
图1为使用试验规模流化床反应器的流化床反应的示意图。
图2为实施例1的流化床反应器所具备的压差计的指示图。
图3为实施例2的流化床反应器所具备的压差计的指示图。
图4为实施例3的流化床反应器所具备的压差计的指示图。
图5为比较例1的流化床反应器所具备的压差计的指示图。
图6为比较例2的流化床反应器所具备的压差计的指示图。
图7为比较例3的流化床反应器所具备的压差计的指示图。
图8为实施例4的流化床反应器所具备的压差计的指示图。
图9为比较例4的流化床反应器所具备的压差计的指示图。
具体实施方式
以下,对用于实施本发明的方式(以下,称“本实施方式”。)进行详细说明。本发明并不限定于以下记载的实施方式,在本发明的要旨的范围内可以进行各种变形来实施。需要说明的是,本说明书中、“二氧化硅”是指作为含有沸石的非导电性催化剂的载体使用的二氧化硅,除另有说明外,并不指构成沸石和粘土矿物的二氧化硅。同样,“氧化铝”也是指作为含有沸石的非导电性催化剂的载体使用的氧化铝,除另有说明外,并不指构成沸石和粘土矿物的氧化铝。
本实施方式的烯烃或醇的转化方法具有:通过抑制非导电性催化剂带静电的前处理而得到导电性催化剂的前处理工序、和通过使用了前述导电性催化剂的流化床反应将烯烃或醇转化的工序。由于为这样的构成,因此根据本实施方式的烯烃或醇的转化方法,可以抑制催化剂带静电以及催化剂对反应器的附着,实现优异的反应效率。
[流化床反应]
本实施方式中的“流化床反应”是指:使用流化床反应器,在通过由反应器下部供给的气体使填充在反应器内部的催化剂悬浮(流动化)的状态的层进行反应。作为上述流化床反应器,没有特别的限定,代表性地可列举出垂直圆筒状容器,其具备:将工艺供给气体送出至反应器床中的规定的位置的至少一个气体分配器,和根据需要用于热的去除或追加的内部盘管,和根据需要用于使催化剂的伴随流出为最小限度的外部或内部的旋风分离器。作为气体分配器,例如可列举出,具有大量细孔的气体分散板。出于使催化剂颗粒的伴随流出为最小限度的目的,还可以使用为了降低气体速度而在顶部具有扩大部的流化床反应器。催化剂颗粒通过由气体分配器供给的气体而流动化。另外,气体与催化剂颗粒之间的密接接触保证气相与固相之间良好的热/物质移动,其结果,保持流化床反应器内的温度均匀。反应热可以通过设置在反应器内部的盘管、水夹套、流动化的气体自身、或其它的传热介质进行控制。
本实施方式中,从保持气体与催化剂颗粒的良好混合状态、确保充分良好的反应结果的观点来看,优选以适当的速度供给气体。在将气体供给速度控制在适当的范围时,由于可以确保催化剂颗粒的充分流动,倾向于将气体与催化剂充分混合。进而,缓缓提高气体供给速度时,恰好通过催化剂颗粒的间隙的气体变为气泡,在反应器内部上升,从而催化剂颗粒的行为倾向于被上升的气泡顶起、或被推开、或被牵拉。即,通过将气体供给速度控制在适当的范围,则可以说倾向于形成良好的混合状态、提高反应结果。需要说明的是,一般若增加气体供给速度,则倾向于因经历腾涌的状态而最终发生催化剂颗粒的伴随流出导致产生催化剂损失的增加。此处所说的“腾涌”表示催化剂层整体反复呈块状的上升和落下、压力变动的状态。例如,流化床手册(流動層ハンドブック,日本粉体工業技術協会編培風館1999年)的p.17中记载:作为流化催化反应工艺的操作气体流速,“以气体流速为0.2~98m·s-1进行操作,使层内为湍流状态。”。从上述观点来看,本实施方式中,出于通过流化床反应将烯烃或醇转化的目的,气体供给速度优选以反应器内部的气体流速计为0.5m/秒以上且2.0m/秒以下。
图1为示意性表示使用试验规模流化床反应器的流化床反应方法的一个例子。上述试验规模流化床反应器中,通过气体供给配管2,从流化床反应器1的下部供给供给气体7,因供给气体7而流动化的催化剂层9与供给气体7接触而进行反应。流动化的催化剂经过反应器上部的#1旋风分离器4和#2旋风分离器5而与气体分离,经分离的气体作为制品气体8向反应器后流配管3排出。流化床反应器1所具备的压差计6是用于确认流化床反应器内收容的催化剂的质量和监视催化剂流动状态的稳定度而设置的。
[带静电/摩擦带电]
本实施方式中的“带静电”表示两种不同的物质为密接状态时产生的摩擦带电。以下,也将带静电简称为“带电”。对于两种不同的物质,可列举出两种不同的金属(导体)、两种不同的绝缘体(例如,琥珀棒相对于羊毛)、或导体与绝缘体等。本实施方式的使用了非导电性催化剂的流化床反应的情况下,作为带静电,具体而言,可以将由非导电性催化剂颗粒(绝缘体)对反应器壁的碳钢(导体)的摩擦接触产生的摩擦带电作为评价对象。由摩擦带电产生的基本的推动力的强弱是来源于两种物质之间对电子的亲和力的差别。具有更大亲和力的物质获得电子而带负电。另外,另一物质失去电子而带正电。在固体颗粒与流化床反应器的壁、管或其它金属部分的撞击中,移动的电荷量依赖于该金属和颗粒的电性质、接触的程度、表面粗糙度等因素。
与反应器内的催化剂的带静电有关的故障有在工业规模的流化床反应器中特别容易产生的倾向。若为工业规模的流化床反应器,则以反应器内的气体流速条件大概为0.2m/秒以上且98m/秒以下的范围运转。然而,若反应器内的气体流速为0.40m/秒以上,则催化剂层内变为湍流状态,变得容易引起带静电。因此,本实施方式的烯烃或醇的转化方法尤其适用于使用工业规模的流动性反应器以气体流速0.40m/秒以上的条件进行反应的情况。
需要说明的是,实验性小规模的设备中带静电大多不会导致问题显露化。例如,对于如专利文献1的实施例27公开的实验条件中的反应器内部的气体流速条件(0.02m/秒),带静电小、很少因催化剂附着于反应器导致问题显露化。
[非导电性催化剂]
本实施方式中的“非导电性催化剂”表示在后述催化剂的带电附着率的测定方法中,带电附着率为15质量%以上的催化剂。带电附着率增大的催化剂可列举出包含沸石和/或二氧化硅等作为其构成要素的催化剂。沸石因在烯烃制造中显示良好的催化活性而适宜使用。另外,二氧化硅适合作为用来赋予流动床催化剂强度的成分(也称载体、或粘结剂)使用。从改善反应性能、耐水热稳定性、强度等的观点来看,本实施方式中的非导电性催化剂也可以具有过渡金属、磷化合物等除了沸石和二氧化硅以外的构成要素。
作为非导电性催化剂,没有特别的限定,从在流化床反应工艺中达成更良好的流动状态的观点来看,优选催化剂颗粒具有适宜的性状。例如,流化床手册(日本粉体工业技術協会編培風館1999年)的p.16中记载了:“气泡与包含催化剂的乳液相的物质移动足够快对于提高反应率·选择率来说是理想的。因此优选气泡小、颗粒细且表面光滑容易滑动为佳”。另外,一般伴随着催化剂的流动,催化剂颗粒间、催化剂颗粒与反应器、催化剂颗粒与反应气体等之间产生的撞击、接触会产生催化剂颗粒的磨耗、破碎的情况。从有效防止上述催化剂颗粒的磨耗、破碎造成的催化剂颗粒的流动性降低、破碎颗粒的飞散的观点来看,作为流化床反应催化剂的性状,优选具有足以能够耐受磨耗、破碎的机械强度。
从反应性和强度的观点来看,相对于催化剂总体的质量,非导电性催化剂中的沸石的含量优选处于10质量%以上且90质量%以下的范围、更优选处于20质量%以上且80质量%以下的范围。沸石的含量为10质量%以上时,倾向于能够确保充分的催化剂的反应性,为90质量%以下时,倾向于能够确保充分的催化剂的强度。
[导电性催化剂/导电性物质]
本实施方式中的“导电性催化剂”表示非导电性催化剂的带电附着率被减弱而得到的物质,表示在后述催化剂的带电附着率的测定方法中带电附着率不足15质量%的催化剂。
本实施方式中,流化床反应使用的导电性催化剂也可以部分包含非导电性催化剂。另外,也可以将非导电性催化剂的一部分供于前处理工序而制成导电性催化剂后,与非导电性催化剂混合。其中,适宜调节混合比使在混合非导电性催化剂后催化剂总体的带电附着率不足15%。
另外,“导电性物质”表示以电阻率低的构成要素为主成分的物质。例如,作为导电性物质,可列举出碳系导电性物质、金属系导电性物质、无机系导电性物质、水、抗静电剂(表面活性剂等)等。需要说明的是,作为上述碳系导电性物质,没有特别的限定,例如可列举出:析出焦炭、炭黑、碳纤维、石墨等。另外,作为上述金属系导电性物质,没有特别的限定,例如可列举出:金属微粉末、金属氧化物、金属纤维等。此外,作为上述无机系导电性物质,没有特别的限定,例如可列举出玻璃微珠、合成纤维等。
[通过抑制非导电性催化剂带静电的前处理而得到导电性催化剂的前处理工序]
对于本实施方式中的“通过抑制非导电性催化剂带静电的前处理而得到导电性催化剂的前处理工序”,只要包括抑制非导电性催化剂带静电就没有特别的限定,优选的是,对供于反应前的催化剂通过物理、化学地赋予导电性来抑制带静电的工序,更优选的是,通过使导电性物质附着于非导电性催化剂而得到导电性催化剂的工序。使导电性物质附着于非导电性催化剂时,可以通过调节导电性物质的附着量来控制非导电性催化剂的带电附着率。以下,将“通过抑制非导电性催化剂带静电的前处理而得到导电性催化剂的前处理工序”简称为“前处理工序”。
作为前处理工序的方法,例如可列举出通过单纯混合、表面涂布、或混炼等将导电性物质附着于成形品的非导电性催化剂的方法。此处,作为上述表面涂布,可列举出:析出附着、镀敷、喷镀、涂覆等。大量附着导电性物质后,可以适宜去除多余的导电性物质。例如,相当于在后述催化剂的再生工序中仅焚烧去除多余的碳质化合物(焦炭)的情况。非导电性催化剂若通过经过上述前处理工序而在后述催化剂的带电附着率的测定方法中带电附着率减少为不足15质量%,则评价为导电性催化剂。
前处理工序可以使用例如:马弗炉、转炉、隧道炉、管状炉、流化床焙烧炉、窑炉、流化床反应器等来进行。前处理工序在流化床反应前实施,从有效地从前处理工序向流化床反应过渡的观点来看,前处理工序优选使用与进行流化床反应的流化床反应器相同的流化床反应器来进行。
以下,对使用非导电性催化剂作为与含有乙烯的烃原料接触来制造丙烯或芳香族化合物时的流化床反应催化剂的情况的前处理工序的一个例子进行说明。
将非导电性催化剂填充到图1所示的进行流化床反应的流化床反应器1中,向流化床反应器1供给经加热的烃气体,在流化床反应器1内300~650℃的温度、0.01~3.0MPa·G的压力下与非导电性催化剂接触来使碳质焦炭析出附着于非导电性催化剂。碳质焦炭的析出附着量可以通过根据流化床反应器1所具备的压差计6的指示来监视催化剂质量的变化而进行控制。此时的气体供给速度优选反应器内的气体流速为0.40m/秒以下。虽然因与非导电性催化剂、反应器、和供给气体的摩擦而产生静电,却通过在低于流化床反应的气体流速条件下进行前处理工序,从而倾向于有效抑制前处理工序中的非导电性催化剂的带电。需要说明的是,反应器内的气体流速可以用下式求出。
气体流速[m/秒]=供给气体流量[m3/秒]/反应器截面积[m2]
[流化床反应的催化剂的再生工序]
催化剂用于长期反应时,该催化剂上生成过量的碳质化合物(焦炭)而降低催化活性。因此,为了将催化剂降低的活性进行再生(再活化),可以从反应器中将催化剂的一部分或全部抽出,适宜地进行将附着在催化剂上的焦炭燃烧去除的处理。
若将附着在催化剂上的焦炭燃烧去除,则带电附着率增加,再生的催化剂倾向于变成非导电性催化剂。因此,优选的是,适宜控制温度、时间等焙烧条件,仅焚烧去除多余的焦炭,维持小于15%的带电附着率。再生的催化剂变成非导电性催化剂时,优选的是在将再生的催化剂返回到反应器的过程中供于前处理工序,制成导电性催化剂后返回反应器。另外,也可以采用将导电性催化剂与非导电性催化剂混合的手法。此时,注意催化剂的再生量,并且即便将再生的催化剂返回,也要使带电附着率为不足15%地进行调节。
[烯烃或醇的转化方法]
本实施方式中的烯烃或醇的转化方法包括在流化床反应器内,使经过上述前处理工序得到的导电性催化剂接触烯烃或醇的工序。从以高收率制造丙烯、芳香族化合物的观点来看,作为原料的烯烃或醇的碳数优选处于2以上且12以下的范围。也可以并用烯烃与醇。另外,从同样的观点来看,作为烯烃,更优选包含乙烯。
本实施方式中,作为反应原料的烯烃或醇并不必须为高纯度,可以是工业级别的物质。从反应效率的观点来看,本实施方式中的烯烃或醇的转化方法所使用的反应原料优选含有20质量%以上的乙烯、更优选含有25质量%以上的乙烯。另外,将作为反应原料的烯烃或醇与水蒸气一同供给到反应器时,由于可以省略将原料中包含的水进行分离回收的工序而优选。关于此情况下水蒸气的供给比率,例如作为反应原料,使用通过蒸汽裂化、醇的脱水反应等得到的物质作为原料,所以优选为1质量%以上、更优选为5质量%以上且60质量%以下,进一步优选为10质量%以上50质量%以下。需要说明的是,本实施方式的烯烃或醇的转化方法中,优选的方式的一个例子是:从反应产物中分离目标产物(例如丙烯、芳香族化合物),将剩余的包含乙烯的低沸成分和/或包含丁烯的高沸成分的至少一部分作为原料供给到流化床反应器中进行循环。
本实施方式中,作为烯烃原料,没有特别的限定,例如可以使用通过乙烷的热裂解、蒸汽裂化、氧化脱氢反应、醇的脱水反应等得到的物质。该反应原料也可以包含烯烃和烷烃。作为烷烃,没有特别的限定,例如可列举出:甲烷、乙烷、丙烷、丁烷、戊烷、己烷、庚烷、辛烷、壬烷。另外,作为烯烃,没有特别的限定,例如可列举出:乙烯、丙烯、丁烯、戊烯、己烯、庚烯、辛烯、壬烯。烯烃原料除了上述化合物之外还可以包含:环戊烷、甲基环戊烷、环己烷等环烷烃;环戊烯、甲基环戊烯、环己烯等环烯烃;环已二烯、丁二烯、戊二烯、环戊二烯等二烯;和/或、乙炔、甲基乙炔等炔。作为醇原料,也可以包含:叔丁醇、甲基叔丁醚、二乙醚、甲乙醚、二甲醚、乙醇、甲醇等含氧化合物。另外,烯烃或醇还可以包含水、氢气、氮气、二氧化碳、一氧化碳。
反应原料含有乙醇时,可以使用从植物资源中得到的乙醇(生物质乙醇)作为反应原料。作为生物质乙醇,具体而言,可列举出:由甘蔗、玉米等发酵得到的乙醇;由废材、间伐材、稻梗、农作物等木质资源得到的乙醇。
从以高收率制造丙烯、芳香族化合物的观点来看,流化床反应的反应温度优选为300℃以上且650℃以下、更优选为400℃以上且600℃以下。另外,从同样的观点来看,反应压力优选为0.01MPa·G以上且3.0MPa·G以下、更优选为0.05MPa·G以上且1.0MPa·G以下。
从以高收率制造丙烯、芳香族化合物的观点来看,以催化剂基准的重时空速(WHSV)计,反应原料的供给速度优选为0.1小时-1以上且20小时-1以下、更优选为0.5小时-1以上且10小时-1以下。
在利用本实施方式的烯烃或醇的流化床反应的转化方法中,通过调节上述反应条件,在使用含有乙烯的反应原料的情况下,可以控制乙烯的转化率。例如,优选的是,将乙烯的转化率控制在45~85质量%的范围、优选控制在50~80%质量的范围。
[沸石]
本实施方式中的“沸石”是指结晶性多孔铝硅酸盐、或金属硅酸盐,也包含具有与这些同样或类似结构的磷酸盐系多孔晶体。需要说明的是,金属硅酸盐表示构成结晶性多孔铝硅酸盐的骨架的铝原子的一部分或全部为被Ga、Fe、B、Cr、Ti等可置换的元素置换得到的沸石。具体而言,作为小孔径(氧8元环以下的结构)的沸石,可列举出菱沸石(按照国际沸石学会确定的根据结构对沸石进行分类的编码记为“CHA”。以下用同样的分类表示。)、毛沸石(ERI)、A型(LTA)。作为中孔径(氧10元环结构)的沸石,可列举出:镁碱沸石(FER)、MCM-22(MWW)、ZSM-11(MEL)、ZSM-5(MFI)、AlPO4-11(AEL)。另外,作为大孔径(氧12元环结构)的沸石,可列举出:L型(LTL)、X型(FAU)、Y型(FAU)、八面沸石(FAU)、β型(BEA)、丝光沸石(MOR)、ZSM-12(MTW)、AlPO4-5(AFI)。此外,作为超大孔径(氧14元环以上的结构)的沸石,可以举出:UTD-1(DON)、CIT-5(CFI)、VPI-5(VFI)。上述之中,从提高丙烯的产量的观点来看,优选中孔径沸石。
另外,作为本实施方式中的沸石,也可以使用构成沸石骨架的铝原子的一部分被Ga、Fe、B、Cr、Ti等元素置换得到的金属铝硅酸盐、构成沸石骨架的铝原子全部被上述那样的元素置换得到的金属硅酸盐。此时,将金属铝硅酸盐或金属硅酸盐中的上述元素的含量换算成氧化铝的摩尔数后,算出SiO2/Al2O3(二氧化硅/氧化铝)摩尔比。
本实施方式的非导电性催化剂也可以含有金属元素。上述非导电性催化剂可以含有选自由属于元素周期表第IB族的金属元素组成的组中的至少1种金属元素。即,可以采用催化剂中的沸石以与IB族金属对应的阳离子的状态含有或者催化剂负载了沸石。作为使沸石或非导电性催化剂含有IB族金属元素的方法,没有特别的限定,可以将不含有IB族金属的沸石或非导电性催化剂通过公知的离子交换法进行处理。例如可列举出:液相离子交换处理法、将浸渗负载催化剂在高温下处理来进行固相离子交换处理的方法等。通过该离子交换法使沸石或非导电性催化剂含有IB族金属时,优选使用IB族金属的盐。作为IB族金属的盐,例如可列举出:硝酸银、乙酸银、硫酸银、氯化铜、硫酸铜、硝酸铜、氯化金等。
另外,本实施方式的非导电性催化剂也可以含有磷元素。磷元素有抑制沸石的脱铝的效果。尤其在使用高温水蒸气时,由于存在促进脱铝的倾向,因此优选含有磷元素。
相对于催化剂总体的质量,磷元素的含量优选为0.01质量%以上且2.0质量%以下、更优选为0.01质量%以上且1.0质量%以下。磷元素的含量为0.01质量%以上时,存在可以充分确保抑制在高温水蒸气气氛下的沸石的脱铝的效果的倾向;为2.0质量%以下时,很少有在高温水蒸气气氛下的不锈钢的腐蚀的显露化。本实施方式的催化剂的磷元素含量可以使用荧光X射线分析装置(Rigaku制造、RIX3000)通过常法测定。作为此时的测定条件,可以使用P-Kα射线,在管球电压:50kV、管球电流:50mA下进行。
[二氧化硅]
从进一步提高催化剂的耐磨耗性的观点来看,本实施方式的非导电性催化剂和导电性催化剂优选除了沸石之外还含有二氧化硅载体。作为二氧化硅载体,可以使用以二氧化硅为主成分的无机多孔载体所涵盖的物质。“以二氧化硅为主成分的无机多孔载体”是指,无机多孔载体中包含60质量%以上的二氧化硅。需要说明的是,上述的含量是将从非导电性催化剂和导电性催化剂中除了沸石的成分称为载体时,以该载体总体的质量为基准的值。优选的是包含80质量%以上。无机多孔载体中包含的二氧化硅的量多则倾向于提高催化剂的耐磨耗性,故优选。作为二氧化硅以外的剩余部分,无机多孔载体还可以包含高岭土等粘土矿物、氧化锆、二氧化钛、氧化铈等。它们的含量相对于载体总体的质量优选为20质量%以下、更优选为10质量%以下、为0质量%。即,作为载体,特别优选为二氧化硅。
本实施方式中,作为用作载体的二氧化硅原料,没有特别的限定,可以使用胶体二氧化硅、水玻璃(硅酸钠)、气相二氧化硅等。因为使催化剂中毒的Na少、以及处理容易,所以优选使用胶体二氧化硅。从同样的观点来看那,其中,更优选使用NH4稳定型的胶体二氧化硅。
[催化剂的形状]
从流动性和强度的观点来看,本实施方式的非导电性催化剂和导电性催化剂优选为球形。此处“球形”并不必须是“圆球、与之接近的形状”,也可以是“不是在中央附近形成的孔洞破裂的形状、没有明显的突起、凹痕”。其中,可以说催化剂的形状乍看越接近圆球越优选。球形的催化剂在流化床反应器内圆滑地流动、并且表示出强度变大的倾向,因此也存在有助于耐久性的提高倾向。需要说明的是,上述的球形的评价可以根据催化剂的电子显微镜像观察和后述的催化剂的静止角测定来进行。催化剂的电子显微镜像观察可以使用附设有图像处理系统(旭化成工业制造、高精细图像分析文档系统、商品名“IP-1000”)的扫描电子显微镜(株式会社日立制作所制造、商品名“S-800”)来进行。
[催化剂的平均粒径]
从作为催化剂的流动性的指标的静止角小、流化床反应中表示出良好流动性的观点来看,本实施方式的非导电性催化剂和导电性催化剂优选平均粒径为20μm以上。另外,从催化剂表示出充分大的机械强度、且流化床反应中包含中心部在内的催化剂颗粒总体有效贡献的观点来看,优选平均粒径为300μm以下。需要说明的是,催化剂的平均粒径不足20μm时,从提高流动性的观点来看,优选具有总体的80质量%以上的颗粒的粒径落入平均粒径的2倍~0.2倍的粒径范围这样的粒度分布。
此处所说的“粒径”和“粒度分布”是指通过激光衍射·散射式粒度分析仪测定的值。另外,“平均粒径”是指,通过上述分析仪测定粉体状的含沸石催化剂的粒度分布(一定粒度区间内颗粒的比率),以其总体积为100%,求出粒度分布的累积,累积达到50%的点的粒径、即累积平均径(中心径、中值粒径)。
[催化剂的带电附着率]
包含沸石和二氧化硅为主要构成成分的催化剂的导电性非常低、容易带电。尤其,在流动床中使用时,催化剂颗粒与反应器反复摩擦,因此非常容易带电。催化剂带电则催化剂附着在反应器壁面,反应器中的催化剂层高变得不稳定。另外,附着在反应器壁面的催化剂由于变得容易到达反应器的具有将反应生成气体和催化剂区分的功能的旋风分离器部,因此旋风分离器的捕集效率降低、存在催化剂流出到反应器体系外的可能性。对此,在本实施方式的包含导电性物质的催化剂的情况下,由于催化剂具有导电性,因此反应器中催化剂颗粒的带电附着受到抑制。本实施方式的催化剂的带电附着率可以采用实施例所示的带电附着试验进行测定。若催化剂的带电附着率为不足15质量%,则可以有效地抑制在放大时变得严重的反应器中催化剂的附着。其结果,可以有效地抑制向反应器出口配管的伴随流出。需要说明的是,从更有效地抑制催化剂的伴随流出的观点来看,带电附着率优选为10质量%以下。
需要说明的是,本实施方式中,通过带电附着试验求出的带电附着率为15质量%以上则定义为“非导电性催化剂”、为不足15质量%则定义为“导电性催化剂”。
本实施方式的导电性催化剂的带电附着率可以根据附着的导电物质的种类或量进行控制。例如,对使碳焦炭附着于非导电性催化剂的情况进行说明。为了使带电附着率为不足15质量%,相对于非导电性催化剂使约4质量%的碳附着是优选的。若附着的碳量增加,则还存在降低带电附着率的倾向。需要说明的是,从充分确保催化活性的观点来看,碳附着量更优选为4质量%以上且10质量%以下。需要说明的是,碳附着量可以利用后述的实施例中记载的方法进行评价。
[催化剂的静止角]
本实施方式的非导电性催化剂和导电性催化剂的静止角优选为20°以上且30°以下。若静止角处于该范围内,则存在流动性变得良好、颗粒间的架桥不易发生、处理性提高的倾向。本实施方式的催化剂的静止角可以采用实施例所示的方法进行测定。
[催化剂的体积密度]
本实施方式中,作为球状颗粒的球状度或流动状态的指标,优选考虑催化剂的体积密度。本实施方式中的非导电性催化剂和导电性催化剂的体积密度优选为0.8g/cm3以上且1.3g/cm3以下,更优选为0.8g/cm3以上且1.2g/cm3以下,进一步优选为0.8g/cm3以上且0.95g/cm3以下。具有上述范围的体积密度的催化剂在用作流化床反应的催化剂时,存在反应气体线速度提高、催化剂颗粒与反应气体的物质移动及传热变得更良好的倾向。尤其通过使体积密度为0.8g/cm3以上,存在可以减少扭曲形状的颗粒或者碎裂、缺口、中空的颗粒的比例的倾向;通过设为1.3g/cm3以下,存在可以有效地防止由比表面积的降低引起的催化剂的化学性能的降低的倾向。本实施方式的催化剂的体积密度通过实施例所示的方法测定。
实施例
以下,通过实施例和比较例对本发明进行更详细地说明,但本发明并不限定于这些实施例。
各例的催化剂的带电附着率、静止角、体积密度如下测定。
[带电附着率]
如下进行带电附着试验。即,使用喷流式流动装置(株式会社互兴制作所制造)作为试验装置。该装置在气体导入口设置有10μm的多层烧结金属网过滤器(poremetfilter),该装置的内径为48.6mm、长度为450mm。需要说明的是,喷流式流动装置的面向测定体系的内壁的材质为SUS316。由粉体流动部的压差的变化求出壁面上催化剂的带电附着率。预先测定每次将一定量的催化剂粉末导入时的压差,制作标准曲线,从而由压差的降低量计算带电附着率。作为压差的测定法,更详细而言,压差导入管之一设置在催化剂粉体流动部底部,另一个设置在催化剂粉体分离部上部,测定压差。作为压差计,可以使用能够测定0~2kPa的压差的横河电机株式会社制造的EJA110-DMS2A-20DC/K1型的压差传送器。将在120℃下干燥2小时后的催化剂粉末235g在室温下投入喷流式流动装置内,然后从气体导入口以15.3NL/分钟导入氮气。将粉体流动部设定为65℃后,测定催化剂压差(压差A)。在65℃下持续24小时导入氮气后,测定催化剂压差(压差B)。带电附着率由如上得到的压差A和B通过下式求出。
带电附着率[质量%]=(1-B[kPa]/A[kPa])×100
[静止角]
使用圆筒旋转法静止角测定器(筒井理化学器械公司制造)测定。在500cc的玻璃制试样容器(圆筒形测定瓶)中填充250cc催化剂,然后将该容器以圆筒形测定瓶的侧面与辊接触、且圆筒形测定瓶的中心轴为水平的方式置于测定器的辊部上。接着,以圆筒形测定瓶的中心轴为中心,使上述辊部以2.4rpm旋转,并且测定圆筒形测定瓶内部的粉体层的表面与水平面所成的角度。
[体积密度]
使用体积比重测定器(筒井理化化学器械株式会社制造Z-2504-2000)测定。将体积比重测定器设置在水平的地方,在支架部安装漏斗(孔口2.5mmφ)。接着,测定圆筒形杯(内径30mm、容积25cm3)的毛重(质量A)。在安装的漏斗下部的载物台上设置圆筒形杯。在漏斗中轻轻填充30cc左右催化剂,使通过漏斗的孔口的催化剂向圆筒形杯落下。要是催化剂从圆筒形杯溢出,则使催化剂的落下停止,使用载玻片等将圆筒形杯的过量部分刮落。用刷子等将附着在圆筒形杯外侧的催化剂扫除,精确秤量其质量(质量B)。体积密度由得到的质量A和B利用下式求出。
体积密度[g/cm3]=(B[g]-A[g])/(圆筒形杯容积25cm3)
作为实施例和比较例中的流化床反应器,使用菱化制作所(株)制,型号:1R-15000,内容积:1.12m3,内径:400mm,材质:SUS304。作为流化床反应器所具备的压差计,使用能够测定0~20kPa的压差的横河电机株式会公司制造的EJA110-DMS2B-30DD/JF3/G11/T12/Z型的压差传送器。作为实施例和比较例中的热裂解反应器,使用助川电气工业株式会社制作的型号:U字管型电解炉,内径:51.8mm,总长:16.9m,材质:KHR45A。
实施例1~3和比较例1~3中使用的包含沸石和二氧化硅的非导电性催化剂的制备方法如下所示。
向胶体二氧化硅(Nalco公司制造、二氧化硅平均粒径5nm、二氧化硅含有率15质量%、Na含量185ppm)2000g中添加硝酸(和光纯药制造、含有硝酸60质量%的试剂)40g,调节pH为1.1。其后,作为水溶性化合物添加硝酸铵(和光纯药制造、特级试剂、相对于0℃的水的溶解度为118g/100g水)100g。接着,作为沸石添加SiO2/Al2O3比以摩尔比计为27的ZSM-5300g,制备原料浆料。将得到的原料浆料在25℃下搅拌3小时。原料浆料呈溶胶状,将该原料浆料用喷雾干燥机进行喷雾干燥,得到干燥粉末。将喷雾干燥机入口的流体温度设定为220℃、将喷雾干燥机出口的流体温度设定为130℃,利用旋转圆盘方式进行原料浆料的喷雾干燥。用电炉将得到的干燥粉末在700℃下、空气气氛下焙烧5小时。将得到的焙烧粉末与0.1摩尔浓度的硝酸水溶液混合,调节为10质量%的固形分浓度,在25℃下进行1小时的离子交换处理。其后将经离子交换的离子交换体粉末充分水洗,并在120℃下干燥。
对如此得到的非导电性催化剂A1按照上述方法测定带电附着率,结果带电附着率为28.3质量%。另外,非导电性催化剂A1的静止角为25°,体积密度为0.92g/cm3
实施例4和比较例4中使用的包含沸石和二氧化硅的非导电性催化剂的制备方法如下所示。
向胶体二氧化硅(Nalco公司制造、二氧化硅平均粒径12nm、二氧化硅含有率34质量%、Na含量1ppm)16.08kg中添加硝酸(和光纯药制造、含有硝酸60质量%的试剂)0.32kg,调节pH为1.1。其后,作为水溶性化合物添加硝酸铵(和光纯药制造、特级试剂、相对于0℃的水的溶解度为118g/100g水)1.84kg。接着,添加作为沸石SiO2/Al2O3比以摩尔比计为36的ZSM-5的27.7质量%浆料19.86kg,进一步添加纯水4.69kg,制备原料浆料。将得到的原料浆料在25℃下搅拌3小时。原料浆料呈溶胶状,将该原料浆料用喷雾干燥机进行喷雾干燥,得到干燥粉末。将喷雾干燥机入口的流体温度设定为220℃、将喷雾干燥机出口的流体温度设定为130℃,利用旋转圆盘方式进行原料浆料的喷雾干燥。用电炉将得到的干燥粉末在350℃下、空气气氛下焙烧1小时。得到的焙烧体中负载磷酸盐如下进行。
将3.95g的磷酸氢二铵(和光纯药制造、特级试剂、相对于15℃的水的溶解度为131g/100g水)溶解在150g的纯水中,制备磷酸盐水溶液153.95g。接着,向磷酸盐水溶液中添加前述焙烧体150g,制备303.95g的混合溶液。其后,用旋转蒸发仪在80℃、250托~100托的条件下进行减压干燥。使用电炉将得到的干燥粉末在700℃下、空气气氛下焙烧1小时。
对如此得到的非导电性催化剂A2按照上述方法测定带电附着率,结果带电附着率为25质量%。另外,非导电性催化剂A2的静止角为25°,体积密度为0.93g/cm3
[实施例1]
将上述得到的非导电性催化剂(A1)144kg填充到流化床反应器中,在温度500~530℃、压力0.14MPa·G的条件下,使组成为乙烯30.5mol%、蒸汽24.2mol%、氮气45.3mol%的气体以气体流速0.34m/秒向流化床反应器供给,开始非导电性催化剂A1的前处理工序。气体供给刚开始后,压差计的指示显示11.2kPa(11.2[kPa]×101.97[(kg/m2)/kPa]×反应器截面积0.126m2=144[kg](初始填充量))。
48小时后,压差计的指示显示为11.9kPa(11.9[kPa]×101.97[(kg/m2)/kPa]×反应器截面积0.126m2=153[kg]),催化剂质量为前处理前的1.06倍时,停止气体的供给,结束前处理工序。由此,得到了以约5.9质量%的比率附着有碳焦炭的催化剂153kg。需要说明的是,碳焦炭的附着量使用热重量分析装置(热分析装置主机:Mac Science Co.,Ltd.制造的“MTC1000型”、差热天平:Mac Science Co.,Ltd.制造的“TG-DTA2000型”、热分析系统:Bruker AXS公司制造的“WS003”),根据充分干燥的带焦炭催化剂的空气焙烧产生的重量变化求出(对以下的实施例和比较例也同样)。采取上述前处理工序后的催化剂,测定带电附着率,结果为6质量%,确认变为导电性催化剂。
接着,将通过上述前处理工序得到的导电性催化剂160kg(压差指示12.5kPa)填充到流化床反应器中,在温度550℃、压力0.14MPa·G的条件下,使组成为乙烯30.0mol%、蒸汽22.8mol%、氮气47.2mol%的气体以气体流速0.70m/秒向流化床反应器供给,实施流化床反应。
图2表示上述流化床反应中的压差计的指示图。压差计指示始终稳定地推移。
将在上述条件下经过时间为59.5小时、和72.7小时后的反应产物从反应器出口直接导入气相色谱仪(TCD、FID检测器)来分析组成,结果如下。此处所说的芳烃是指碳数6~9的芳烃(苯、甲苯、二甲苯等)。
由上述结果可知:通过实施抑制非导电性催化剂A1的带静电的前处理工序,可以抑制流化床反应中的催化剂的摩擦带电,不引起催化剂的流动性减少、反应结果的恶化、催化剂的向反应器出口配管的伴随流出等问题,可以长期稳定地进行流化床反应。
[实施例2]
将上述得到的非导电性催化剂(A1)144kg填充到流化床反应器中,在温度500~530℃、压力0.14MPa·G的条件下,使组成为乙烯30.5mol%、蒸汽24.2mol%、氮气45.3mol%的气体以气体流速0.34m/秒向流化床反应器供给,开始非导电性催化剂A1的前处理工序。气体供给刚开始后,压差计的指示显示11.2kPa(11.2[kPa]×101.97[(kg/m2)/kPa]×反应器截面积0.126m2=144[kg](初始填充量))。
41小时后,压差计的指示显示为11.8kPa(11.8[kPa]×101.97[(kg/m2)/kPa]×反应器截面积0.126m2=152[kg]),催化剂质量为前处理前的1.05倍时,停止气体的供给,结束前处理工序。由此,得到了以约5.1质量%的比率附着有碳焦炭的催化剂152kg。采取上述前处理工序后的催化剂,测定带电附着率,结果为10质量%,确认变为导电性催化剂。
接着,将通过上述前处理工序得到的导电性催化剂160kg(压差指示12.5kPa)填充到流化床反应器中,在温度550℃、压力0.14MPa·G的条件下,使组成为乙烯46mol%、蒸汽23.9mol%、氮气30.1mol%的气体以气体流速0.70m/秒向流化床反应器供给,实施流化床反应。
图3表示上述流化床反应中的压差计的指示图。与实施例1同样,压差计指示始终稳定地推移。
将在上述条件下经过时间为53.7小时、和89.0小时后的反应产物从反应器出口直接导入气相色谱仪(TCD、FID检测器)来分析组成,结果如下。此处所说的芳烃是指碳数6~9的芳烃(苯、甲苯、二甲苯等)。
[实施例3]
将上述得到的非导电性催化剂(A1)144kg填充到流化床反应器中,在温度500~530℃、压力0.14MPa·G的条件下,使组成为乙烯30.5mol%、蒸汽24.2mol%、氮气45.3mol%的气体以气体流速0.34m/秒向流化床反应器供给,开始非导电性催化剂A1的前处理工序。气体供给刚开始后,压差计的指示显示11.2kPa(11.2[kPa]×101.97[(kg/m2)/kPa]×反应器截面积0.126m2=144[kg](初始填充量))。
35小时后,压差计的指示显示为11.7kPa(11.7[kPa]×101.97[(kg/m2)/kPa]×反应器截面积0.126m2=150[kg]),催化剂质量为前处理前的1.04倍时,停止气体的供给,结束前处理工序。由此,得到了以约4.3质量%的比率附着有碳焦炭的催化剂150kg。采取上述前处理工序后的催化剂,测定带电附着率,结果为13.5质量%,确认变为导电性催化剂。
接着,将通过上述前处理工序得到的导电性催化剂160kg(压差指示12.5kPa)填充到流化床反应器中,在温度550℃、压力0.14MPa·G的条件下,使组成为乙烯30.0mol%、蒸汽22.8mol%、氮气47.2mol%的气体以气体流速0.70m/秒向流化床反应器供给,实施流化床反应。
图4表示上述流化床反应中的压差计的指示图。向流化床反应器中填充催化剂后,在向550℃的升温过程(经过时间0~25小时)中,产生催化剂层压差降低10~20%的现象,发现催化剂的带静电倾向,但其后(经过时间25小时~100小时)催化剂层压差低下现象平复,未对流化床反应的持续造成妨碍。
将在上述条件下经过时间为47.5小时、和79.0小时后的反应产物从反应器出口直接导入气相色谱仪(TCD、FID检测器)来分析组成,结果如下。此处所说的芳烃是指碳数6~9的芳烃(苯、甲苯、二甲苯等)。
[比较例1]
将上述得到的非导电性催化剂(A1)144kg填充到流化床反应器中,在温度500~530℃、压力0.14MPa·G的条件下,使组成为乙烯30.5mol%、蒸汽24.2mol%、氮气45.3mol%的气体以气体流速0.34m/秒向流化床反应器供给,开始非导电性催化剂A1的前处理工序。气体供给刚开始后,压差计的指示显示11.2kPa(11.2[kPa]×101.97[(kg/m2)/kPa]×反应器截面积0.126m2=144[kg](初始填充量))。
21小时后,压差计的指示显示为11.5kPa(11.5[kPa]×101.97[(kg/m2)/kPa]×反应器截面积0.126m2=148[kg]),催化剂质量为前处理前的1.03倍时,停止气体的供给,结束前处理工序。由此,得到了以约2.6质量%的比率附着有碳焦炭的催化剂148kg。采取上述前处理工序后的催化剂,测定带电附着率,结果为17质量%,未变为导电性催化剂(带电附着率不足15质量%)。
接着,将通过上述前处理工序得到的催化剂160kg(压差指示12.5kPa)填充到流化床反应器中,在温度550℃、压力0.14MPa·G的条件下,使组成为乙烯30.0mol%、蒸汽22.8mol%、氮气47.2mol%的气体以气体流速0.70m/秒向流化床反应器供给,实施流化床反应。
图5表示上述流化床反应中的压差计的指示图。向流化床反应器中填充催化剂后,在向550℃的升温过程(经过时间0~25小时)中,产生催化剂层压差降低20~40%的现象,发现催化剂的带静电倾向。其后,催化剂层压差继续降低,经过时间为75小时时,催化剂层压差降低90%以上。其结果,使流化床反应强制停止,需要通过回收向反应器出口配管伴随流出的催化剂、清洁反应器出口配管等来应对。
[比较例2]
将上述得到的非导电性催化剂(A1)144kg填充到流化床反应器中,在温度500~530℃、压力0.14MPa·G的条件下,使组成为乙烯30.5mol%、蒸汽24.2mol%、氮气45.3mol%的气体以气体流速0.34m/秒向流化床反应器供给,开始非导电性催化剂A1的前处理工序。气体供给刚开始后,压差计的指示显示11.2kPa(11.2[kPa]×101.97[(kg/m2)/kPa]×反应器截面积0.126m2=144[kg](初始填充量))。
14小时后,压差计的指示显示为11.4kPa(11.4[kPa]×101.97[(kg/m2)/kPa]×反应器截面积0.126m2=147[kg]),催化剂质量为前处理前的1.02倍时,停止气体的供给,结束前处理工序。由此,得到了以约1.8质量%的比率附着有碳焦炭的催化剂147kg。采取上述前处理工序后的催化剂,测定带电附着率,结果为20质量%,未变为导电性催化剂(带电附着率不足15质量%)。
接着,将通过上述前处理工序得到的催化剂160kg(压差指示12.5kPa)填充到流化床反应器中,在温度550℃、压力0.14MPa·G的条件下,使组成为乙烯30.0mol%、蒸汽22.8mol%、氮气47.2mol%的气体以气体流速0.70m/秒向流化床反应器供给,实施流化床反应。
图6表示上述流化床反应中的压差计的指示图。向流化床反应器中填充催化剂后,在向550℃的升温过程(经过时间0~25小时)中,产生催化剂层压差降低40~50%的现象,发现催化剂的带静电倾向。其后,催化剂层压差继续降低,经过时间为50小时时,催化剂层压差降低90%以上。其结果,使流化床反应强制停止,需要通过回收向反应器出口配管伴随流出的催化剂、清洁反应器出口配管等来应对。
[比较例3]
将上述得到的非导电性催化剂(A1)160kg(压差指示12.5kPa)填充到流化床反应器中,在温度550℃、压力0.14MPa·G的条件下,使组成为乙烯30.0mol%、蒸汽22.8mol%、氮气47.2mol%的气体以气体流速0.70m/秒向流化床反应器供给,实施流化床反应。
图7表示上述流化床反应中的压差计的指示图。向流化床反应器中填充催化剂后,在向550℃的升温过程(经过时间0~25小时)中,产生催化剂层压差降低90%以上的现象,发现催化剂的带静电倾向。其结果,使流化床反应强制停止,需要通过回收向反应器出口配管伴随流出的催化剂、清洁反应器出口配管等来应对。
[实施例4]
将非导电性催化剂变更为A2,除此以外,通过与实施例1同样的方法进行前处理工序,得到以约5.9质量%的比率附着有碳焦炭的催化剂153kg。采取上述前处理工序后的催化剂,测定带电附着率,结果为5质量%,确认变为导电性催化剂。
接着,将通过上述前处理工序得到的催化剂153kg(压差指示11.9kPa)填充到流化床反应器中,在温度550℃、压力0.14MPa·G的条件下,使乙烷裂解气体(含水率:29质量%)以气体流速0.70m/秒向流化床反应器供给,实施流化床反应。作为乙烷分解气体,使用如下物质:将加热到600℃的乙烷130kg/小时、蒸汽52kg/小时向前述热裂解反应器供给,热裂解反应器的出口温度设定为825℃、出口压力设定为0.20MPaG进行热裂解反应,将得到的乙烷裂解气体冷却至250℃。
图8表示实施例4的流化床反应中的压差计的指示图。压差计指示始终稳定地推移。
将在上述条件下经过时间为30小时、和60小时后的反应产物从反应器出口直接导入气相色谱仪(TCD、FID检测器)来分析组成,结果如下。此处所说的芳烃是指碳数6~9的芳烃(苯、甲苯、二甲苯等)。
由上述结果可知:通过实施抑制非导电性催化剂A2的带静电的前处理工序,可以抑制流化床反应中的催化剂的摩擦带电,不引起催化剂的流动性减少、反应结果的恶化、催化剂的向反应器出口配管的伴随流出等问题,可以长期稳定地进行流化床反应。
[比较例4]
将非导电性催化剂变更为A2,除此以外,通过与比较例1同样的方法进行流化床反应。
图9表示比较例4的流化床反应中的压差计的指示图。向流化床反应器中填充催化剂后,在向550℃的升温过程(经过时间0~27小时)中,产生催化剂层压差降低90%以上的现象,发现催化剂的带静电倾向。其结果,使流化床反应强制停止,需要通过回收向反应器出口配管伴随流出的催化剂、清洁反应器出口配管等来应对。
关于实施例1~4和比较例1~4,供于流化床反应的催化剂的带电附着率等的结果示于表1。
[表1]
本申请基于2012年8月10日申请的日本专利申请(日本特愿2012-178398号),其内容作为参照援引于此。
产业上的可利用性
根据本发明,在使用了非导电性催化剂的流化床反应中,可以抑制反应器内的催化剂带静电、降低催化剂附着于反应器。
附图标记翻译
1 流化床反应器
2 气体供给配管
3 反应器后流配管
4 #1旋风分离器
5 #2旋风分离器
6 压差计
7 供给气体
8 制品气体
9 催化剂层

Claims (3)

1.一种烯烃或醇的转化方法,其具有:
将非导电性催化剂填充到流化床反应器中,通过向所述流化床反应器供给经加热的烃气体,使含碳的导电性物质附着于所述非导电性催化剂而得到导电性催化剂的前处理工序、和
通过使用所述导电性催化剂的流化床反应将烯烃或醇转化的工序,
所述非导电性催化剂包含沸石和二氧化硅,并且具有15质量%以上的带电附着率,所述导电性催化剂具有不足15质量%的带电附着率,
在所述前处理工序中,该流化床反应器中的气体流速为0.40m/秒以下,
在所述将烯烃或醇转化的工序中,所述流化床反应中的烯烃或醇的气体流速为0.50m/秒以上且2.0m/秒以下。
2.根据权利要求1所述的烯烃或醇的转化方法,其中,所述烯烃包含乙烯。
3.一种丙烯或芳香族化合物的制造方法,其包括通过权利要求1或2所述的转化方法得到丙烯或芳香族化合物的工序。
CN201380041317.3A 2012-08-10 2013-08-09 烯烃或醇的转化方法和丙烯或芳香族化合物的制造方法 Active CN104519988B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012178398 2012-08-10
JP2012-178398 2012-08-10
PCT/JP2013/071684 WO2014025021A1 (ja) 2012-08-10 2013-08-09 オレフィン又はアルコールの転化方法及びプロピレン又は芳香族化合物の製造方法

Publications (2)

Publication Number Publication Date
CN104519988A CN104519988A (zh) 2015-04-15
CN104519988B true CN104519988B (zh) 2017-03-01

Family

ID=50068238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380041317.3A Active CN104519988B (zh) 2012-08-10 2013-08-09 烯烃或醇的转化方法和丙烯或芳香族化合物的制造方法

Country Status (9)

Country Link
US (1) US9573862B2 (zh)
EP (1) EP2883604B1 (zh)
JP (1) JP5942132B2 (zh)
KR (1) KR101653900B1 (zh)
CN (1) CN104519988B (zh)
BR (1) BR112015002175B1 (zh)
MY (1) MY170027A (zh)
RU (1) RU2599749C2 (zh)
WO (1) WO2014025021A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3240769B1 (en) * 2014-12-31 2020-05-06 Total Research & Technology Feluy Process for preparing olefins by dehydrating alcohols with less side effects comprising addition of sulfur containing compounds
WO2017187873A1 (ja) * 2016-04-28 2017-11-02 旭化成株式会社 芳香族炭化水素含有化合物の製造方法
JP6373523B1 (ja) * 2017-06-19 2018-08-15 旭化成株式会社 化合物の製造方法
IT201700074911A1 (it) * 2017-07-04 2019-01-04 Versalis Spa Procedimento per la produzione di olefine da alcoli
JP2019026571A (ja) * 2017-07-27 2019-02-21 東ソー株式会社 芳香族化合物の製造法
WO2019055076A1 (en) * 2017-09-14 2019-03-21 Exxonmobil Chemical Patents Inc. METHODS AND SYSTEMS FOR CONVERTING ACYCLIC HYDROCARBONS INTO CYCLOPENTADIENE
WO2021059087A1 (en) * 2019-09-24 2021-04-01 Nova Chemicals (International) S.A. Steam generation in oxidative dehydrogenation
KR20240141177A (ko) * 2022-01-25 2024-09-25 토탈에너지스 원테크 유동층 반응기에서 알코올을 올레핀으로 전환시키는 전기화 공정
KR20240131407A (ko) 2022-01-31 2024-08-30 아사히 가세이 가부시키가이샤 에탄올의 변환 방법 및 그 외 탄화수소의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097209A (ja) * 2003-09-26 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
CN101279877A (zh) * 2007-04-04 2008-10-08 中国石油化工股份有限公司 含氧化合物转化过程中提高乙烯、丙烯收率的方法
CN101695674A (zh) * 2009-11-04 2010-04-21 兆威兴业有限公司 对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法
CN102344329A (zh) * 2011-08-03 2012-02-08 上海碧科清洁能源技术有限公司 一种由醇和/或醚制烯烃的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU574428B2 (en) 1983-08-15 1988-07-07 Mobil Oil Corp. Zeolite modification with boron trifluoride
JPS6040194A (ja) 1983-08-15 1985-03-02 モビル オイル コ−ポレ−シヨン 低級アルコ−ル/エ−テルを炭化水素に変換する改良方法
JPH0699328B2 (ja) 1988-09-29 1994-12-07 ユニオン・カーバイド・コーポレーシヨン 化学転化方法
US5106486A (en) 1990-02-09 1992-04-21 Ashland Oil, Inc. Addition of magnetically active moieties for magnetic beneficiation of particulates in fluid bed hydrocarbon processing
JPH0994460A (ja) 1995-10-03 1997-04-08 Ube Ind Ltd 触媒の再生法
US6191331B1 (en) * 1999-07-02 2001-02-20 Uop Llc Zeolite catalyst precoking method for selective aromatics disproportionation process
FR2837199B1 (fr) * 2002-03-15 2005-09-16 Inst Francais Du Petrole Procede de conversion en plusieurs etapes d'une charge comprenant des olefines a quatre, cinq atomes de carbone ou plus, en vue de produire du propylene
JP2004345972A (ja) 2003-05-20 2004-12-09 Asahi Kasei Chemicals Corp カルボン酸エステルの製造方法
US7057083B2 (en) * 2003-11-12 2006-06-06 Exxonmobil Chemical Patents Inc. Catalyst pretreatment with C4-C7 olefins in an oxygenate to olefins reaction system
JP4599851B2 (ja) 2004-02-23 2010-12-15 三菱化学株式会社 プロピレンの製造方法
JP5531959B2 (ja) 2008-08-05 2014-06-25 住友電気工業株式会社 ショットキーバリアダイオードおよびショットキーバリアダイオードの製造方法
JP5499918B2 (ja) 2009-06-05 2014-05-21 三菱化学株式会社 触媒の再生方法
JP4877365B2 (ja) 2009-07-13 2012-02-15 日立化成工業株式会社 回路接続方法
WO2011019037A1 (ja) * 2009-08-11 2011-02-17 三菱化学株式会社 触媒の製造方法
TWI473651B (zh) 2010-11-25 2015-02-21 Asahi Kasei Chemicals Corp Silica shaped body, method for producing the same, and production method of propylene using silica molded body
JP2012120978A (ja) 2010-12-08 2012-06-28 Tokyo Institute Of Technology プロピレン製造用触媒およびプロピレンの製造方法
JP5711993B2 (ja) 2011-02-15 2015-05-07 旭化成ケミカルズ株式会社 導電性の流動層反応用触媒及びその製造方法並びにプロピレンの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097209A (ja) * 2003-09-26 2005-04-14 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
CN101279877A (zh) * 2007-04-04 2008-10-08 中国石油化工股份有限公司 含氧化合物转化过程中提高乙烯、丙烯收率的方法
CN101695674A (zh) * 2009-11-04 2010-04-21 兆威兴业有限公司 对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法
CN102344329A (zh) * 2011-08-03 2012-02-08 上海碧科清洁能源技术有限公司 一种由醇和/或醚制烯烃的方法

Also Published As

Publication number Publication date
EP2883604B1 (en) 2020-04-29
EP2883604A4 (en) 2015-11-04
KR101653900B1 (ko) 2016-09-02
CN104519988A (zh) 2015-04-15
KR20150022913A (ko) 2015-03-04
US20150152024A1 (en) 2015-06-04
EP2883604A1 (en) 2015-06-17
BR112015002175A2 (pt) 2017-07-04
WO2014025021A1 (ja) 2014-02-13
MY170027A (en) 2019-06-25
BR112015002175B1 (pt) 2021-03-16
RU2015103122A (ru) 2016-09-27
US9573862B2 (en) 2017-02-21
WO2014025021A9 (ja) 2014-08-07
JPWO2014025021A1 (ja) 2016-07-25
JP5942132B2 (ja) 2016-06-29
RU2599749C2 (ru) 2016-10-10

Similar Documents

Publication Publication Date Title
CN104519988B (zh) 烯烃或醇的转化方法和丙烯或芳香族化合物的制造方法
JP6173637B1 (ja) オレフィン及び芳香族生成物へのプラスチックの変換
KR101271945B1 (ko) 제올라이트 함유 촉매 및 그 제조 방법과 프로필렌의 제조 방법
KR101083844B1 (ko) 프로필렌의 제조 방법
CN103282119B (zh) 单环芳香族烃制造用催化剂及单环芳香族烃的制造方法
TW200700154A (en) Pentasil catalyst for light olefins in fluidized catalytic units
CN103003221B (zh) 由甲烷制备芳族化合物的方法
CN103459560B (zh) 单环芳香族烃的制造方法
JP4917672B2 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
JP2012166157A (ja) 導電性の流動層反応用触媒及びその製造方法並びにプロピレンの製造方法
JP6413823B2 (ja) ゼオライト成形体
EP2946832B1 (en) A catalytic cracking catalyst for rfcc process with maximized diesel yields and a method for the preparation thereof
CN102453502B (zh) 烃油转化方法
JP6052002B2 (ja) プロピレン製造用触媒の製造方法及びプロピレンの製造方法
JP2013014760A (ja) 芳香族炭化水素及び/又は炭素数4以下のオレフィンの製造方法、並びに、芳香族炭化水素及び/又は炭素数4以下のオレフィンの製造装置
US20130267749A1 (en) Catalyst for producing monocyclic aromatic hydrocarbons and production method of monocyclic aromatic hydrocarbons
JP7009770B2 (ja) ゼオライト成型体及び低級オレフィンの製造方法
JP2013006965A (ja) 芳香族炭化水素及び/又は炭素数4以下のオレフィンの製造方法、並びに、芳香族炭化水素及び/又は炭素数4以下のオレフィンの製造装置
JP5750434B2 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
EP2660227B1 (en) Method for producing monocyclic aromatic hydrocarbon
JP2013132587A (ja) 触媒前駆体の熱処理方法、触媒の製造方法、並びにプロピレンの製造方法
JPWO2009037992A1 (ja) プロピレンの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160504

Address after: Tokyo, Japan, Japan

Applicant after: Asahi Kasei Kogyo K. K.

Address before: Tokyo, Japan, Japan

Applicant before: Asahi Kasei Chemical K. K.

GR01 Patent grant
GR01 Patent grant