CN104094365A - 透明导电基材的制造方法和透明导电基材 - Google Patents

透明导电基材的制造方法和透明导电基材 Download PDF

Info

Publication number
CN104094365A
CN104094365A CN201280003532.XA CN201280003532A CN104094365A CN 104094365 A CN104094365 A CN 104094365A CN 201280003532 A CN201280003532 A CN 201280003532A CN 104094365 A CN104094365 A CN 104094365A
Authority
CN
China
Prior art keywords
film
wet film
base material
electrically conducting
towards
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280003532.XA
Other languages
English (en)
Other versions
CN104094365B (zh
Inventor
三岛崇司
后藤圭亮
F·普舍尼茨卡
J·韦斯特沃特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
British Virgin Islands Shangtiancai Innovative Materials Technology Co ltd
Okura Industrial Co Ltd
Original Assignee
Okura Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Industrial Co Ltd filed Critical Okura Industrial Co Ltd
Publication of CN104094365A publication Critical patent/CN104094365A/zh
Application granted granted Critical
Publication of CN104094365B publication Critical patent/CN104094365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/042Directing or stopping the fluid to be coated with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • B05D1/265Extrusion coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/004Nozzle assemblies; Air knives; Air distributors; Blow boxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/28Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0272After-treatment with ovens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/0413Heating with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2210/00Drying processes and machines for solid objects characterised by the specific requirements of the drying good
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

课题:改善使用了金属纳米线的透明导电基材的各向异性。解决手段:一种透明导电基材的制造方法,其特征在于,是具有在基材薄膜上涂布使金属纳米线分散在水系溶剂中而成的涂布液并成形为湿膜的涂布工序、以及干燥去除上述湿膜中所包含的水系溶剂的干燥工序的透明导电基材的制造方法,所述上述干燥工序具有如下工序,即从与基材薄膜的长度方向不同的方向朝向基材进行送风,变更所述金属纳米线的朝向。

Description

透明导电基材的制造方法和透明导电基材
技术领域
本发明涉及一种于基材薄膜上具有以配向状态杂乱的状态包含金属纳米线的导电层且表面电阻几乎无各向异性的透明导电基材的制造方法。详细而言,涉及一种于涂布包含金属纳米线的涂布液后进行干燥的工序中,变更金属纳米线的朝向而使各金属纳米线的配向状态成为杂乱的状态的方法。
背景技术
透明导电基材使用在平板型显示器或触控面板、电致发光器件用等。一般的透明导电性材料是基材薄膜/掺锡氧化铟(ITO)等金属氧化物这样的构成,一般的制造方法是真空蒸镀法、溅射法、离子镀法等气相制膜法。然而,出于ITO由于含有稀有金属故而难以稳定地获取,气相制膜法的生产速度慢等理由,代替品的开发盛行。
作为代替品之一,有金属纳米线(由金属构成的直径为数十~数百nm且长度为1~百数十μm的线状金属纳米线)(专利文献1、2)。金属纳米线由于纤维直径足够小故而透明性不会下降,由于纤维长度足够长故而即便添加量少也可以在基材上构建导电网。将水系溶剂中分散有金属纳米线的涂布液涂布于基材并进行干燥,制造透明导电基材。
现有技术文献
专利文献
专利文献1:日本特开2011-90879号公报
专利文献2:日本特开2011-119142号公报
专利文献3:日本特开2006-233252号公报
专利文献4:日本特开2002-266007号公报
专利文献5:日本特开2004-149871号公报
非专利文献
非专利文献1:Adv.Mater.,2002,14,833~837
非专利文献2:Chem.Mater.,2002,14,4736~4745
发明内容
发明所要解决的技术问题
然而,作为使用了金属纳米线的透明导电基材的技术问题,有金属纳米线的长轴与薄膜的搬送方向(搬送方向=长度方向=MD)对齐的情况。若金属纳米线的长轴与薄膜的MD对齐,则MD的表面电阻值与垂直于MD的方向(宽度方向=短边方向=TD)的表面电阻值会有差异(各向异性)。即,TD的电阻值变得比MD的电阻值大。其原因在于:MD的导电通路变密,TD的导电通路变疏。金属纳米线的长轴与薄膜的MD对齐的原因虽并未明确,但可认为是如下方面(参照图5):
i)在将涂布液涂布于基材薄膜上时,通过挤出液体的力将纳米线配向在液流(MD)上(纳米线与最不受液流的阻力的方向对齐);
ii)将涂布液涂布于基材薄膜上之后,在搬送基材薄膜/涂布液(湿膜)时,基材薄膜在MD上移动而使湿膜中的纳米线排列在薄膜MD上。
在专利文献1中,为了解决这样的技术问题,指定了剪切速度(薄膜搬送速度/缝口(slot)模头前端与薄膜的间隔)。然而,由于薄膜的搬送速度受制造设备(特别是干燥设备)的能力限制,缝口模头前端与薄膜的间隔受模具的形状或涂布液的性质限制,因此,如果不是符合液体性质的缝口模具与具有充分的干燥能力的制造设备,则能够变更剪切速度的幅度小,且由于纳米线的配向状态杂乱而不能调整剪切速度。
因此,本发明的课题在于提供一种改善使用了金属纳米线的透明导电基材的各向异性的技术。即,其课题在于提供一种是以TD的表面电阻值(RTD)与MD的表面电阻值(RMD)不产生差异的方式变更各金属纳米线的朝向,而成为金属纳米线的配向状态杂乱的状态的技术。
本发明的目的在于提供一种于基材薄膜上具有以配向状态杂乱的状态包含金属纳米线的导电层且表面电阻几乎无各向异性的透明导电基材的制造方法、以及由该制造方法得到的表面电阻几乎无各向异性的透明导电基材。
更具体而言,本发明的目的在于提供一种RTD/RMD=0.8~1.2、优选为0.9~1.1的透明导电基材。
解决问题的手段
本发明人等为了变更金属纳米线的朝向,在刚涂布涂布液(纳米线+水系溶剂)后,从基材薄膜的TD进行送风(参照图6)。将图6的本发明的预备试验的结果示于表1和2。可知通过来自TD的送风而改善了RTD/RMD
[表1]
[表2]
然而,并不是各向异性的改善充分者(RTD/RMD=1.31)。认为其原因在于:由于基材上的涂布液(湿膜)为厚至15μm左右,故而从湿膜突出(从湿膜表面露出面目)的纳米线的量少,即便从TD进行送风,受风而改变朝向的纳米线的量也还是少(参照图1)。另外,认为如下情况也有影响,即,刚涂布后的涂布液的溶剂量多且纳米线的自由度高,故而通过来自TD的送风而使配向暂且被扰乱的纳米线也会在搬送工序中再次排列在MD上。因此,本发明人等在湿膜厚度减少的干燥工序中进行送风(参照图2)。于是,表面电阻值的各向异性得到显著改善,以至完成本发明。
即,本发明是以如下(1)~(6)中记载的透明导电基材的制造方法作为主旨。
(1)一种透明导电基材的制造方法,其特征在于,具有:涂布工序,在基材薄膜上涂布使金属纳米线分散在溶剂中而成的涂布液,形成湿膜;以及干燥工序,干燥去除所述湿膜所包含的溶剂,
所述干燥工序具有如下工序,即,自与形成有湿膜的基材薄膜的长度方向不同的方向朝向该湿膜进行送风,以输送的风碰到从其表面突出的纳米线的方式变更各金属纳米线的朝向,使各金属纳米线的配向状态成为杂乱的状态。
(2)一种透明导电基材的制造方法,其具有:连续送出工序,连续送出卷绕为卷筒状的基材薄膜;涂布工序,在该基材薄膜上涂布从缝口模具连续送出的使金属纳米线分散在溶剂中而成的涂布液,形成湿膜;搬送工序,将形成有湿膜的基材薄膜搬送至干燥工序;干燥工序,干燥去除湿膜所包含的溶剂;以及卷取工序,卷取所得到的透明导电基材,
所述干燥工序包括如下工序,即,自与形成有湿膜的基材薄膜的长度方向不同的方向朝向该湿膜进行送风,以输送的风碰到从其表面突出的纳米线的方式变更各金属纳米线的朝向,使各金属纳米线的配向状态成为杂乱的状态。
(3)如上述(1)或(2)所述的透明导电基材的制造方法,其特征在于,在湿膜的膜厚减少至13μm以下后朝向该湿膜进行送风。
(4)如上述(1)或(2)所述的透明导电基材的制造方法,其特征在于,在湿膜的膜厚减少至13μm以下后从与基材薄膜的长度方向大致垂直的方向朝向该湿膜进行送风。
(5)如上述(1)或(2)所述的透明导电基材的制造方法,其特征在于,在湿膜的膜厚减少至13μm以下后以4~20m/s的风速朝向该湿膜进行送风。
(6)如上述(1)或(2)所述的透明导电基材的制造方法,其特征在于,在湿膜的膜厚减少至13μm以下后以调整为30~60℃的送风朝向该湿膜进行送风。
另外,本发明是以以下的(7)所述的透明导电基材作为主旨。
(7)一种透明导电基材,其特征在于,由如上述(1)或(2)所述的方法制造,在将基材薄膜的长度方向中的表面电阻值设为RMD、与长度方向垂直的方向中的表面电阻值设为RTD的情况下,由下述公式1表示。
[数1]
RTD/RMD=0.8~1.2 (1)
发明的效果
根据本发明,在基材薄膜上具有包含金属纳米线的导电层的透明导电基材的金属纳米线的配向状态的各向异性得到改善。能够提供一种表面电阻几乎无各向异性的透明导电基材的制造方法、以及由该制造方法所得到的表面电阻几乎无各向异性的透明导电基材。因此,本发明的透明导电基材能够很好地使用在期望表面电阻值的各向同性的触控面板的电极等。
附图说明
图1是说明图6的预备试验中的金属纳米线与送风的关系的图。
图2是说明本发明的实施例中的金属纳米线与送风的关系的图式。
图3是说明本发明的实施例中的干燥炉内的送风与薄膜的关系的图。
图4是说明本发明的实施例中的变更金属纳米线的朝向的工序的送风与薄膜的关系的图。(a)是说明向TD送风的图,(b)是说明该风在与基材平行的方向上吹拂湿膜表面的正上方(风的中心为与湿膜表面相距1~数cm的上方)的图。
图5是说明表面电阻的各向异性显现的原因的流程图。
图6是说明为了变更金属纳米线的朝向而在将涂布液(纳米线+水系溶剂)涂布后,自基材薄膜的TD进行送风的本发明的预备试验的图。
图7是就变更金属纳米线的朝向的工序中使用的干燥炉说明分割后的4个区域的位置关系的图。
具体实施方式
[金属纳米线]
在本发明中,作为透明导电材料,金属纳米线作为主要的导电体发挥功能。金属纳米线可以使用块体状态下的导电率为1×106S/m以上的元素作为金属元素。作为具体例,可列举Ag、Cu、Au、Al、Rh、Ir、Co、Zn、Ni、In、Fe、Pd、Pt、Sn、Ti等。也可以组合使用2种以上的金属纳米线,但从导电性的观点看,优选使用至少选自Ag、Cu、Au、Al、Co中的元素。
对于金属纳米线的制造方法并无特别限制,例如,可以使用液相法或气相法等公知的手段。例如,作为Ag纳米线的制造方法可以参考非专利文献1、2等,作为Au纳米线的制造方法可以参考专利文献3等,作为Cu纳米线的制造方法可以参考专利文献4等,作为Co纳米线的制造方法可以参考专利文献5等。特别地,由于上述非专利文献1及2中报告的Ag纳米线的制造方法因水系而能够简便且大量地制造Ag纳米线,而且Ag的导电率在金属中最大,因此,可以优选适用为本发明的金属纳米线的制造方法。
在本发明中,通过金属纳米线相互接触而形成三维的导电网,显现出高的导电性,并且光可以透过不存在金属纳米线的导电网的窗部,从而能够兼具高的导电性与高的透过率。
在本发明中,金属纳米线的直径从透明性的观点看,优选为200nm以下,更优选为100nm以下。作为金属纳米线的平均长度从导电性的观点看,优选为1μm以上,从凝聚对透明性的影响看,优选为100μm以下。更优选为1~50μm,最优选为3~50μm。
[溶剂、优选水系溶剂]
在本发明中,所谓“水系溶剂”是指50质量%以上为水的溶剂。当然,可以是不含有其它溶剂的纯水,考虑到干燥时的金属纳米线的分散稳定性的情形时,优选为其它溶剂的含量少的水系溶剂。水系溶剂中的除水以外的成分只要是与水相溶的溶剂即可无特别限制,优选可以使用醇系溶剂,其中,优选为沸点比较接近水的异丙醇。
[基材]
只要为透明树脂薄膜,便可以无特别限制地使用。优选地,例如可列举聚对苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯、改性聚酯等聚酯系树脂薄膜,聚乙烯(PE)树脂薄膜、聚丙烯(PP)树脂薄膜、聚苯乙烯树脂薄膜、环状烯烃系树脂等聚烯烃类树脂薄膜,聚氯乙烯、聚偏二氯乙烯等的乙烯系树脂薄膜,聚醚醚酮(PEEK)树脂薄膜,聚砜(PSF)树脂薄膜,聚醚砜(PES)树脂薄膜,聚碳酸酯(PC)树脂薄膜,聚酰胺树脂薄膜,聚酰亚胺树脂薄膜,丙烯酸树脂薄膜,三醋酸纤维素(TAC)树脂薄膜等;只要是可见光范围内的波长(380~780nm)下的透过率为80%以上的树脂薄膜,便可以优选地适用于本发明所涉及的透明树脂薄膜。其中,从透明性、耐热性、操作的容易性、强度和成本的方面看,优选为聚对苯二甲酸乙二酯薄膜、聚碳酸酯薄膜。
[涂布液的调整]
使金属纳米线分散于溶剂优选为水系溶剂而成的涂布液,为了调节黏度、腐蚀、黏着力、以及纳米线分散,可以含有添加剂和结合剂。作为适当的添加剂及结合剂的例子,可列举羧甲基纤维素(CMC)、2-羟乙基纤维素(HEC)、羟丙基甲基纤维素(HPMC)、甲基纤维素(MC)、聚乙烯醇(PVA)、三丙二醇(TPG)、以及三仙胶(XG)、以及乙氧基化物、烷氧基化物、环氧乙烷和环氧丙烷及它们的共聚物这样的界面活性剂,磺酸盐、硫酸盐、二磺酸盐、磺基琥珀酸盐、磷酸酯、以及氟界面活性剂(例如Zonyl(注册商标),Dupont公司),但并不限定于这些。
[涂布方法]
例如可以使用模涂法、凹版涂布法等,但出于凹版涂布法中版眼会残留于基材而模涂法不会对基材造成损害的理由,模涂法最佳。
[透明导电基材的制法]
涂布工序:使用例如模涂机在基材上涂布经调整的涂布液。涂布液的厚度并无特别限定,优选为10~30μm左右。
搬送工序:将涂布工序中形成有湿膜的基材薄膜搬送至干燥工序。搬送方法并无特别限定,一般是辊搬送。在搬送工序长的情况下,有时在该工序中适度地减少湿膜厚度。在这样的情况下,也可以在后述的干燥工序中立即进行变更纳米线的朝向的送风。另外,在搬送工序短的情况下,优选在进行某种程度的干燥而减少湿膜厚度之后,进行变更纳米线的朝向的送风。
干燥工序:干燥方法并无特别限定,可以例示使用红外线(IR)加热器等加热的方法、由干燥风加温的方法等,但若干燥炉内的空气滞留则溶剂蒸气浓度会上升而使干燥耗费时间,故而优选使用干燥风。为了防止涂布面变粗糙,干燥风优选在与薄膜的行进方向相反方向上进行送风。另外,干燥风优选为在与薄膜表面相距十数~数十cm的位置流动(参照图3)。再者,干燥工序中的干燥风并非必须,可以仅利用设置在干燥工序中的变更金属纳米线的朝向的工序中的风进行干燥。在这种情况下,变更纳米线的朝向的风对干燥的影响比干燥风对干燥的影响大。
[变更金属纳米线的朝向的工序]
设置在干燥工序中。
作为具体的手段,从与MD不同的方向朝向基材上的湿膜送风。该风的朝向是TD,可以最高效率地改善各向异性。在从上方观察基材薄膜的情况下,最优选为风从一侧端向另一端(向TD)吹拂[参照图4(a)]。该风的中心在与基材平行的方向上吹拂湿膜表面的正上方(1~数cm)[参照图4(b)]。若以吹到湿膜上的方式吹拂,则有基材表面的平滑性紊乱的担忧。该风的高度是以不扰乱基材表面(湿膜的表面)的平滑性而使风碰到从基材表面突出的纳米线的方式进行适当调节。
该风的风速优选为4~20m/s,特别优选为8~12m/s。若风速不到4m/s则改变纳米线的配向状态的效果不足,若超过20m/s则有基材表面的平滑性紊乱的担忧。
该风的温度优选为30~60℃。若风的温度较高则有涂膜变白等外观恶化的担忧。另外,若风的温度高则干燥时间缩短,能够变更纳米线的朝向的部位(point)变窄。反之,若该风的温度低,则难以对湿膜的干燥产生影响,故而能够变更纳米线的朝向的部位变长而干燥时间变长,因此,优选为在环境温度以上、特别是30℃以上。再者,在干燥工序中使用干燥风的情况下,若该风(改变纳米线的朝向的风)的温度与干燥风的温度为相同的温度,则有一个调温设备即可。
为了缩短送风时间或者增加线速度,特别优选为在预先由干燥风等使湿膜的厚度减少至13μm以下后输送改变纳米线的朝向的风,特别优选为在湿膜的厚度减少至10μm以下后进行送风。另外,送风也可以进行至湿膜完全干燥为止,但即便稍微残留有水系溶剂,只要湿膜厚度减少至纳米线的自由度被夺去的程度为止,便可以停止送风。具体而言,在湿膜的厚度为5μm以下的区域内可以停止送风。其后,如有必要也可以进行利用干燥风等的干燥。
[透明导电基材的表面电阻值]
作为本发明的透明导电基材,在将基材薄膜的MD上的表面电阻值设为RMD,将TD上的表面电阻值设为RTD的情况下,由下述公式1表示。
[数2]
RTD/RMD=0.8~1.2(特别优选为0.9~1.1) (1)
以下,通过实施例更具体地说明本发明,但本发明的技术的范围并不限定于这些示例。另外,实施例中的%只要无特别记载则全部为质量%。
实施例
[实施例1-6]
<涂布液>
涂布液:将0.10重量%的金属纳米线(纤维长度:1~100μm)、99.90重量%的溶剂(超纯水)混合而成的液体。
<制造方法>
涂布工序:利用模涂法。从缝口模具向经辊搬送的基材薄膜上挤出涂布液。刚涂布后的湿膜的厚度是15.0μm。
搬送工序:将挤出有涂布液的基材薄膜辊搬送至干燥炉。
干燥工序:在干燥炉中使用干燥风进行干燥。具体而言,在与湿膜表面相距30cm的上方,向与薄膜的行进方向相反的方向上输送干燥风(40℃,1m/s),进行干燥。再者,干燥风在不从TD送风的区域送风。即,在本实施例中对从TD送风的区域不吹拂干燥风。
变更金属纳米线的朝向的工序:如以下图示般,将干燥工序(干燥炉)分割为4个区域,如表1所示从TD方向输送风(40℃,10m/s)。
(实施例1~6)
[比较例1]
在基材薄膜上刚从缝口模具涂布涂布液后,在将基材薄膜搬送至干燥工序前与实施例相同地输送来自TD的风,将其作为比较例1。
再者,实施例1~6、比较例1的薄膜的搬送速度是15m/s。
<表面电阻值的测定>
准备两个长度30mm、宽度7mm的金属电极,以电极间距离成为24mm的方式进行固定,用导线连接电极表面与测试仪(A&D制数字万用表AD-5536)的夹具,使用这种方式,对所得到的透明导电基材测定电阻值。结果表示在表3。
[表3]
若在湿膜厚度为13μm以下时吹拂来自TD的风则有RTD/RMD改善效果,特别是在10μm以下可看到改善效果。再者,实施例5、6中在干燥工序中立即进行来自TD的送风,虽能够确认有RTD/RMD改善效果,但可认为其原因在于:搬送至干燥工序的基材薄膜上的湿膜已经减少至13.1μm。
[实施例7-9]
接着,使来自TD的风的速度发生变化来进行实验。再者,设为0.18%的金属纳米线、99.82%的溶剂(超纯水),薄膜的搬送速度为10m/s,来自TD的风在第一至第二区域内吹拂。结果表示在表4。
[表4]
实施例7 实施例8 实施例9
风速(m/s) 4.4 6.9 10.4
表面电阻(RTD)(Ω) 53 51 51
表面电阻(RMD)(Ω) 48 54 59
RTD/RMD 1.10 0.94 0.86
通过增大来自TD的风的风速,而可看到RTD/RMD的改善。根据条件,也有RMD超过RTD(RTD/RMD为1以下)的情况。
在与实施例8相同的条件下,仅将薄膜的搬送速度返回至15m/s,制造透明导电基材。RTD/RMD是1.1。在湿膜厚度的减少量相同的范围内碰到变更纳米线的朝向的风的情况下,薄膜的搬送速度越慢则越可看到RTD/RMD改善效果。

Claims (7)

1.一种透明导电基材的制造方法,其特征在于,
具有:
涂布工序,在基材薄膜上涂布使金属纳米线分散在溶剂中而成的涂布液,形成湿膜;以及
干燥工序,干燥去除所述湿膜所包含的溶剂,
所述干燥工序具有如下工序:从与形成有湿膜的基材薄膜的长度方向不同的方向朝向该湿膜进行送风,以输送的风碰到从其表面突出的纳米线的方式变更各金属纳米线的朝向,使各金属纳米线的配向状态成为杂乱的状态。
2.一种透明导电基材的制造方法,其特征在于,
具有:
连续送出工序,连续送出卷绕为卷筒状的基材薄膜;
涂布工序,在该基材薄膜上涂布从缝口模具连续送出的使金属纳米线分散在溶剂中而成的涂布液,形成湿膜;
搬送工序,将形成有湿膜的基材薄膜搬送至干燥工序;
干燥工序,干燥去除湿膜所包含的溶剂;以及
卷取工序,卷取所得到的透明导电基材,
所述干燥工序包括如下工序:从与形成有湿膜的基材薄膜的长度方向不同的方向朝向该湿膜进行送风,以输送的风碰到从其表面突出的纳米线的方式变更各金属纳米线的朝向,使各金属纳米线的配向状态成为杂乱的状态。
3.如权利要求1或2所述的透明导电基材的制造方法,其特征在于,
在湿膜的膜厚减少至13μm以下后,朝向该湿膜进行送风。
4.如权利要求1或2所述透明导电基材的制造方法,其特征在于,
在湿膜的膜厚减少至13μm以下后,从与基材薄膜的长度方向大致垂直的方向朝向该湿膜进行送风。
5.如权利要求1或2所述的透明导电基材的制造方法,其特征在于,
在湿膜的膜厚减少至13μm以下后,以4~20m/s的风速朝向该湿膜进行送风。
6.如权利要求1或2所述的透明导电基材的制造方法,其特征在于,
在湿膜的膜厚减少至13μm以下后,以调整为30~60℃的送风朝向该湿膜进行送风。
7.一种透明导电基材,其特征在于,
由权利要求1或2所述的方法制造,在将基材薄膜的长度方向中的表面电阻值设为RMD且与长度方向垂直的方向中的表面电阻值设为RTD的情况下,由下述公式1表示:
RTD/RMD=0.8~1.2 (1)。
CN201280003532.XA 2012-02-16 2012-02-16 透明导电基材的制造方法和透明导电基材 Active CN104094365B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053654 WO2013121556A1 (ja) 2012-02-16 2012-02-16 透明導電基材の製造方法および透明導電基材

Publications (2)

Publication Number Publication Date
CN104094365A true CN104094365A (zh) 2014-10-08
CN104094365B CN104094365B (zh) 2016-09-07

Family

ID=48983714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280003532.XA Active CN104094365B (zh) 2012-02-16 2012-02-16 透明导电基材的制造方法和透明导电基材

Country Status (8)

Country Link
US (1) US9776209B2 (zh)
EP (1) EP2816569B1 (zh)
JP (1) JP6199034B2 (zh)
KR (1) KR101940591B1 (zh)
CN (1) CN104094365B (zh)
HK (1) HK1202975A1 (zh)
TW (1) TWI549813B (zh)
WO (1) WO2013121556A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598288A (zh) * 2018-07-10 2018-09-28 上海大学 一种复合多功能oled电极及其制备方法
CN108962434A (zh) * 2018-06-15 2018-12-07 张家港康得新光电材料有限公司 一种纳米银线导电薄膜及其制作方法
CN110534256A (zh) * 2018-05-23 2019-12-03 睿明科技股份有限公司 导电膜的制造方法
CN111029039A (zh) * 2019-12-12 2020-04-17 湖南中天碧水膜科技有限公司 一种改善纳米银线导电膜电阻异向性的方法
CN111383804A (zh) * 2020-02-28 2020-07-07 深圳市华科创智技术有限公司 一种改进向异性的纳米线导电膜的制备方法及纳米线导电膜
CN115175812A (zh) * 2020-02-25 2022-10-11 日东电工株式会社 透明导电性膜

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105324820B (zh) * 2013-06-20 2019-04-30 Lg 电子株式会社 导电膜和包括导电膜的触摸板
JP2015099748A (ja) * 2013-11-20 2015-05-28 デクセリアルズ株式会社 透明導電体及び透明導電体の製造方法
KR101780528B1 (ko) * 2014-03-19 2017-09-21 제일모직주식회사 투명 도전체, 이의 제조방법 및 이를 포함하는 광학표시장치
EP2944604A1 (en) * 2014-05-16 2015-11-18 Université de Strasbourg Preparation of coatings containing at least one in-plane oriented layer of anisotropic shaped objects
CN105225727B (zh) * 2014-06-30 2017-06-09 乐金显示有限公司 透明导电层、用于制造其的方法及包括其的显示装置
US10831327B2 (en) 2016-09-30 2020-11-10 Dai Nippon Printing Co., Ltd. Electroconductive film, touch panel, and image display device
CN108251820A (zh) * 2018-03-09 2018-07-06 无锡博硕珈睿科技有限公司 自加热制品/材料的制造方法及制造设备
CN113365762A (zh) * 2019-04-03 2021-09-07 英属维京群岛商天材创新材料科技股份有限公司 金属纳米结构的纯化
US11535047B2 (en) 2019-05-31 2022-12-27 Showa Denko K.K. Method for producing transparent conducting film
JPWO2021065827A1 (zh) 2019-10-02 2021-04-08
KR20220070223A (ko) 2019-10-02 2022-05-30 닛토덴코 가부시키가이샤 투명 도전성 필름의 제조 방법
JPWO2021065828A1 (zh) 2019-10-02 2021-04-08
KR102316141B1 (ko) 2019-12-27 2021-10-22 쇼와 덴코 가부시키가이샤 투명 도전 필름의 제조 방법
CN112970075B (zh) * 2019-12-27 2021-11-19 昭和电工株式会社 透明导电膜的制造方法
JP2022042664A (ja) 2020-09-03 2022-03-15 日東電工株式会社 透明導電性フィルムの製造方法
JP2022108460A (ja) * 2021-01-13 2022-07-26 日東電工株式会社 透明導電性フィルムの製造方法
JP2022108459A (ja) 2021-01-13 2022-07-26 日東電工株式会社 透明導電性フィルム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200837403A (en) * 2006-10-12 2008-09-16 Cambrios Technologies Corp Functional films formed by highly oriented deposition of nanowires
CN101292362A (zh) * 2005-08-12 2008-10-22 凯博瑞奥斯技术公司 基于纳米线的透明导体
TW200923971A (en) * 2007-09-12 2009-06-01 Kuraray Co Conductive films, conductive parts and manufacturing methods thereof
JP2009205924A (ja) * 2008-02-27 2009-09-10 Kuraray Co Ltd 透明導電膜、透明導電部材、銀ナノワイヤ分散液および透明導電膜の製造方法
JP2011086413A (ja) * 2009-10-13 2011-04-28 Nissha Printing Co Ltd ディスプレイ電極用透明導電膜
US20110094651A1 (en) * 2009-10-22 2011-04-28 Fujifilm Corporation Method for producing transparent conductor
JP2011198642A (ja) * 2010-03-19 2011-10-06 Panasonic Electric Works Co Ltd 透明導電膜付き基材及びその製造方法
CN102319661A (zh) * 2011-07-25 2012-01-18 云梦县德邦实业有限责任公司 导电膜的涂布方法
JP2012026065A (ja) * 2010-07-27 2012-02-09 Panasonic Corp ナノファイバ製造装置、ナノファイバ製造方法
JP2012036522A (ja) * 2010-08-05 2012-02-23 Panasonic Corp ナノファイバ製造装置、ナノファイバ製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560333B2 (ja) 2001-03-08 2004-09-02 独立行政法人 科学技術振興機構 金属ナノワイヤー及びその製造方法
JP4124432B2 (ja) 2002-10-31 2008-07-23 独立行政法人科学技術振興機構 ナノサイズの金属コバルト微粒子の電解析出方法
JP4821951B2 (ja) 2005-02-23 2011-11-24 三菱マテリアル株式会社 ワイヤー状の金微粒子と、その製造方法および含有組成物ならびに用途
US20100098902A1 (en) 2005-08-31 2010-04-22 Nicholas Kotov Layer-by-layer assemblies having preferential alignment of deposited axially anisotropic species and methods for preparation and use thereof
US9214256B2 (en) * 2008-03-14 2015-12-15 Nano-C, Inc. Carbon nanotube-transparent conductive inorganic nanoparticles hybrid thin films for transparent conductive applications
JP2011090879A (ja) 2009-10-22 2011-05-06 Fujifilm Corp 透明導電体の製造方法
JP2011119142A (ja) 2009-12-04 2011-06-16 Konica Minolta Holdings Inc 透明導電基材の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292362A (zh) * 2005-08-12 2008-10-22 凯博瑞奥斯技术公司 基于纳米线的透明导体
TW200837403A (en) * 2006-10-12 2008-09-16 Cambrios Technologies Corp Functional films formed by highly oriented deposition of nanowires
TW200923971A (en) * 2007-09-12 2009-06-01 Kuraray Co Conductive films, conductive parts and manufacturing methods thereof
JP2009205924A (ja) * 2008-02-27 2009-09-10 Kuraray Co Ltd 透明導電膜、透明導電部材、銀ナノワイヤ分散液および透明導電膜の製造方法
JP2011086413A (ja) * 2009-10-13 2011-04-28 Nissha Printing Co Ltd ディスプレイ電極用透明導電膜
US20110094651A1 (en) * 2009-10-22 2011-04-28 Fujifilm Corporation Method for producing transparent conductor
JP2011198642A (ja) * 2010-03-19 2011-10-06 Panasonic Electric Works Co Ltd 透明導電膜付き基材及びその製造方法
JP2012026065A (ja) * 2010-07-27 2012-02-09 Panasonic Corp ナノファイバ製造装置、ナノファイバ製造方法
JP2012036522A (ja) * 2010-08-05 2012-02-23 Panasonic Corp ナノファイバ製造装置、ナノファイバ製造方法
CN102319661A (zh) * 2011-07-25 2012-01-18 云梦县德邦实业有限责任公司 导电膜的涂布方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534256A (zh) * 2018-05-23 2019-12-03 睿明科技股份有限公司 导电膜的制造方法
CN108962434A (zh) * 2018-06-15 2018-12-07 张家港康得新光电材料有限公司 一种纳米银线导电薄膜及其制作方法
CN108598288A (zh) * 2018-07-10 2018-09-28 上海大学 一种复合多功能oled电极及其制备方法
CN111029039A (zh) * 2019-12-12 2020-04-17 湖南中天碧水膜科技有限公司 一种改善纳米银线导电膜电阻异向性的方法
CN111029039B (zh) * 2019-12-12 2021-02-09 湖南中天碧水膜科技有限公司 一种改善纳米银线导电膜电阻异向性的方法
CN115175812A (zh) * 2020-02-25 2022-10-11 日东电工株式会社 透明导电性膜
CN111383804A (zh) * 2020-02-28 2020-07-07 深圳市华科创智技术有限公司 一种改进向异性的纳米线导电膜的制备方法及纳米线导电膜
CN111383804B (zh) * 2020-02-28 2022-12-09 深圳市华科创智技术有限公司 一种改进向异性的纳米线导电膜的制备方法及纳米线导电膜

Also Published As

Publication number Publication date
EP2816569A4 (en) 2015-09-23
JP6199034B2 (ja) 2017-09-20
US9776209B2 (en) 2017-10-03
CN104094365B (zh) 2016-09-07
WO2013121556A1 (ja) 2013-08-22
HK1202975A1 (zh) 2015-10-09
TW201334955A (zh) 2013-09-01
EP2816569A1 (en) 2014-12-24
EP2816569B1 (en) 2017-04-19
TWI549813B (zh) 2016-09-21
KR20140131397A (ko) 2014-11-13
JPWO2013121556A1 (ja) 2015-05-11
US20150321220A1 (en) 2015-11-12
KR101940591B1 (ko) 2019-01-21

Similar Documents

Publication Publication Date Title
CN104094365A (zh) 透明导电基材的制造方法和透明导电基材
He et al. Screen-printing of a highly conductive graphene ink for flexible printed electronics
CN104099687B (zh) 一种石墨烯纤维及其制备方法
US20180177048A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
US10307786B2 (en) Anisotropy reduction in coating of conductive films
WO2015137421A1 (ja) 銀ナノワイヤインクの製造方法および銀ナノワイヤインク並びに透明導電塗膜
CN103328209A (zh) 多孔质层合膜、蓄电装置用隔板及蓄电装置
CN102421600A (zh) 透明导电复合膜
KR101693774B1 (ko) 탄소 나노튜브 투명 복합전극의 제조 방법
JP2011090879A (ja) 透明導電体の製造方法
CN107154283B (zh) 耐电迁移银纳米线复合薄膜及其制备方法
KR20170037573A (ko) 도전체, 도전성 구조물, 및 이를 포함하는 전자 소자
CN109937458B (zh) 导电性膜和导电性膜的制造方法
JP6257785B2 (ja) 熱電変換素子および熱電変換モジュールならびに熱電変換素子の製造方法および熱電変換モジュールの製造方法
JP2013056291A (ja) 紐状フィラー含有塗布物の製造方法
CN105810304A (zh) 一种石墨烯/金属纳米丝网格复合透明导电电极及其应用
US20150280207A1 (en) Method of preparing graphene-graphene fused material and method of preparing graphene-substrate composite using the same
EP3078031A1 (en) Manufacturing conductive thin films comprising graphene and metal nanowires
US8048342B2 (en) Sol-gel composition for fabricating conductive fibers
KR102150868B1 (ko) 금속나노섬유를 이용한 투명히터 제조방법
TWI684297B (zh) 半導體膜之製造方法、及染料敏化太陽電池
CN107129671A (zh) 一种各向异性导电高分子复合材料的制备方法
JP2018014252A (ja) 透明導電体の製造方法
JP2015035381A (ja) 透明導電体及びその製造方法
US20140262443A1 (en) Hybrid patterned nanostructure transparent conductors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1202975

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20170120

Address after: Kagawa, Japan

Patentee after: OKURA INDUSTRIAL Co.,Ltd.

Patentee after: CAM HOLDING Corp.

Address before: Kagawa, Japan

Patentee before: OKURA INDUSTRIAL Co.,Ltd.

Patentee before: Campbio Technology

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1202975

Country of ref document: HK

CP01 Change in the name or title of a patent holder

Address after: Kagawa, Japan

Patentee after: OKURA INDUSTRIAL Co.,Ltd.

Patentee after: British Virgin Islands Shangtiancai Innovative Materials Technology Co.,Ltd.

Address before: Kagawa, Japan

Patentee before: OKURA INDUSTRIAL Co.,Ltd.

Patentee before: CAM HOLDING Corp.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20210720

Address after: Tortola Island, British Virgin Islands

Patentee after: British Virgin Islands Shangtiancai Innovative Materials Technology Co.,Ltd.

Address before: Kagawa, Japan

Patentee before: OKURA INDUSTRIAL Co.,Ltd.

Patentee before: British Virgin Islands Shangtiancai Innovative Materials Technology Co.,Ltd.

TR01 Transfer of patent right