CN108962434A - 一种纳米银线导电薄膜及其制作方法 - Google Patents

一种纳米银线导电薄膜及其制作方法 Download PDF

Info

Publication number
CN108962434A
CN108962434A CN201810618173.8A CN201810618173A CN108962434A CN 108962434 A CN108962434 A CN 108962434A CN 201810618173 A CN201810618173 A CN 201810618173A CN 108962434 A CN108962434 A CN 108962434A
Authority
CN
China
Prior art keywords
nano
silver thread
conductive film
silver
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810618173.8A
Other languages
English (en)
Inventor
耿龙飞
徐金龙
陈庆松
宋明雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhangjiagang Kangdexin Optronics Material Co Ltd
Original Assignee
Zhangjiagang Kangdexin Optronics Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhangjiagang Kangdexin Optronics Material Co Ltd filed Critical Zhangjiagang Kangdexin Optronics Material Co Ltd
Priority to CN201810618173.8A priority Critical patent/CN108962434A/zh
Publication of CN108962434A publication Critical patent/CN108962434A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/30Drying; Impregnating

Abstract

本发明提供一种纳米银线导电薄膜,包括一透明基材层,一纳米银线层,所述透明基材层上形成一机械运动方向,该纳米银线导电膜在机械运动方向的线阻与其垂直方向的线阻比为0.7‑1.3,提高了导电薄膜在触控屏应用中的适用性和良率。

Description

一种纳米银线导电薄膜及其制作方法
技术领域
本发明涉及导电薄膜技术领域,尤其涉及一种纳米银线导电薄膜及其制作方法。
背景技术
未来移动终端、可穿戴设备、智能家电等产品,对触摸面板有着强劲需求,同时随着触控面板大尺寸化、低价化,以及传统ITO薄膜不能用于可弯曲应用,导电性及透光率等本质问题不易克服等因素,众面板厂商纷纷开始研究ITO的替代品。
纳米银线除了具有银优良的导电性之外,由于纳米级别的尺寸效应,还具有优异的透光性、耐曲饶性。因为被视为是最有可能替代传统ITO透明电极的材料,为实现柔性、可弯折LED显示、触摸屏等提供了可能,并已经有大量的研究将其应用于薄膜太阳能电池。纳米银线(SNW,silver nanowire)技术,是将纳米银线墨水材料涂抹在塑胶或者玻璃基板上,然后利用镭射光刻技术,刻画制成具有纳米级别银线导电网络图案的透明的导电薄膜,又因为可以应用在各种尺寸的显示屏幕上,特别是应用在大尺寸触控屏上。
如图1所示,现在市场上有很多的纳米银线导电薄膜,目前制备纳米银线导电薄膜有很多的方法,例如狭缝式涂布与微凹版涂布方式,因惯性定律的因素容易造成基材层11上的纳米银线15顺向在涂布机械运动方向排列,进而造成机械运动方向的线阻比其垂直方向(下文统称TD方向)的线阻小太多,这对后端触控模组造成一定的不便。
发明内容
为了克服以上机械运动方向的线阻比其垂直方向的线阻小太多的问题,本发明提供一种纳米银线导电薄膜,包括一透明基材层,一纳米银线层,该透明基材层上形成一机械运动方向,该纳米银线导电膜在机械运动方向的线阻与其垂直方向的线阻比为0.7-1.3。
进一步地,所述纳米银线层由下至上按顺序包括一基质层、硬化层和至少部分嵌在所述基质层和硬化层的纳米银线。
进一步地,所述纳米银线层未嵌入所述基质层和硬化层的纳米银线表面包裹有硬化材料
进一步地,所述纳米银线的长度为30-100μm,直径为10-40nm。
进一步地,所述基质层的厚度为20nm-200nm
进一步地,所述在机械运动方向的线阻与其垂直方向的线阻比为0.9-1.1。
进一步地,所述硬化层的厚度为40nm-1um
本发明还提供一种纳米银线导电薄膜的制作方法,包括以下步骤:
a),在一透明基材上,涂布纳米银线涂布液,并形成机械运动方向,在纳米银线涂布液的斜上方或一侧设置风嘴吹风以及进行热干燥;
b),在步骤a)的纳米银线层上涂布硬化液,经热烘箱干燥、UV固化。
进一步地,纳米银线涂布液的黏度为4-15cps。
进一步地,风嘴吹风的方向与所述透明基材表面形成ɑ角,其中0°≤ɑ≤60°。
进一步地,风嘴吹风的方向与所述透明基材形成一个铅锤面,所述铅锤面与所述机械运动方向形成β角,其中45°≤β≤135°。
本发明通过提供的结构和制作方法,提高了导电薄膜在触控屏应用中的适用性和良率。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有技术中纳米银线导电薄膜涂布过程示意图
图2为本发明一实施例的纳米银线导电薄膜示意图
图3为本发明一实施例的纳米银线导电薄膜涂布过程示意图
图4为本发明一实施例中风嘴吹风方向示意图
图5为本发明一实施例的纳米银线导电膜裁取样品的方法示意图
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
如图2所示,本实用发明提供一纳米银线导电薄膜,包括一透明基材层21,一纳米银线层22,该透明基材层上形成一机械运动方向,该纳米银线导电薄膜在机械运动方向的线阻与其垂直方向的线阻比为0.7-1.3,优选的该纳米银线导电薄膜在机械运动方向的线阻与其垂直方向的线阻比为0.9-1.1。现有技术中,纳米银线导电薄膜的电阻均采用方阻表征,然而后续制作成触控屏时,纵向和横向的导电薄膜的线阻差别太大,会影响触控屏的性能,本发明的纳米银线导电薄膜的机械运动方向的线阻与其垂直方向的线阻比控制在0.7-1.3,更佳的0.9-1.1,将有效解决这一技术问题,提高了导电薄膜在触控屏应用中的适用性和良率。
所述透明基材层选自PET、PMMA、PC、COP、PI、PEN等柔性材料,其厚度为10um-250um,透明基材层的厚度太厚不利于实际生产,太薄会起不到承载作用,做出纳米银线薄膜卷曲。所述纳米银线的长度为30-100μm,直径为10-40nm,纳米银线直径太粗,会增加纳米银线导电膜的雾度,直径太细,易造成“断路”。
本实施例中,所述纳米银线层22按顺序包括一基质层23、硬化层24和至少部分嵌在所述基质层23和硬化层24的纳米银线25。所述基质层的厚度为20nm-200nm,基质层23起到固定纳米银线25对基材的附着性的作用,减少纳米银线25的迁移;所述基质层包括:树脂、分散剂、增稠剂、表面活性剂,是纳米银线涂布液涂布于基材后经过烘干遗留下的物质,树脂起到银线对基材的附着性作用,分散剂能够均匀的分散纳米银线避免纳米银线的聚集,增稠剂调节纳米银线油墨的黏度,便于可涂布性,表面活性剂增加纳米银线表面的润湿性以及调节纳米银线的表面张力便于可涂布性。所述硬化层24由OC硬化液在UV固化下形成,OC硬化液材料包含丙烯酸树脂或聚氨酯树脂,所述硬化层24的厚度为40nm-1um,在该厚度范围内硬化层可以经受弯折,太厚则影响弯折效果,易脆。该硬化层24具有保护纳米银线的作用,增强纳米银线抗氧化效果。除了嵌入硬化层的纳米银线部分,涂布OC硬化液的过程中,未嵌入基质层23的纳米银线表面包裹着OC硬化液,待热干燥后,未嵌入基质层和硬化层的纳米银线表面包裹着硬化材料,增强了纳米银线的耐热性、耐酸性、耐湿性,从而增强纳米银线导电薄膜耐环测的作用。
本发明还提供了一种纳米银线导电薄膜的制作方法,用以制作上述纳米银线导电薄膜,该制作方法包括以下步骤:
a),在一透明基材上,涂布纳米银线涂布液,形成一机械运动方向,在纳米银线涂布液的上方设置风嘴吹风以及进行热干燥;
b),在步骤a)的纳米银线层上涂布OC硬化液,经热烘箱干燥、UV固化。
如图3、图4所示,在步骤a)中,采用涂布方法选自狭缝式涂布、微凹版涂布、旋涂等,优选狭缝式涂布,狭缝式涂布由于是非接触式涂布,将纳米银线涂布液涂覆在透明基材31上,不会造成纳米银线损伤,所述纳米银线涂布液的黏度为4-15cps,优选10cps,黏度太低或太高,纳米银油墨均不利于在基材上涂布性。所述风嘴吹风的方向与所述透明基材表面形成ɑ角,其中0°≤ɑ≤60°。风嘴吹风的方向与所述透明基材形成一个铅锤面,所述铅锤面与所述机械运动方向形成β角,其中45°≤β≤135°,当α为0°时,β则用风嘴吹风方向与机械运动方向的夹角代替。该角度范围内的吹风方向能够较好的影响纳米银线的排列。在一定的吹风作用下纳米银线能朝着一定的吹风方向移动可以调整纳米银线的排列方向,基材表面的液态微观下流动,使得纳米银线液体中的纳米银线排列方向改变;其中,ɑ角优选0°-30°,β角优选90°,即在纳米银线涂布过程中,在垂直于机械运动方向增设风嘴装置,进而实现横向吹风,利用纳米银线液体在一定的吹风作用下,这样可让纳米银线导电薄膜机械运动方向的线阻与其垂直方向的线阻差异缩小,这样则改善了纳米银线导电膜电阻异向性的问题,所述机械运动方向可以是透明基材在涂布过程的运动方向,也可以是涂布过程中,涂布头的运动方向,具体视选自的涂布方法而定。
在步骤b)中,将OC硬化液涂布在步骤a)形成的纳米银线层上,其中,涂布方法优选狭缝式涂布,除了硬化之后形成硬化层外,在涂布过程中个,未嵌入基质层的纳米银线在OC硬化液经过时表面会包裹着OC硬化液,待固化后包裹的硬化材料能增强了纳米银线的耐热性、耐酸性、耐湿性,从而增强纳米银线导电薄膜耐环测的作用。
用本发明的制作方法完成的纳米银线导电薄膜,按如下方法测其线阻,如图5所示,制作完成的纳米银线导电薄膜机械运动方向裁取一定宽度,一定长度的矩形样片,如图5中①所示,然后在纳米银线导电薄膜TD方向裁取相同大小尺寸的矩形样片,如图5中的②所示,分别测试①和②的线阻(矩形的长边的线阻),然后样片①的线阻值除以样片②的线阻,得出比例值为0.7-1.3,说明该纳米银线导电薄膜的电阻异向性较好;如比例值为0.9-1.1,则效果更佳。
实施例1
在厚度为125μm的PET基材上,用狭缝式涂布方法涂布纳米银线涂布液形成机械运动方向,该纳米银涂布液的黏度为10cps,在涂布液的上方加装的风嘴吹风,吹风风向与PET基材成0°,其与机械运动方向成90°,热干燥后,在固化后的纳米银线涂布液上涂布OC硬化液,经热烘箱干燥、UV固化,得到最终的纳米银线导电薄膜。
实验结果:从实施例1的涂布后,测得的机械运动方向的线阻值与TD方向的线阻值较为接近,进行多点多次测试,机械运动方向的线阻与TD方向的线阻比例为0.9-1.1。
原因分析:在TD方向增加TD方向吹风作用,减少纳米银线朝着机械运动方向排列,这样测得的机械运动方向的线阻值与TD方向的线阻值较为接近,机械运动方向线阻与TD方向的线阻比例位于0.9-1.1。
实施例2
在厚度为125μm的PET(基材上,用狭缝式涂布方法涂布纳米银线涂布液形成机械运动方向,该纳米银涂布液的黏度为10cps,在涂布液的上方加装的风嘴吹风,吹风风向与PET基材成0°且与机械运动方向成135°,热干燥后,在固化后的纳米银线涂布液上涂布OC硬化液,经热烘箱干燥、UV固化,得到最终的纳米银线导电薄膜。
实验结果:从实施例2的涂布后,测得的机械运动方向的线阻值与TD方向的线阻值较为接近,进行多点多次测试,机械运动方向的线阻与TD方向的线阻比例位于0.8-1.0。
原因分析:增设与机械运动方向成135°的吹风作用,减少纳米银线朝着机械运动方向排列,这样测得的机械运动方向的线阻值与TD方向的线阻值较为接近,机械运动方向线阻与TD方向的线阻比例位于0.8-1.0。
实施例3
在厚度为125μm的PET基材上,用狭缝式涂布方法涂布纳米银线涂布液形成机械运动方向,该纳米银涂布液的黏度为10cps,在涂布液的基材下方加装的风嘴吹风作用,吹风风向吹风风向与PET基材成60°且与机械运动方向成135°待热干燥后,在固化后的纳米银线涂布液上涂布OC硬化液,经热烘箱干燥、UV固化,得到最终的纳米银线导电薄膜。
实验结果:从实施例3的涂布后,测得的机械运动方向的线阻值与其垂直方向的线阻值较为接近,进行多点多次测试,机械运动方向的线阻与其垂直方向(TD方向)的线阻比例位于0.7-0.9。
原因分析:吹风风向与PET基材成60°且与机械运动方向成135°的吹风作用,减少纳米银线朝着机械运动方向排列这样测得的机械运动方向的线阻值与TD方向的线阻值较为接近,机械运动方向线阻与TD方向的线阻比例位于0.7-0.9。
实施例4
在厚度为125μm的PET基材上,用狭缝式涂布方法涂布纳米银线涂布液,形成机械运动方向,该纳米银涂布液的黏度为5cps,在涂布液的上方加装的风嘴吹风作用,吹风风向与PET基材成0°且与机械运动方向成90°,热干燥后,在固化后的纳米银线涂布液上涂布OC硬化液,经热烘箱干燥、UV固化,得到最终的纳米银线导电薄膜。
实验结果:从实施例4的涂布后,测得的机械运动方向的线阻值与TD方向的线阻值较为接近,进行多点多次测试,机械运动方向的线阻与TD方向的线阻比例为0.7-1.0
原因分析:在一定的吹风作用,较低黏度的纳米银涂布液,基材表面的纳米银涂布液表面流动性更佳,更有利于减少纳米银线朝着机械运动方向排列,这样测得的机械运动方向的线阻值与TD方向的线阻值较为接近,机械运动方向线阻与TD方向的线阻比例位于0.7-1.0。
对比例1
在厚度为125μm的PET基材上,用狭缝式涂布方法涂布纳米银线涂布液形成机械运动方向,该纳米银涂布液的黏度为10cps,在垂直于基材表面向下吹风即α=90°并热干燥后,在固化后的纳米银线涂布液上涂布OC硬化液,经热烘箱干燥、UV固化,得到最终的纳米银线导电薄膜。
实验结果:从对比例1的涂布后,测得的机械运动方向的线阻值与TD方向的线阻值相差较大,进行多点多次测试,机械运动方向的线阻与TD方向的线阻比例位于0.5-0.7。
原因分析:在涂布过程中特别是使用狭缝式涂布的方法进行涂布,纳米银线容易朝着机械运动方向进行排列,而经过向下吹风且热干燥后,未改善纳米银线排列状况,造成机械运动方向的线阻值比TD方向的线阻大甚至大很多,机械运动方向的线阻值与TD方向的线阻值比例范围在0.5-0.7。
对比例2
在厚度为125μm的PET基材上,用狭缝式涂布方法涂布纳米银线涂布液,该纳米银线涂布液的黏度为20cps,经过涂布液的上方加装的风嘴吹风作用,吹风风向与PET基材成60°且与机械运动方向成135°,热干燥后,然后在纳米银线导电层上涂布OC硬化液,经热烘箱干燥、UV固化,得到最终的纳米银线导电薄膜。
实验结果:从对比例2的涂布后,测得的机械运动方向的线阻值与TD方向的线阻值相差较大,进行多点多次测试,机械运动方向的线阻与TD方向的线阻比例位于0.6-0.8。
原因分析:在涂布过程中特别是使用狭缝式涂布的方法进行涂布,纳米银线容易朝着机械运动方向进行排列,虽然经过一定方向的吹风作用且热干燥后,但由于纳米银涂布液本身的黏度较高,基材表面上的纳米银涂布液流动性较差,最终未改善纳米银线排列状况,造成机械运动方向的线阻值比TD方向的线阻大甚至大很多,机械运动方向的线阻值与TD方向的线阻值比例范围在0.6-0.8。
表1
需要注意的是,具体实施方式仅仅是对本发明技术方案的解释说明,不应将其理解为对本发明技术方案的限定,任何采用本发明实质发明内容而仅作局部改变的,仍应落入本发明的保护范围内。

Claims (11)

1.一种纳米银线导电薄膜,其特征在于,包括一透明基材层,一纳米银线层,所述透明基材层上形成一机械运动方向,该纳米银线导电膜在机械运动方向的线阻与其垂直方向的线阻比为0.7-1.3。
2.如权利要求1所述的纳米银线导电薄膜,其特征在于所述纳米银线层由下至上按顺序包括一基质层、硬化层和至少部分嵌在所述基质层和硬化层的纳米银线。
3.如权利要求2所述的纳米银线导电薄膜,其特征在于所述纳米银线层未嵌入所述基质层和硬化层的纳米银线表面包裹有硬化材料。
4.如权利要求1所述的纳米银线导电薄膜,其特征在于所述纳米银线的长度为30-100μm,直径为10-40nm。
5.如权利要求3所述的纳米银线导电薄膜,其特征在于所述基质层的厚度为20nm-200nm。
6.如权利要求1所述的纳米银线导电薄膜,其特征在于所述纳米银线导电膜在机械运动方向的线阻与其垂直方向的线阻比为0.9-1.1。
7.如权利要求3所述的纳米银线导电薄膜,其特征在于所述硬化层的厚度为40nm-1um。
8.一种纳米银线导电薄膜的制作方法,其特征在于所述方法包括以下步骤:
a),在一透明基材上,涂布纳米银线涂布液,并形成机械运动方向,在纳米银线涂布液的斜上方或一侧设置风嘴吹风以及进行热干燥;
b),在步骤a)的纳米银线层上涂布硬化液,经热烘箱干燥、UV固化。
9.如权利要求8所述的纳米银线导电薄膜的制作方法,其特征在于纳米银线涂布液的黏度为4-15cps。
10.如权利要求8所述的纳米银线导电薄膜的制作方法,其特征在于风嘴吹风的方向与所述透明基材的表面形成ɑ角,其中0°≤ɑ≤60°。
11.如权利要求8所述的纳米银线导电薄膜的制作方法,其特征在于风嘴吹风的方向与所述透明基材形成一个铅锤面,所述铅锤面与所述机械运动方向形成β角,其中45°≤β≤135°。
CN201810618173.8A 2018-06-15 2018-06-15 一种纳米银线导电薄膜及其制作方法 Withdrawn CN108962434A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810618173.8A CN108962434A (zh) 2018-06-15 2018-06-15 一种纳米银线导电薄膜及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810618173.8A CN108962434A (zh) 2018-06-15 2018-06-15 一种纳米银线导电薄膜及其制作方法

Publications (1)

Publication Number Publication Date
CN108962434A true CN108962434A (zh) 2018-12-07

Family

ID=64489533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810618173.8A Withdrawn CN108962434A (zh) 2018-06-15 2018-06-15 一种纳米银线导电薄膜及其制作方法

Country Status (1)

Country Link
CN (1) CN108962434A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110517828A (zh) * 2019-08-13 2019-11-29 深圳市善柔科技有限公司 银纳米线薄膜的制备方法
CN110517829A (zh) * 2019-08-13 2019-11-29 深圳市善柔科技有限公司 银纳米线薄膜的制备方法
CN111029039A (zh) * 2019-12-12 2020-04-17 湖南中天碧水膜科技有限公司 一种改善纳米银线导电膜电阻异向性的方法
CN113463095A (zh) * 2021-07-05 2021-10-01 北京京城清达电子设备有限公司 一种纳米银线取向装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104094365A (zh) * 2012-02-16 2014-10-08 大仓工业株式会社 透明导电基材的制造方法和透明导电基材
TW201606806A (zh) * 2014-05-20 2016-02-16 Dexerials Corp 透明導電膜的製造方法以及透明導電膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104094365A (zh) * 2012-02-16 2014-10-08 大仓工业株式会社 透明导电基材的制造方法和透明导电基材
TW201606806A (zh) * 2014-05-20 2016-02-16 Dexerials Corp 透明導電膜的製造方法以及透明導電膜

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110517828A (zh) * 2019-08-13 2019-11-29 深圳市善柔科技有限公司 银纳米线薄膜的制备方法
CN110517829A (zh) * 2019-08-13 2019-11-29 深圳市善柔科技有限公司 银纳米线薄膜的制备方法
CN111029039A (zh) * 2019-12-12 2020-04-17 湖南中天碧水膜科技有限公司 一种改善纳米银线导电膜电阻异向性的方法
CN113463095A (zh) * 2021-07-05 2021-10-01 北京京城清达电子设备有限公司 一种纳米银线取向装置

Similar Documents

Publication Publication Date Title
CN108962434A (zh) 一种纳米银线导电薄膜及其制作方法
CN105762291B (zh) 透明电极及其制造方法
CN104134484A (zh) 基于纳米银线的柔性透明导电薄膜及制备方法
CN106782769A (zh) 低粗糙度低方阻的柔性透明导电复合薄膜及其制备方法
CN103700430B (zh) 一种有序分布的导电薄膜及其制造方法
CN102087884A (zh) 基于有机聚合物和银纳米线的柔性透明导电薄膜及其制备方法
CN107331432A (zh) 一种银纳米线透明导电薄膜及其制备方法
CN101625468B (zh) 触摸式液晶屏的制备方法
JP2011090879A (ja) 透明導電体の製造方法
CN105446555B (zh) 纳米银线导电层叠结构及触控面板
CN105786242A (zh) 一种柔性触控屏传感薄膜及其制备方法
CN110277198A (zh) 一种柔性基底银纳米线透明导电薄膜及其制备方法
Li et al. Embedding silver nanowires into a hydroxypropyl methyl cellulose film for flexible electrochromic devices with high electromechanical stability
CN204855991U (zh) 一种柔性调光器件及含有该器件的透光量可调节窗
CN105810758B (zh) 一种用于智能调光膜的准晶图案化的透明导电薄膜电极
CN104087899A (zh) 一种基于等离激元模式金属增强荧光的金属有序阵列纳米结构的制备方法
CN104575687B (zh) 一种强附着力的碳纳米管柔性透明导电薄膜及其制备方法
CN104332215A (zh) 低电阻率透明导电膜的制备方法
WO2020001001A1 (zh) 图案化的纳米银线薄膜的制造方法、触控屏及其制造方法
CN213844777U (zh) 一种纳米银线复合透明导电膜
CN101620348B (zh) 触摸式液晶显示屏的制备方法
CN203930764U (zh) 纳米银线导电层叠结构及触控面板
CN108447617A (zh) 一种保护纳米银线透明导电薄膜的方法
US11805598B2 (en) Ultra-thin composite transparent conductive film and preparation method therefor
KR102161307B1 (ko) 투명전극 및 그의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20181207

WW01 Invention patent application withdrawn after publication