WO2020001001A1 - 图案化的纳米银线薄膜的制造方法、触控屏及其制造方法 - Google Patents

图案化的纳米银线薄膜的制造方法、触控屏及其制造方法 Download PDF

Info

Publication number
WO2020001001A1
WO2020001001A1 PCT/CN2019/071228 CN2019071228W WO2020001001A1 WO 2020001001 A1 WO2020001001 A1 WO 2020001001A1 CN 2019071228 W CN2019071228 W CN 2019071228W WO 2020001001 A1 WO2020001001 A1 WO 2020001001A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
silver wire
patterned
modification layer
manufacturing
Prior art date
Application number
PCT/CN2019/071228
Other languages
English (en)
French (fr)
Inventor
来宇浩
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Priority to US16/706,871 priority Critical patent/US20200110491A1/en
Publication of WO2020001001A1 publication Critical patent/WO2020001001A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1208Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0783Using solvent, e.g. for cleaning; Regulating solvent content of pastes or coatings for adjusting the viscosity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1173Differences in wettability, e.g. hydrophilic or hydrophobic areas

Definitions

  • the present application relates to the field of preparing transparent conductive films, and in particular, to a method for manufacturing a patterned nano-silver wire film touch screen, a touch screen, and a method for manufacturing the same.
  • Nano-silver wire material is a popular material in transparent conductive films in recent years. It has high conductivity and transparency, as well as good flexibility, and has a good application prospect in the field of flexible touch screens.
  • a method for preparing a nano-silver wire film is, for example, directly coating a nano-silver wire solution on a substrate, and then patterning the nano-silver wire film by using a laser etching (also called laser ablation) technique.
  • Laser etching technology uses short pulses and high peak power laser pulses to rapidly heat up, melt and even vaporize the surface of the material to be etched locally to achieve accurate removal of surface materials.
  • Laser etching technology requires the use of high-precision laser processing equipment to etch the pattern step by step.
  • the purpose of this application is to provide a method for manufacturing a patterned nano-silver wire thin film touch screen, a touch screen and a method for manufacturing the same, in order to solve the high cost of the method for manufacturing patterned nano-silver wire thin films in the prior art, Low efficiency and waste of materials.
  • an embodiment of the present application proposes a method for manufacturing a patterned nano-silver wire film, including:
  • the nano-silver wire solution is coated on the substrate, and the surface modification layer and the nano-silver wire solution are mutually exclusive, so that the nano-silver wire solution is automatically dispersed and aggregated on the surface modification layer.
  • the surface modification layer and the nano-silver wire solution are mutually exclusive, so that the nano-silver wire solution is automatically dispersed and aggregated on the surface modification layer.
  • a baking process is performed to cure the nano-silver wire solution to form a patterned nano-silver wire film.
  • the surface modification layer is hydrophobic.
  • the surface modification layer is formed of a surface modifier, and the surface modifier includes a silane coupling agent, a linear alkyl group, a branched alkyl group surface modifier, and a rosin derivative.
  • the surface modifier includes a silane coupling agent, a linear alkyl group, a branched alkyl group surface modifier, and a rosin derivative.
  • a surface modifier a fluoroalkyl surface modifier, and a polysiloxane-based surface modifier.
  • the surface modification layer has a first pattern
  • the nano-silver wire film has a second pattern
  • the first pattern is complementary to the second pattern and covers the entire substrate together.
  • the method for forming the surface modification layer includes:
  • the surface modifier in the first pattern is formed on the transfer plate by a screen printing method.
  • the nano silver wire solution includes several nano silver wires, and the nano silver wires are distributed in a solvent of the nano silver wire solution.
  • the concentration of the nano silver wire solution is 0.01 mg / mL to 10 mg / mL.
  • the solvent in the nano-silver wire solution is ethylene glycol or isopropanol.
  • an embodiment of the present application further provides a method for manufacturing a touch screen, wherein the touch screen includes a patterned nano-silver line film, and the patterned nano-silver line film uses the patterned nano It is made by a manufacturing method of a silver wire film.
  • an embodiment of the present application further proposes a touch screen, including:
  • a patterned nano-silver wire film is formed on a portion of the substrate that is not covered with the surface modification layer.
  • the surface modification layer has a first pattern
  • the nano-silver wire film has a second pattern
  • the first pattern is complementary to the second pattern and covers the entire substrate together.
  • the patterned nano-silver wire film is made by using the manufacturing method of the patterned nano-silver wire film described above. Since the manufacturing method in the embodiment of the present application does not use the laser etching technology, no sintered traces of laser etching are generated on the substrate of the touch screen, so that the touch screen has better performance and quality.
  • the present application provides a method for manufacturing a patterned nano-silver wire film and a touch screen.
  • a patterned surface modification layer is formed on a substrate, and then a nano-silver wire solution is coated on the substrate, and the surface modification layer is used.
  • the mutually exclusive nature with the nano silver wire solution enables the nano silver wire solution to be automatically dispersed on the surface modification layer and aggregates onto the part of the substrate that is not covered by the surface modification layer, thereby forming a pattern after the nano silver wire solution is cured.
  • Nano silver wire film Different from the existing laser etching technology, the manufacturing method of the patterned nano-silver wire film provided in the present application has a simple and fast whole process, can be applied to mass production, and can reduce equipment cost.
  • this application provides a low-cost, high-efficiency manufacturing method for the patterned nano-silver wire film.
  • the substrate of the touch screen made of the nano-silver wire film does not produce sintered traces of laser etching, so that the touch screen manufactured by this method With better performance and quality.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a patterned nano-silver wire film in an embodiment of the present application
  • FIG. 2 to FIG. 3 are schematic top views of the patterned nano-silver wire film in the embodiment of the present application during its formation;
  • FIG. 4 is a schematic flowchart of a method for forming a surface modification layer in an embodiment of the present application.
  • This embodiment provides a method for manufacturing a patterned nano-silver wire thin film. Referring to FIG. 1 to FIG. 3, it is specifically divided into the following steps:
  • step S1 is performed to form a patterned surface modification layer 2 on the substrate 1.
  • the substrate 1 may be, for example, a glass substrate or a flexible substrate formed of a flexible material; wherein the flexible material may be a polyimide material, PET plastic, or the like. Since the manufacturing method of the nano-silver wire film is more emphasized in this embodiment, it is only required that the nano-silver wire can be formed on the substrate 1, and there is no excessive requirement on the material of the substrate 1. Those skilled in the art can select a suitable base material according to needs.
  • the patterned surface modification layer 2 is formed on the substrate 1, and the surface characteristics of the substrate 1 can be changed, so that the region where the patterned surface modification layer 2 is formed on the substrate 1 is different from the region Surface characteristics of the substrate 1.
  • the nano-silver wire solution was automatically dispersed on the surface modification layer 2 due to the repulsive effect of the surface modification layer 2 and gathered into the substrate 1 Cover the part of the surface modification layer 2.
  • FIG. 4 is a schematic flowchart of a method for forming a surface modification layer in an embodiment of the present application.
  • the method for forming a surface modification layer includes:
  • a patterned surface modifier is transferred to the substrate 1 by a transfer method.
  • step S11 is performed to prepare a transfer plate, which will be used as a carrier for transferring the surface modifier.
  • step S12 is performed to apply the patterned surface modifier on the transfer plate.
  • step S13 is executed to transfer the surface modifier on the transfer plate to the substrate 1 by a transfer method.
  • step S14 is executed to perform a baking process on the substrate 1 printed with the patterned surface modifier to achieve curing of the surface modifier, thereby forming the surface modified layer 2.
  • other processes may also be performed in S14, as long as this step can ensure that the surface modifier can be cured.
  • a screen printing method is used to form the surface modifier in a first pattern on the transfer plate.
  • a screen printing method is proposed in this embodiment, that is, the patterned surface modifier is screen-printed. Printing on the transfer plate, and in the screen printing process, printing of the surface modifier in a predetermined pattern is realized by using a pre-made screen screen.
  • a pattern presented by the patterned surface modifier is referred to as a first pattern. Therefore, in this embodiment, a patterned surface modifier is formed on the transfer plate by a screen printing method.
  • step S2 is performed, and referring to FIGS. 2 to 3, a nano silver wire solution is coated on the substrate 1, and the surface modification layer 2 and the nano silver wire solution are mutually repelled to make the nano silver wire
  • the solution is automatically dispersed on the surface modification layer 2 and aggregates onto a portion of the substrate 1 that does not cover the surface modification layer 2.
  • the nano-silver wire solution and the substrate 1 are not mutually exclusive, therefore When the nano-silver wire solution is coated on the substrate 1, the nano-silver wire solution will naturally spread out due to its own weight, thereby wetting the exposed portion of the substrate 1.
  • the nano-silver wire solution repels each other, so when the nano-silver wire solution is coated on the surface modification layer 2, the nano-silver wire solution does not spread out naturally and wet the surface Modified layer 2.
  • the nano-silver wire solution and the surface modification layer 2 have a small adsorption force, the nano-silver wire solution is extremely easy to move on the surface modification layer 2.
  • the nano-silver wire solution coated on the surface modification layer 2 and the nano-silver wire solution coated on the exposed portion of the substrate 1 are connected to each other. Under the action, the nano-silver wire solution applied on the surface modification layer 2 will be driven and guided, automatically dispersed on the surface modification layer 2 and gradually gathered into the substrate 1 to be exposed. On the part.
  • the above process in this embodiment makes full use of the material properties of the surface modification layer 2 so that the nano-silver wire solution automatically gathers on the exposed portion of the substrate 1 to realize the nano-silver wire Patterning of the solution.
  • the surface modification layer 2 is used to guide the nano-silver wire solution to be dispersed to the exposed portion of the substrate 1, and to realize the nano-silver wire Patterning of thin films. Therefore, the method in this embodiment does not waste the nano silver wire material, and improves the utilization rate of the nano silver wire material. Moreover, since no laser etching technology is used, no trace of laser sintering is generated on the surface of the substrate 1.
  • the nano silver wire solution includes several nano silver wires, and the nano silver wires are distributed in a solvent.
  • the concentration of the nano silver wire solution may be 0.01 mg / mL to 10 mg / mL, such as 0.05 mg / mL, 0.1 mg / mL, 0.5 mg / mL, 1 mg / mL, 2 mg / mL, 3 mg / mL, 4 mg / mL. , 5 mg / mL, 6 mg / mL, 7 mg / mL, 8 mg / mL, 9 mg / mL, and the like. According to the actual process capability and product requirements, those skilled in the art can flexibly select the concentration of the nano-silver wire solution.
  • the surface modification layer 2 is hydrophobic.
  • a common solvent in nanosilver wire solutions is water, and other solvents include ethylene glycol, isopropyl alcohol, and the like.
  • the solvent of the nano-silver wire solution is water
  • a manufacturing method of the patterned nano-silver wire film is given in this embodiment.
  • the surface modification layer 2 is made of a material that repels water, and therefore has a hydrophobic property.
  • the reason why the nano-silver wire solution using water as a solvent in this embodiment mutually repels the hydrophobic surface-modifying layer 2 is that water is a polar substance, which can form hydrogen bonds in the interior to prepare the surface.
  • the solute molecules in the surface modifier used when modifying layer 2 tend to be non-polar, which makes these molecules unable to form hydrogen bonds, and is therefore incompatible with water, which leads to mutual repulsion.
  • the hydrophobicity of the surface modification layer 2 is also reflected in that when water droplets contact the surface of the hydrophobic material, a large contact angle will be formed to form a water droplet shape instead of being automatically spread.
  • the contact angle refers to the tangent to the gas-liquid interface at the three-phase intersection of gas, liquid and solid. The angle between this tangent on the liquid side and the solid-liquid boundary line is A measure of how wet a liquid is with a solid.
  • the contact angle formed is smaller (less than 90 °), so the water droplets are more likely to spread on the surface of the hydrophilic material, thereby wetting the surface of the hydrophilic material.
  • the contact angle formed is larger (greater than 90 °), thereby forming a droplet-like or even spherical structure. Because the adsorption between the water droplet and the surface of the hydrophobic material is small, the surface of the hydrophobic material is hardly wet, so it is easy to move on the surface of the hydrophobic material. Therefore, in this embodiment, the nano-silver wire solution using water as a solvent is easily aggregated into the uncovered surface modification layer 2 in the substrate 1 under the action of the hydrophobic surface modification layer 2 and liquid surface tension. part.
  • this embodiment is not limited to that the solvent of the nano-silver wire solution can only be water and the material of the surface modifier can only be a hydrophobic material, but only gives a representative , Schematic examples and descriptions.
  • solvents of the nano-silver wire solution such as ethylene glycol, isopropyl alcohol, etc.
  • a repellent surface modifier corresponding to the solvent can also be found, the effect in this embodiment can also be achieved. Therefore, those skilled in the art may try according to different solvents of the nano silver wire solution, and then select a suitable surface modifier.
  • the surface modification layer 2 is formed of a surface modifier, and the surface modifier includes a silane coupling agent, a linear alkyl type, a branched alkyl type surface modifier, and rosin One or more of a derivative-based surface modifier, a fluoroalkyl surface modifier, and a polysiloxane-based surface modifier.
  • hydrophobic surface modification layer 2 for the above-mentioned hydrophobic surface modification layer 2, a variety of hydrophobic surface modifiers are proposed for selection, including silane coupling agents, linear alkyls, and branched alkyls.
  • a surface modifier a rosin derivative-based surface modifier, a fluoroalkyl surface modifier, and a polysiloxane-based surface modifier.
  • Those skilled in the art can choose a suitable surface modifier by themselves according to specific needs.
  • step S3 is performed. Referring to FIG. 3, a baking process is performed to cure the nano-silver wire solution to form a patterned nano-silver wire film 3.
  • a baking process is performed on the nano-silver wire solution, so that the solvent in the nano-silver wire solution is volatilized, so that The nano-silver wire remains and overlaps to form a nano-silver wire film 3.
  • the conditions of the baking process can be determined by those skilled in the art according to the specific parameters of the nano-silver wire solution, and will not be repeated here.
  • the nano-silver wire solution avoids the surface modification layer 2, according to the pattern of the surface modification layer 2, the nano-silver wire film 3 also has a corresponding pattern, thereby realizing the pattern. Manufacturing of the converted nano-silver wire film 3.
  • the surface modification layer 2 has a first pattern
  • the nano-silver wire film 3 has a second pattern.
  • the first pattern and the second pattern are complementary to each other. Covering the entire substrate 1.
  • the surface modification layer 2 is used so that the nano-silver wire solution automatically avoids the portion on the substrate 1 where the surface modification layer 2 is formed, and forms a portion exposed on the substrate 1. Based on this, the present embodiment determines the pattern of the nano-silver wire film 3 formed on the exposed portion of the substrate 1 by setting the pattern of the surface modification layer 2 in advance.
  • the pattern of the surface modification layer 2 has been printed with a surface modification in a first pattern on a transfer plate by, for example, a screen printing method. Agent, and then the surface modification agent in the first pattern is transferred to the substrate 1 by the transfer method in the subsequent step, and the surface modification layer 2 is cured to form the surface modification layer 2 correspondingly.
  • a first pattern Presented as a first pattern.
  • the nano-silver wire solution coated on the substrate 1 is automatically avoided due to the effects of the surface modification layer 2 and the liquid surface tension. All the patterned surface modification layers 2 are aggregated onto exposed portions of the substrate 1. After baking and curing, the solvent in the nano-silver wire solution is volatilized, and a patterned nano-silver wire film 3 is formed on the substrate 1.
  • the pattern presented by the nano-silver wire film 3 is referred to as a second pattern.
  • the first pattern and the second pattern do not overlap, and the first pattern and the second pattern are complementary and collectively cover the entire substrate 1. That is, the surface modification layer 2 and the nano-silver wire film 3 have no overlapping portion, and the surface modification layer 2 and the nano-silver wire film 3 collectively cover the entire surface of the substrate 1.
  • a method for manufacturing a touch screen is also provided.
  • the touch screen includes a patterned nano silver wire film, and the patterned nano silver wire film uses the patterned nano silver wire. It is manufactured by the manufacturing method of a thin film.
  • a touch screen which includes a substrate 1; a patterned surface modification layer 2 formed on the substrate 1; and, formed on the substrate 1 without covering the surface A nano silver wire film 3 patterned on a portion of the surface modification layer 2.
  • the nano-silver wire film 3 is made by using the manufacturing method of the patterned nano-silver wire film as described above. Since the manufacturing method in the embodiment of the present application does not use laser etching technology, no sintered traces of laser etching are generated on the substrate of the touch screen, so that the touch screen made by this method has better performance. Performance and quality.
  • a touch display device is also provided.
  • the touch display device includes the touch screen described above. Because the touch screen has better performance and quality, the touch display device has stronger market competitiveness and better application prospects.
  • the present application provides a method for manufacturing a patterned nano-silver wire film and a touch screen, by forming a patterned surface modification layer 2 on a substrate 1, and using the surface modification layer 2 and a nanometer
  • the mutually exclusive nature of the silver wire solution makes the nano silver wire solution spread on the surface modification layer 2 and automatically gathers on the part of the substrate 1 that does not cover the surface modification layer 2, so that after the nano silver wire solution is cured, A patterned nano-silver wire film 3 is formed.
  • the manufacturing method of the patterned nano-silver wire film provided by the present application is simple and fast. When applied to mass production, it can further reduce the equipment cost.
  • the present application provides a low-cost and high-efficiency method for producing patterned nano-silver wire films.
  • the nano-silver wire film prepared by using the patterned nano-silver wire film manufacturing method proposed in the present application does not use laser etching technology, and does not generate laser-etched sintering marks on the substrate.
  • the manufactured touch screen also has correspondingly better performance and quality, and the manufactured display panel and touch device also have stronger market competitiveness and better application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Human Computer Interaction (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacture Of Switches (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种图案化的纳米银线薄膜的制造方法、触控屏及其制造方法。先在基底上形成图案化的表面改性层(S1);然后在基底上涂覆纳米银线溶液,利用表面改性层与纳米银线溶液相互排斥的性质,使纳米银线溶液在表面改性层上自动分散开并聚集到基底中未覆盖表面改性层的部分上(S2);在固化后形成图案化的纳米银线薄膜(S3)。图案化的纳米银线薄膜的制造方法降低了设备成本,提高了纳米银线材料的利用效率,可适用于大规模生产。

Description

图案化的纳米银线薄膜的制造方法、触控屏及其制造方法 技术领域
本申请涉及透明导电薄膜制备领域,尤其涉及一种图案化的纳米银线薄膜触控屏的制造方法、触控屏及其制造方法。
背景技术
纳米银线材料是近年来透明导电薄膜中的一种热门材料,其具有较高的导电性和透明度,以及良好的柔韧性,在柔性触控屏领域具有良好的应用前景。目前,纳米银线薄膜的制备方法,例如是通过将纳米银线溶液直接涂布在基材上,然后采用激光刻蚀(又称为激光烧蚀)技术将纳米银线薄膜图案化。激光刻蚀技术利用短脉冲、高峰值功率的激光脉冲使待刻蚀的材料表面局部迅速升温、融化乃至汽化,实现表面材料的精确去除。激光刻蚀技术需要使用高精度的激光加工设备,以将图案一步步刻蚀出来。
然而,现有的激光加工设备的加工效率较低。为了满足高产量的需求,需要配备较多的激光加工设备。然而激光加工设备昂贵,导致投入设备中的成本提高。此外,激光刻蚀会烧蚀掉部分纳米银线,长期累积后,也会造成相当程度的纳米银线材料的浪费,导致材料成本上升。
发明内容
本申请的目的在于提供一种图案化的纳米银线薄膜触控屏的制造方法、触控屏及其制造方法,以解决现有技术中图案化的纳米银线薄膜的制造方法成本较高、效率较低以及浪费材料的问题。
对此,本申请的实施例提出了一种图案化的纳米银线薄膜的制造方法,包括:
在基底上形成图案化的表面改性层;
在所述基底上涂覆纳米银线溶液,所述表面改性层与所述纳米银线溶 液相互排斥,以使所述纳米银线溶液在所述表面改性层上自动分散开,并聚集至所述基底中未覆盖所述表面改性层的部分上;
执行烘烤工艺固化所述纳米银线溶液以形成图案化的纳米银线薄膜。
可选地,当所述纳米银线溶液中的溶剂为水时,所述表面改性层具有疏水性。
可选地,所述表面改性层由表面改性剂形成,且所述表面改性剂包括硅烷偶联剂、直链烷基类、支链烷基类表面改性剂、松香衍生物类表面改性剂、氟代烷基表面改性剂和聚硅氧烷基类表面改性剂中的一种或多种。
可选地,所述表面改性层呈第一图案,所述纳米银线薄膜呈第二图案,所述第一图案与所述第二图案互补,共同覆盖整个所述基底。
可选地,所述表面改性层的形成方法包括:
提供转印板;
在所述转印板上涂覆图案化的表面改性剂;
利用转印的方法将所述转印板上的所述表面改性剂转印至所述基底上;
固化所述表面改性剂以形成所述表面改性层。
可选地,采用丝网印刷的方法在所述转印板上形成呈所述第一图案的所述表面改性剂。
可选地,所述纳米银线溶液中包含若干纳米银线,所述纳米银线分布于所述纳米银线溶液的溶剂中。
可选地,所述纳米银线溶液的浓度为0.01mg/mL~10mg/mL。
可选地,所述纳米银线溶液中的溶剂为乙二醇或异丙醇。
此外,本申请的实施例还提供了一种触控屏的制造方法,其中,所述触控屏包括图案化的纳米银线薄膜,所述图案化的纳米银线薄膜采用上述图案化的纳米银线薄膜的制造方法制成。
相应地,本申请的实施例还提出了一种触控屏,包括:
基底;
图案化的表面改性层,形成在所述基底上;
图案化的纳米银线薄膜,形成在所述基底中未覆盖所述表面改性层的 部分上。
可选地,所述表面改性层呈第一图案,所述纳米银线薄膜呈第二图案,所述第一图案与所述第二图案互补,共同覆盖整个所述基底。
可选地,所述图案化的纳米银线薄膜采用如上所述的图案化的纳米银线薄膜的制造方法制成。由于本申请的实施例中的制造方法未使用激光刻蚀技术,因此在触控屏的基底上不会产生激光刻蚀的烧结痕迹,使触控屏具有更好的性能与质量。
本申请提供了一种图案化的纳米银线薄膜及触控屏的制造方法,先在基底上形成图案化的表面改性层,然后在基底上涂覆纳米银线溶液,利用表面改性层与纳米银线溶液相互排斥的性质,使纳米银线溶液在表面改性层上自动分散开并聚集至基底中未覆盖表面改性层的部分上,从而在纳米银线溶液固化后形成图案化的纳米银线薄膜。与现有的激光刻蚀技术不同,本申请所提供的图案化的纳米银线薄膜的制造方法,整个过程简单快速,可适用于大规模生产,且能够降低设备成本。此外,生产过程中也不存在纳米银线溶液的浪费,提高了纳米银线材料的利用率。因此本申请为图案化的纳米银线薄膜提供了一种低成本、高效率的制造方法。此外,由于该方法未使用激光刻蚀技术,因此用所述纳米银线薄膜制成的触控屏的基底上不会产生激光刻蚀的烧结痕迹,从而使得以此方法制造出的触控屏具有更好的性能与质量。
附图说明
图1是本申请实施例中图案化的纳米银线薄膜的制造方法的流程示意图;
图2~图3是本申请实施例中图案化的纳米银线薄膜在其形成过程中的俯视示意图;
图4是本申请实施例中表面改性层的形成方法的流程示意图。
具体实施方式
以下结合附图和具体实施例对本申请提出的一种图案化的纳米银线薄 膜的制造方法作进一步详细说明。根据下面说明,本申请的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本申请实施例的目的。
本实施例中提供了一种图案化的纳米银线薄膜的制造方法,参考图1~图3所示,具体分为以下步骤:
首先,执行步骤S1,在基底1上形成图案化的表面改性层2。
具体地,所述基底1例如可以为玻璃基底,也可以为由柔性材料所形成的柔性基底;其中,柔性材料可以为聚酰亚胺材料、PET塑料等。由于本实施例中更注重的是纳米银线薄膜的制造方法,因此只要求所述纳米银线能够形成在所述基底1上,而对所述基底1的材料没有过多要求,因此,本领域技术人员可根据需要选择合适的基底材料。
本实施例中在基底1上形成图案化的表面改性层2,可以改变所述基底1的表面特性,使得所述基底1上形成图案化的表面改性层2的区域具有不同于所述基底1的表面特性。在后续涂覆纳米银线溶液时,由于所述表面改性层2的排斥作用,所述纳米银线溶液在所述表面改性层2上自动分散开,并聚集至所述基底1中未覆盖所述表面改性层2的部分上。
作为可选的方案,图4是本申请实施例中表面改性层的形成方法的流程示意图,参考图4所示,所述表面改性层的形成方法包括:
S11:提供转印板;
S12:在所述转印板上涂覆图案化的表面改性剂;
S13:利用转印的方法将所述转印板上的所述表面改性剂转印至所述基底上;
S14:固化所述表面改性剂以形成所述表面改性层。
具体地,本实施例中采用转印的方式将图案化的表面改性剂转移至所述基底1上。首先,执行步骤S11,准备转印板,所述转印板将用于作为转印所述表面改性剂的承载体。接着,执行步骤S12,在所述转印板上涂覆图案化的所述表面改性剂。然后,执行步骤S13,利用转印的方法将所述转印板上的所述表面改性剂转印至所述基底1上。最后,执行步骤S14,对印有图案化的所述表面改性剂的所述基底1执行烘烤工艺,以实现所述 表面改性剂的固化,从而形成所述表面改性层2。可选地,在S14中也可以执行其他工艺,只需保证该步骤能够实现表面改性剂的固化即可。
作为可选的方案,采用丝网印刷的方法在所述转印板上形成呈第一图案的所述表面改性剂。
具体地,针对上述的步骤S12中,图案化的表面改性剂的形成方法,本实施例中提出了采用丝网印刷的方法,即,利用丝网印刷将图案化的所述表面改性剂印刷到所述转印板上,在丝网印刷过程中,通过采用预先制作好的丝网网版实现预定图案的所述表面改性剂的印刷。本实施例中,将图案化的所述表面改性剂所呈现的图案称为第一图案。因此,本实施例中通过丝网印刷的方法实现了在所述转印板上形成图案化的所述表面改性剂。
接着,执行步骤S2,参考图2~图3,在所述基底1上涂覆纳米银线溶液,所述表面改性层2与所述纳米银线溶液相互排斥,以使所述纳米银线溶液在所述表面改性层2上自动分散开,并聚集至所述基底1中未覆盖所述表面改性层2的部分上。
具体地,对于所述基底1中未覆盖所述表面改性层2的部分,即对于基底1上暴露出的部分而言,由于所述纳米银线溶液与所述基底1相互不排斥,因此当所述纳米银线溶液涂覆于所述基底1上时,所述纳米银线溶液会因自重而自然地铺展开,从而润湿所述基底1暴露出的部分。
对比之下,对于所述基底1中形成有所述表面改性层2的部分,即,对于所述表面改性层2而言,由于本实施例中所述表面改性层2的材料与所述纳米银线溶液相互排斥,因此当将所述纳米银线溶液涂覆于在所述表面改性层2之上时,所述纳米银线溶液不会自然地铺展开并润湿所述表面改性层2。同时,由于所述纳米银线溶液与所述表面改性层2之间具有较小的吸附力,因此,所述纳米银线溶液极容易在所述表面改性层2上移动。又因为涂覆于所述表面改性层2上的所述纳米银线溶液与涂覆于所述基底1暴露出的部分的所述纳米银线溶液之间相互连接,因此在液体表面张力的作用下,涂覆于所述表面改性层2上的所述纳米银线溶液将被带动及引导,在所述表面改性层2上自动分散开来并逐渐聚集到所述基底1中暴露 出的部分上。本实施例中的以上过程,充分利用了所述表面改性层2的材料性质,使得所述纳米银线溶液自动地聚集在所述基底1上暴露出的部分,实现了所述纳米银线溶液的图案化。
此外,应当说明的是,相比现有的激光刻蚀技术,本实施例中是利用表面改性层2引导纳米银线溶液分散至基底1上暴露出的部分,并以此实现纳米银线薄膜的图案化。因此,本实施例中的方法不存在纳米银线材料的浪费,提高了对纳米银线材料的利用率。并且,由于未使用激光刻蚀技术,也不会在所述基底1表面产生激光烧结的痕迹。
进一步地,所述纳米银线溶液中包含若干纳米银线,所述纳米银线分布于溶剂中。所述纳米银线溶液的浓度可以为0.01mg/mL~10mg/mL,例如0.05mg/mL、0.1mg/mL、0.5mg/mL、1mg/mL、2mg/mL、3mg/mL、4mg/mL、5mg/mL、6mg/mL、7mg/mL、8mg/mL、9mg/mL等。依据实际工艺能力及产品需求,本领域技术人员可以灵活选择所述纳米银线溶液的浓度。
作为可选的方案,当所述纳米银线溶液中的溶剂为水时,所述表面改性层2具有疏水性。
具体地,目前纳米银线溶液中常见的一种溶剂是水,其他的溶剂还有例如乙二醇、异丙醇等。当纳米银线溶液的溶剂为水时,本实施例中给出了一种图案化的纳米银线薄膜的制造方法。其中,表面改性层2采用与水相互排斥的材料制备而成,因此具有疏水性。本实施例中以水为溶剂的纳米银线溶液之所以会与具有疏水性的表面改性层2相互排斥,是由于水是一种极性物质,其可以在内部形成氢键,而制备表面改性层2时所采用的表面改性剂中的溶质分子偏向于非极性,这使得这些分子无法形成氢键,因而与水不相溶,进而产生了相互排斥。
此外,本实施例中表面改性层2的疏水性还体现在,水滴在接触疏水性材料的表面时,将会形成一个很大的接触角而呈现水滴状,而不是自动地铺展开。需要说明的是,接触角是指对于气、液、固三相交点处所作的气-液界面的切线,此切线在液体一侧的与固-液交界线之间的夹角,接触角是一种液体对固体润湿程度的度量。水滴在接触亲水性材料时,形成的接 触角较小(小于90°),因此水滴更倾向于在亲水性材料的表面上铺展开,从而润湿亲水性材料的表面。相比之下,水滴在接触疏水性材料时,形成的接触角较大(大于90°),从而形成水滴状甚至球状的结构。由于水滴与疏水性材料表面之间的吸附作用较小,对疏水性材料的表面几乎不会润湿,因此在疏水性材料的表面上很容易发生移动。因此,在本实施例中,以水为溶剂的纳米银线溶液很容易在具有疏水性的表面改性层2以及液体表面张力的作用下,自动聚集至基底1中未覆盖表面改性层2的部分。
应当说明的是,本实施例并非是限定了所述纳米银线溶液的溶剂只能为水以及所述表面改性剂的材料只能为疏水性材料,而仅是给出了一种代表性的、示意性的举例及说明。对于其它可能的纳米银线溶液的溶剂,例如乙二醇、异丙醇等,如果也可以找到与所述溶剂对应的产生排斥的表面改性剂,则同样能够达到本实施例中的效果。因此,本领域技术人员可根据不同的纳米银线溶液的溶剂进行尝试,进而选择出合适的表面改性剂。
作为可选的方案,所述表面改性层2由表面改性剂形成,且所述表面改性剂包括硅烷偶联剂、直链烷基类、支链烷基类表面改性剂、松香衍生物类表面改性剂、氟代烷基表面改性剂和聚硅氧烷基类表面改性剂中的一种或多种。
本实施例中针对上述具有疏水性的表面改性层2,提出了多种具有疏水性的表面改性剂以供选择,包括了硅烷偶联剂、直链烷基类、支链烷基类表面改性剂、松香衍生物类表面改性剂、氟代烷基表面改性剂和聚硅氧烷基类表面改性剂中的一种或多种。本领域技术人员可以根据具体需要自行选择合适的表面改性剂。
最后,执行步骤S3,参考图3所示,执行烘烤工艺固化所述纳米银线溶液以形成图案化的纳米银线薄膜3。
具体地,在所述纳米银线溶液向所述基底1暴露出的部分聚集之后,对所述纳米银线溶液执行烘烤工艺,以使得所述纳米银线溶液中的溶剂挥发,而使其中的纳米银线保留并搭接形成纳米银线薄膜3。其中,所述烘烤工艺的条件(例如烘烤温度和烘烤时间)均可由本领域技术人员根据纳米银线溶液的具体参数自行确定,在此不做赘述。并且,由于所述纳米银 线溶液避开了所述表面改性层2,因此根据所述表面改性层2的图案,所述纳米银线薄膜3也具有相对应的图案,从而实现了图案化的纳米银线薄膜3的制造。
作为可选的方案,参考图3所示,所述表面改性层2呈第一图案,所述纳米银线薄膜3呈第二图案,所述第一图案与所述第二图案互补,共同覆盖整个所述基底1。
具体地,本实施例中采用了表面改性层2使得纳米银线溶液自动地避开了基底1上形成有表面改性层2的部分,而形成在基底1上暴露出的部分。基于此,本实施例通过预先设定好表面改性层2的图案,从而确定了后续形成在基底1暴露出的部分上的纳米银线薄膜3的图案。其中,所述表面改性层2的图案在前面所述的表面改性层2的形成步骤S12中,已经通过例如丝网印刷的方法在转印板上印刷了呈第一图案的表面改性剂,然后通过后续步骤中转印的方法将呈第一图案的表面改性剂转印至基底1上,并固化形成了表面改性层2,由此得到的表面改性层2也就相应地呈现为第一图案。
进而,在向所述基底1涂覆所述纳米银线溶液后,由于表面改性层2以及液体表面张力的作用,涂覆于所述基底1上的所述纳米银线溶液自动避开了所有图案化的所述表面改性层2而聚集至所述基底1暴露出的部分上。经过烘烤固化之后,纳米银线溶液中的溶剂挥发,在所述基底1上形成图案化的纳米银线薄膜3。本实施例中,将所述纳米银线薄膜3所呈现的图案称为第二图案。可选地,所述第一图案与所述第二图案不重叠,并且所述第一图案与所述第二图案互补,共同覆盖整个所述基底1。即,所述表面改性层2与所述纳米银线薄膜3没有重叠部分,并且所述表面改性层2与所述纳米银线薄膜3共同覆盖了整个基底1的表面。
以及,本实施例中还提出了一种触控屏的制造方法,所述触控屏包括图案化的纳米银线薄膜,所述图案化的纳米银线薄膜采用了上述图案化的纳米银线薄膜的制造方法制造。
相应地,本实施例中还提出了一种触控屏,包括基底1;形成在所述基底1上的图案化的表面改性层2;以及,形成在所述基底1上未覆盖所 述表面改性层2的部分上图案化的纳米银线薄膜3。
作为可选的方法,所述纳米银线薄膜3采用如上所述的图案化的纳米银线薄膜的制造方法制成。由于本申请的实施例中的制造方法未使用激光刻蚀技术,因此在触控屏的基底上不会产生激光刻蚀的烧结痕迹,使得以此方法制成出的触控屏具有更好的性能与质量。
此外,本实施例中还提出了一种触控显示装置,所述触控显示装置包括上述的触控屏。由于所述触控屏具有更好的性能与质量,因此所述触控显示装置具有更强的市场竞争力与更好的应用前景。
综上所述,本申请提供了一种图案化的纳米银线薄膜及触控屏的制造方法,通过在基底1上形成图案化的表面改性层2,并利用表面改性层2与纳米银线溶液相互排斥的性质,使纳米银线溶液在表面改性层2上散开并自动聚集到基底1中未覆盖所述表面改性层2的部分上,从而在纳米银线溶液固化后形成图案化的纳米银线薄膜3。本申请所提供的图案化的纳米银线薄膜的制造方法,相比于现有的激光刻蚀技术,整个过程简单快速,应用于大规模生产时,能够进一步减少设备成本的支出。此外,在生产过程中也不存在纳米银线溶液的浪费,提高了对纳米银线材料的利用率,因此本申请提供了一种低成本、高效率的生产图案化的纳米银线薄膜的方法。以及,采用本申请所提出的图案化的纳米银线薄膜制造方法制备得到的纳米银线薄膜,由于未使用激光刻蚀技术,也不会在基底上产生激光刻蚀的烧结痕迹,因此,以此制成的触控屏也相应地具有更好的性能与质量,制成的显示面板和触控装置等产品也具有更强的市场竞争力与更好的应用前景。
显然,本领域的技术人员可以对申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些改动和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变动在内。

Claims (13)

  1. 一种图案化的纳米银线薄膜的制造方法,包括:
    在基底上形成图案化的表面改性层;
    在所述基底上涂覆纳米银线溶液,所述表面改性层与所述纳米银线溶液相互排斥,以使所述纳米银线溶液在所述表面改性层上自动分散开,并聚集至所述基底中未覆盖所述表面改性层的部分上;
    执行烘烤工艺固化所述纳米银线溶液以形成图案化的纳米银线薄膜。
  2. 根据权利要求1中所述图案化的纳米银线薄膜的制造方法,其中,当所述纳米银线溶液中的溶剂为水时,所述表面改性层具有疏水性。
  3. 根据权利要求2中所述图案化的纳米银线薄膜的制造方法,其中,所述表面改性层由表面改性剂形成,且所述表面改性剂包括硅烷偶联剂、直链烷基类、支链烷基类表面改性剂、松香衍生物类表面改性剂、氟代烷基表面改性剂和聚硅氧烷基类表面改性剂中的一种或多种。
  4. 根据权利要求1中所述的图案化纳米银线薄膜的制造方法,其中,所述表面改性层呈第一图案,所述纳米银线薄膜呈第二图案,所述第一图案与所述第二图案互补,共同覆盖整个所述基底。
  5. 根据权利要求4中所述图案化的纳米银线薄膜的制造方法,其中,所述表面改性层的形成方法包括:
    提供转印板;
    在所述转印板上涂覆图案化的表面改性剂;
    利用转印的方法将所述转印板上的所述表面改性剂转印至所述基底上;
    固化所述表面改性剂以形成所述表面改性层。
  6. 根据权利要求5中所述图案化的纳米银线薄膜的制造方法,其中,采用丝网印刷的方法在所述转印板上形成呈所述第一图案的所述表面改性剂。
  7. 根据权利要求1中所述图案化的纳米银线薄膜的制造方法,其中,所述纳米银线溶液中包含若干纳米银线,所述纳米银线分布于所述纳米银线溶液的溶剂中。
  8. 根据权利要求1所述的图案化的纳米银线薄膜的制造方法,其中,所述纳米银线溶液的浓度为0.01mg/mL~10mg/mL。
  9. 根据权利要求1所述图案化的纳米银线薄膜的制造方法,其中,所述纳米银线溶液中的溶剂为乙二醇或异丙醇。
  10. 一种触控屏的制造方法,其中,所述触控屏包括图案化的纳米银线薄膜,所述图案化的纳米银线薄膜采用权利要求1所述的图案化的纳米银线薄膜的制造方法制成。
  11. 一种触控屏,包括:
    基底;
    图案化的表面改性层,形成在所述基底上;
    图案化的纳米银线薄膜,形成在所述基底中未覆盖所述表面改性层的部分上。
  12. 根据权利要求11所述的触控屏,其中,所述表面改性层呈第一图案,所述纳米银线薄膜呈第二图案,所述第一图案与所述第二图案互补,共同覆盖整个所述基底。
  13. 根据权利要求12所述的触控屏,其中,所述图案化的纳米银线薄膜采用权利要求1所述的图案化的纳米银线薄膜的制造方法制成。
PCT/CN2019/071228 2018-06-30 2019-01-10 图案化的纳米银线薄膜的制造方法、触控屏及其制造方法 WO2020001001A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/706,871 US20200110491A1 (en) 2018-06-30 2019-12-09 Method for manufacturing a patterned silver nanowire film, a touch screen and a manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810703170.4A CN108899278A (zh) 2018-06-30 2018-06-30 图案化的纳米银线薄膜及触控面板的制造方法
CN201810703170.4 2018-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/706,871 Continuation US20200110491A1 (en) 2018-06-30 2019-12-09 Method for manufacturing a patterned silver nanowire film, a touch screen and a manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2020001001A1 true WO2020001001A1 (zh) 2020-01-02

Family

ID=64347602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071228 WO2020001001A1 (zh) 2018-06-30 2019-01-10 图案化的纳米银线薄膜的制造方法、触控屏及其制造方法

Country Status (3)

Country Link
US (1) US20200110491A1 (zh)
CN (1) CN108899278A (zh)
WO (1) WO2020001001A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899278A (zh) * 2018-06-30 2018-11-27 昆山国显光电有限公司 图案化的纳米银线薄膜及触控面板的制造方法
CN109739395B (zh) * 2019-01-02 2022-11-01 京东方科技集团股份有限公司 触控显示面板及其制造方法、触控显示装置
CN114188091A (zh) * 2021-11-28 2022-03-15 北京大华博科智能科技有限公司 一种图案化透明电路及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697588A (zh) * 2004-05-11 2005-11-16 株式会社理光 图案形状物及其制造方法
US20130052366A1 (en) * 2011-08-24 2013-02-28 Giin-Shan Chen Nano-seeding via dual surface modification of alkyl monolayer for site-controlled electroless metallization
CN104779014A (zh) * 2015-03-13 2015-07-15 深圳市华科创智技术有限公司 导电图案的形成方法
CN106648259A (zh) * 2017-01-09 2017-05-10 京东方科技集团股份有限公司 一种触摸屏的制备方法、触摸屏和显示装置
CN106784402A (zh) * 2016-12-21 2017-05-31 福州大学 一种非光刻像素bank的制备及其印刷显示应用方法
CN108899278A (zh) * 2018-06-30 2018-11-27 昆山国显光电有限公司 图案化的纳米银线薄膜及触控面板的制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100490076C (zh) * 2003-03-21 2009-05-20 北卡罗来纳-查佩尔山大学 自组装方法、制造阴极的方法和沉积材料的装置
KR100805229B1 (ko) * 2006-06-07 2008-02-21 삼성전자주식회사 나노임프린트를 이용한 미세 패턴의 형성방법
CN101308219B (zh) * 2008-06-27 2010-09-08 吉林大学 以单层纳米粒子为刻蚀阻挡层构筑抗反射微结构的方法
CN102391737B (zh) * 2011-08-24 2014-01-01 浙江科创新材料科技有限公司 水溶性银纳米线墨水及其制备方法和使用方法
CN103996454B (zh) * 2014-04-30 2017-01-18 天津宝兴威科技有限公司 一种纳米金属网格透明导电基板的制造方法
CN104112544A (zh) * 2014-05-14 2014-10-22 中国科学院合肥物质科学研究院 一种防硫化氢气体腐蚀的银纳米线透明导电薄膜的制备方法
CN104867541B (zh) * 2015-04-16 2017-12-15 浙江科创新材料科技有限公司 一种透明导电薄膜及其制备方法
CN104943433B (zh) * 2015-07-05 2017-07-21 林志苹 一种图案转印模板及其制备方法
CN105152125B (zh) * 2015-08-10 2017-04-19 中山大学 一种基于微沟道结构的微纳米材料有序自组装图形化方法
CN105505742A (zh) * 2015-12-25 2016-04-20 中国科学院深圳先进技术研究院 一种液滴阵列芯片及其制备方法
CN106205863B (zh) * 2016-07-19 2018-03-06 中山大学 一种用于制备高性能纳米银线透明导电薄膜的卷对卷制程方法
CN106298071B (zh) * 2016-08-29 2017-12-29 广东纳路纳米科技有限公司 基于亲水改性的pet基材/纳米银线透明导电膜的制备方法
CN107195386A (zh) * 2017-05-19 2017-09-22 大连大学 一种透明柔性导电材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697588A (zh) * 2004-05-11 2005-11-16 株式会社理光 图案形状物及其制造方法
US20130052366A1 (en) * 2011-08-24 2013-02-28 Giin-Shan Chen Nano-seeding via dual surface modification of alkyl monolayer for site-controlled electroless metallization
CN104779014A (zh) * 2015-03-13 2015-07-15 深圳市华科创智技术有限公司 导电图案的形成方法
CN106784402A (zh) * 2016-12-21 2017-05-31 福州大学 一种非光刻像素bank的制备及其印刷显示应用方法
CN106648259A (zh) * 2017-01-09 2017-05-10 京东方科技集团股份有限公司 一种触摸屏的制备方法、触摸屏和显示装置
CN108899278A (zh) * 2018-06-30 2018-11-27 昆山国显光电有限公司 图案化的纳米银线薄膜及触控面板的制造方法

Also Published As

Publication number Publication date
CN108899278A (zh) 2018-11-27
US20200110491A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
WO2020001001A1 (zh) 图案化的纳米银线薄膜的制造方法、触控屏及其制造方法
Breen et al. Patterning indium tin oxide and indium zinc oxide using microcontact printing and wet etching
CN106782769A (zh) 低粗糙度低方阻的柔性透明导电复合薄膜及其制备方法
CN101290870B (zh) 形成图案的方法、半导体装置及其制造方法
CN104735917B (zh) 一种柱状嵌入式柔性电路的制备方法及应用
CN100401860C (zh) 图案形状物及其制造方法
TW201044010A (en) Electrowetting display and method for fabricating the same
CN109080281B (zh) 基于浸润性基底精细喷墨打印制备柔性透明导电膜的方法
TW200814330A (en) A thin film transistor, manufacturing method of a active layer thereof and liquid crystal display
EP2533103B1 (en) Method of manufacturing interconnection member and electronic device, interconnection member, multilayered interconnections, electronic device, electronic device array and display device using the method
CN108110035B (zh) 一种有机发光二极管基板及其制备方法、显示面板
CN105070650A (zh) 梯形像素Bank结构和OLED器件的制备方法
CN105405752A (zh) 一种柔性纳米线栅型透明导电电极的制作方法
US20240186034A1 (en) Method for manufacturing transparent electrode with low surface roughness
CN105264664A (zh) 使用液体前体制造亚微米结构
CN108962434A (zh) 一种纳米银线导电薄膜及其制作方法
CN106990857A (zh) 一种复合型纳米银线柔性透明导电电极结构及制备方法
Govind et al. Large‐Area Fabrication of High Performing, Flexible, Transparent Conducting Electrodes Using Screen Printing and Spray Coating Techniques
CN106784393A (zh) 一种导电纳米线层,其图形化方法及应用
CN110194927A (zh) 一种全水性透明导电涂布液、该涂布液制成的柔性透明导电薄膜及其制备方法和应用
CN103996454A (zh) 一种纳米金属网格透明导电基板的制造方法
CN106585069A (zh) 柔性基板、面板及丝网印刷机制作柔性基板、面板的方法
CN205334442U (zh) 一种复合型纳米银线柔性透明导电电极结构
CN114927285B (zh) 一种柔性透明薄膜电极及其制备方法
CN112064018B (zh) 一种室温液态金属薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825763

Country of ref document: EP

Kind code of ref document: A1