CN103843143A - 用于非平坦晶体管的钨栅极 - Google Patents

用于非平坦晶体管的钨栅极 Download PDF

Info

Publication number
CN103843143A
CN103843143A CN201180073728.1A CN201180073728A CN103843143A CN 103843143 A CN103843143 A CN 103843143A CN 201180073728 A CN201180073728 A CN 201180073728A CN 103843143 A CN103843143 A CN 103843143A
Authority
CN
China
Prior art keywords
work function
function material
nmos
gate
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180073728.1A
Other languages
English (en)
Other versions
CN103843143B (zh
Inventor
S·S·普拉丹
D·B·伯格斯特龙
J-S·全
J·邱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to CN201710339421.0A priority Critical patent/CN107275404A/zh
Priority to CN201710009225.7A priority patent/CN106783971A/zh
Publication of CN103843143A publication Critical patent/CN103843143A/zh
Application granted granted Critical
Publication of CN103843143B publication Critical patent/CN103843143B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41791Source or drain electrodes for field effect devices for transistors with a horizontal current flow in a vertical sidewall, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L2029/7858Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET having contacts specially adapted to the FinFET geometry, e.g. wrap-around contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本说明书涉及制造具有非平坦晶体管的微电子器件的领域。本说明书的实施方案涉及在非平坦NMOS晶体管内形成栅极,其中NMOS功函数材料,例如铝、钛和碳的组合物,可以结合含钛的栅极填充阻挡物一起用于促进将含钨导电材料用于形成非平坦NMOS晶体管栅极的栅极电极。

Description

用于非平坦晶体管的钨栅极
技术领域
本说明书的实施方案一般涉及微电子器件制造领域,并且更具体地涉及非平坦晶体管内的钨栅极的制造。
附图说明
在本说明书的总结部分特别指出了本公开的主题,并且明确要求权利。参考附图,根据以下的说明及随附的权利要求,本公开的上述及其它特征将进一步变得清楚。可理解的是,附图仅描绘了根据本公开的几个实施方案,因此,不应认为是对其范围的限制。通过使用附图,以附加的特征和细节描述本公开,使得更容易确定本公开的优点,其中:
图1是根据本说明书的一个实施方案的非平坦晶体管的透视图。
图2示出了在微电子基底之中或之上形成的非平坦晶体管鳍(fin)的侧面剖视图。
图3示出了根据本说明书的一个实施方案,在图2的非平坦晶体管鳍的上面沉积的牺牲材料的侧面剖视图。
图4示出了根据本说明书的一个实施方案,在牺牲材料中形成的沟道(trench)的侧面剖视图,沉积牺牲材料以暴露图3的非平坦晶体管鳍的一部分。
图5示出了根据本说明书的一个实施方案,在图4的沟道中形成的牺牲栅极的侧面剖视图。
图6示出了根据本说明书的一个实施方案,在去除图5的牺牲材料之后的牺牲栅极的侧面剖视图。
图7示出了根据本说明书的一个实施方案,在图6的牺牲栅极和微电子基底上沉积的共形介电层的侧面剖视图。
图8示出了根据本说明书的一个实施方案,由图7的共形介电层形成的栅极间隔件的侧面剖视图。
图9示出了根据本说明书的一个实施方案,在图8的栅极间隔件的各面上的非平坦晶体管鳍中形成的源极区和漏极区的侧面剖视图。
图10示出了根据本说明书的一个实施方案,在图9的栅极间隔件、牺牲栅极、非平坦晶体管鳍和微电子基底上沉积的第一介电材料的侧面剖视图。
图11示出了根据本说明书的一个实施方案,在使第一介电材料平坦化以暴露牺牲栅极的上表面之后,图10结构的侧面剖视图。
图12示出了根据本说明书的一个实施方案,去除牺牲栅极以形成栅极沟道之后,图11结构的侧面剖视图。
图13示出了根据本说明书的一个实施方案,在邻近栅极间隔件之间的非平坦晶体管鳍的栅极介电体形成之后,图12结构的侧面剖视图。
图14示出了根据本说明书的一个实施方案,在栅极沟道内形成NMOS功函数材料之后,图13结构的侧面剖视图。
图15示出了根据本说明书的一个实施方案,在NMOS功函数材料上沉积的栅极填充阻挡物(gate fill barrier)形成之后,图14结构的侧面剖视图。
图16示出了根据本说明书的一个实施方案,在图15的栅极沟道中沉积的导电栅极材料的侧面剖视图。
图17示出了根据本说明书的一个实施方案,在去除过量的导电栅极材料以形成非平坦晶体管栅极之后,图16结构的侧面剖视图。
图18示出了根据本说明书的一个实施方案,在蚀刻去除一部分非平坦晶体管栅极以形成下凹的非平坦晶体管栅极之后,图17结构的侧面剖视图。
图19示出了根据本说明书的一个实施方案,将帽盖(capping)介电材料沉积入形成下凹的非平坦晶体管栅极的形成所致的凹陷之后,图18结构的侧面剖视图。
图20示出了根据本说明书的一个实施方案,在去除过量的帽盖介电材料以在非平坦晶体管栅极上形成帽盖结构之后,图19结构的侧面剖视图。
图21示出了根据本说明书的一个实施方案,在图20的第一介电材料层、栅极间隔件和牺牲栅极上表面上沉积的第二介电材料的侧面剖视图。
图22示出了根据本说明书的一个实施方案,在图21的第二介电材料上形成图案化的蚀刻掩模的侧面剖视图。
图23示出了根据本说明书的一个实施方案,通过图22的第一和第二介电材料层形成的接触开口的侧面剖视图。
图24示出了根据本说明书的一个实施方案,在去除蚀刻掩模之后的图23结构的侧面剖视图。
图25示出了根据本说明书的一个实施方案,在图24的接触开口中沉积的导电接触材料的侧面剖视图。
图26示出了根据本说明书的一个实施方案,在去除过量的导电接触材料以形成源/漏极触点之后,图25结构的侧面剖视图。
图27是根据本说明书的一个实施方案,形成非平坦晶体管的工艺流程图。
图28是根据本说明书的一个实施方案,形成非平坦晶体管的工艺流程图。
具体实施方式
在以下的详细说明中参考附图,其以示例方式显示了可以实施所要求权利的主题的具体实施方案。对这些实施方案足够详细地进行说明,使本领域技术人员能够实施该主题。可理解的是,尽管各个实施方案不同,但并不一定互相排斥。例如,本文所述的有关一个实施方案的具体特征、结构或特性可以在其它实施方案内实施,而不会背离所要求权利的主题的精神和范围。本文所指的“一个实施方案”或“实施方案”是指有关该实施方案描述的具体特征、结构、或特性包括在本发明涵盖的至少一个实施方案中。因此,使用术语“一个实施方案”或“实施方案”不一定指相同的实施方案。此外,可理解的是,每个所公开的实施方案内的单个要素的位置或布置可以被修改,而不会背离所要求权利的主题的精神和范围。因此,以下的详细说明不应从限制意义上理解,主题范围仅由随附的权利要求所限定,与随附的权利要求所具有的全部等同范围一起进行合理解释。在附图中,类似的数字在几个视图中是指相同或类似的元件或功能,其中描绘的要素不一定互相合乎比例,而是单独要素可以放大或缩小,以便在本说明书的情境中更容易理解该要素。
在非平坦晶体管,例如三栅极晶体管和FinFET的制造中,非平坦半导体本体可以用以形成能够以非常小的栅极长度(例如低于约30nm)完全耗尽的晶体管。这些半导体本体通常为鳍状,因此,通常被称为晶体管“鳍”。例如在三栅极晶体管中,晶体管鳍具有上表面和两个相反的侧壁,所述侧壁形成在块状半导体的基底或绝缘体上硅的基底上。栅极介电体可以形成在半导体本体的上表面和侧壁上,栅极电极可以形成在半导体本体上表面上的栅极介电体上,并且邻近于半导体本体侧壁上的栅极介电体。由此,由于栅极介电体和栅极电极邻近于半导体本体的三个表面,可以形成三个独立的通道和栅极。由于形成有三个独立的沟道,当晶体管开启时半导体本体可以完全地耗尽。对于finFET晶体管,栅极材料和电极只接触半导体本体的侧壁,使得形成两个独立的沟道(而不是三栅极晶体管中的三个)。
本说明书的实施方案涉及在非平坦晶体管内形成栅极,其中NMOS功函数材料,例如铝、钛和碳的组合物可结合含钛的栅极填充阻挡物一起用于促进含钨导电材料在形成非平坦晶体管栅极的栅极电极中的使用。
图1是非平坦晶体管100的透视图,其包括形成在至少一个晶体管鳍的上面的至少一个栅极,其形成在微电子基底102上。在本公开的一个实施方案中,微电子基底102可以是单晶硅基底。微电子基底102还可以是其它类型的基底,例如绝缘体上硅(“SOI”)、锗、砷化镓、锑化铟、碲化铅、砷化铟、磷化铟、砷化镓、锑化镓等,其中任一种可与硅组合。
显示为三栅极晶体管的非平坦晶体管可以包括至少一个非平坦晶体管鳍112。非平坦晶体管鳍112可具有上表面114和一对侧向相反的侧壁,其分别为侧壁116和相反的侧壁118。
如图1另外显示的,至少一个非平坦晶体管栅极122可以形成在非平坦晶体管鳍112上。非平坦晶体管栅极122可通过在非平坦晶体管鳍的上表面114之上或邻近处、以及在非平坦晶体管鳍侧壁116和相反的非平坦晶体管鳍侧壁118之上或邻近处形成栅极介电层124。栅极电极126可以形成在栅极介电层124之上或邻近处。在本公开的一个实施方案中,非平坦晶体管鳍112可以沿基本上垂直于非平坦晶体管栅极122的方向延伸。
栅极介电层124可通过任何熟知的栅极介电材料形成,其包括但不限于二氧化硅(SiO2)、氮氧化硅(SiOxNy)、氮化硅(Si3N4)和高k介电材料,例如氧化铪、铪硅氧化物、氧化镧、镧铝氧化物、氧化锆、锆硅氧化物、氧化钽、氧化钛、钡锶钛氧化物、钡钛氧化物、锶钛氧化物、氧化钇、氧化铝、铅钪钽氧化物和铌锌酸铅。栅极介电层124可通过熟知的方法,例如通过共形沉积栅极介电材料而形成,然后用熟知的光刻法和蚀刻技术对栅极介电材料图案化,这是本领域技术人员将会理解的。
栅极电极126可通过如将讨论的本发明的各个实施方案形成。
源极区和漏极区(图1中未显示)可以形成在栅极电极126的相反侧上的非平坦晶体管鳍112中。在一个实施方案中,源极区和漏极区可通过掺杂非平坦晶体管鳍112而形成,这是本领域技术人员将会理解的。在另一个实施方案中,源极区和漏极区可通过去除部分非平坦晶体管鳍112,并且用适当的材料替代这些部分而形成源极区和漏极区,这是本领域技术人员将会理解的。在另一个实施方案中,源极区和漏极区可通过使掺杂或未掺杂的应力层在鳍112上外延性生长而形成。
图2-26示出了制造非平坦晶体管的一个实施方案的侧剖面图,其中图2-5为沿着图1的箭头A-A和B-B的视图,图6-15为沿着图1的箭头A-A的视图,图16-26为沿着图1的箭头C-C的视图。
如图2所示,非平坦晶体管鳍112可通过蚀刻微电子基底102或通过本领域已知的任何技术在微电子基底102上形成非平坦晶体管鳍112而形成。如图3中示出的,牺牲材料132可以沉积在非平坦晶体管鳍112之上(如图3所示),沟道134可以在牺牲材料132中形成以暴露部分非平坦晶体管鳍112(如图4所示)。牺牲材料132可以为本领域中任何合适的材料,沟道134可通过本领域中已知的任何技术形成,其包括但不限于光刻掩模和蚀刻。
如图5所示,牺牲栅极136可以在沟道134中形成(参见图4)。牺牲栅极136可以为任何合适的材料,例如多晶硅材料等,并且可通过本领域中已知的任何技术沉积在沟道134中(参见图4),其包括但不限于化学气相沉积(“CVD”)和物理气相沉积(“PVD”)。
如图6所示,可通过本领域中已知的任何技术去除图5的牺牲材料132,例如选择性地蚀刻牺牲材料132以暴露牺牲栅极136。如图7所示,共形介电层142可以沉积在牺牲栅极136和微电子基底102之上。共形介电层142可以为任何合适的材料,其包括但不限于氮化硅(Si3N4)和碳化硅(SiC),并且可通过任何合适的技术形成,其包括但不限于原子层沉积(“ALD”)。
如图8所示,图7的共形介电层142可以被蚀刻,例如用合适的蚀刻剂定向蚀刻以在牺牲栅极136的侧壁146上形成成对的栅极间隔件144,同时基本上去除邻近微电子基底102和牺牲栅极136上表面148的共形介电材料层142。可理解的是,鳍间隔件(未显示)可以在栅极间隔件144形成过程中同时形成在非平坦晶体管鳍112的侧壁116和118上(参见图1)。
如图9所示,源极区150a和漏极区150b可以在栅极间隔件144的每一侧上形成。在一个实施方案中,源极区150a和漏极区150b可通过N型离子掺杂剂注入(implantation)在非平坦晶体管鳍112中形成。如本领域技术人员将会理解的,掺杂剂注入是为了改变其导电性和电子性能的目的而将杂质引入半导体材料中的工艺。其通常通过P型离子(如硼)或N型离子(如磷)(总称为“掺杂剂”)的离子注入而实现。在另一个实施方案中,部分非平坦晶体管鳍112可通过本领域中已知的任何技术,例如蚀刻而被去除,而源极区150a和漏极区150b可以替代被去除的部分而形成。在又一个实施方案中,源极区和漏极区可通过使掺杂或未掺杂的应力层在鳍112上外延性生长而形成。源极区150a和漏极区将在下文中总称为“源/漏极区150”。如本领域技术人员将会理解的,具有P型源极和漏极的晶体管被称为“PMOS”或“p-沟道金属氧化物半导体”晶体管,具有N型源极和漏极的晶体管被称为“NMOS”或“n-沟道金属氧化物半导体”晶体管。本说明书涉及NMOS晶体管。因此,源/漏极区150可以为N型。
如图10所示,第一介电材料层152可以沉积在栅极间隔件144、牺牲栅极的上表面148、非平坦晶体管鳍112和微电子基底102之上。第一介电材料层152可进行平坦化以暴露牺牲栅极的上表面148(如图11所示)。通过本领域中已知的任何技术可以实现第一介电材料层152的平坦化,其包括但不限于化学机械抛光(CMP)。
如图12所示,可以去除图11的牺牲栅极136而形成栅极沟道154。可通过本领域中已知的任何技术,例如选择性蚀刻来去除牺牲栅极136。如图13所示,可以形成栅极介电层124(另如图1所示),其与非平坦晶体管鳍112邻接,这是如前面所讨论的。形成栅极电极124的材料和方法已经在前面讨论。
如图14所示,NMOS功函数材料156可以共形沉积在栅极沟道154内。NMOS功函数材料156可以包含包括铝、钛和碳的组合物。在一个实施方案中,NMOS功函数材料156可以包括约20-40重量%的铝、约30-50重量%的钛和约10-30重量%的碳。在另一个实施方案中,NMOS功函数材料156可以包括约33重量%的铝、约43重量%的钛和约24重量%的碳。NMOS功函数材料156可通过ALD工艺进行共形沉积以提供良好的非平坦晶体管鳍112的覆盖,并且在栅极沟道154周围实现均匀的阈电压,这是本领域技术人员将会理解的。另外可理解的是,可以调节铝与钛的比例以调节非平坦晶体管100的功函数,而碳可以是ALD方法的人造产物,而不是加入的组分。
如图15所示,栅极填充阻挡物158可以共形沉积在NMOS功函数材料156上。栅极填充阻挡物158可以是含钛的材料,其包括但不限于基本上纯的钛和氮化钛等。栅极填充阻挡物158可以由任何已知的技术形成。在一个实施方案中,栅极填充阻挡物158可以是通过化学气相沉积工艺形成的氮化钛,包括在约400℃下用等离子体致密化的四(二甲氨基)钛(TDMAT)的分解。在另一个实施方案中,栅极填充阻挡物158可以是通过原子层沉积工艺形成的氮化钛,包括在约300℃下的氯化钛(TiCl)和氨(NH3)的脉冲。在另一个实施方案中,栅极填充阻挡物158可以是钛和氮化钛的双层,其中钛层可通过物理气相沉积形成,而氮化钛可以如以上所讨论地形成。栅极阻挡物层158可以允许在随后的步骤中使用六氟化钨来沉积钨,以防止氟侵蚀。在钛/氮化钛双层中使用钛层可以对可能通过氮化钛层扩散的任何氟起吸气剂的作用。
如图16所示,钨栅极填充材料162可以沉积在栅极填充阻挡物158上。钨栅极填充材料162可通过本领域中已知的任何技术形成。在一个实施方案中,可以形成成核层,如在约300℃下经脉冲的二硼烷和六氟化钨,随后在约395℃下通过六氟化钨与氢反应而生长块状钨(bulk tungsten)。在一个实施方案中,钨栅极填充材料162为含钨材料。在另一个实施方案中,钨栅极填充材料162为基本上纯的钨。
如图17所示,可以去除过量的钨栅极填充材料162(例如不在图16的栅极沟道154内的钨栅极填充材料162)而形成非平坦晶体管栅极电极126(参见图1)。通过本领域中已知的任何技术可以去除过量的钨栅极填充材料162,其包括但不限于化学机械抛光(CMP)、蚀刻等。
如图18所示,可以去除一部分非平坦晶体管栅极电极126而形成凹陷164和下凹的非平坦晶体管栅极166。可通过任何已知的技术实现去除,其包括但不限于湿法刻蚀或干法刻蚀。在一个实施方案中,可以结合干法蚀刻和湿法蚀刻产生形成凹陷。例如,钨栅极填充材料162可以用六氟化硫的干法蚀刻产生凹陷,而NMOS功函数材料156可以用随后的湿法蚀刻产生凹陷。
如图19所示,可以沉积帽盖介电材料168以填充图18的凹陷164。帽盖介电材料168可以是任何合适的材料,其包括但不限于氮化硅(Si3N4)和碳化硅(SiC),并且可通过任何合适的沉积技术形成。帽盖介电材料168可被平坦化以去除过量的帽盖介电材料168(例如不在图16的凹陷内的帽盖介电材料168),从而如图20所示,在下凹的非平坦晶体管栅极166上和栅极间隔件144之间形成帽盖介电结构170。通过本领域中已知的任何技术可以去除过量的帽盖介电材料168,其包括但不限于化学机械抛光(CMP)、蚀刻等。
如图21所示,第二介电材料层172可以沉积在第一介电材料层152、栅极间隔件144和帽盖介电结构170之上。第二介电材料层172可通过任何已知的沉积技术由任何合适的介电材料形成,其包括但不限于二氧化硅(SiO2)、氮氧化硅(SiOxNy)和氮化硅(Si3N4)。如图22所示,蚀刻掩模174可以例如通过熟知的蚀刻方法用至少一个开口176在第二介电材料层172上图案化。
如图23所示,通过蚀刻穿过图24的蚀刻掩模开口176,通过第一介电材料层152和第二介电材料层172而形成接触开口182,从而暴露一部分源/漏极区150。如图24所示,然后可以去除图23的蚀刻掩模174。在一个实施方案中,第一介电材料层152和第二介电材料层172不同于栅极间隔件144和帽盖介电结构170两者的介电材料,使得第一介电材料层152和第二介电层172的蚀刻可以对栅极间隔件144和帽盖介电结构170有选择性(即蚀刻得更快)。本领域中称其为自排列(self-aligning)。
如图25所示,导电接触材料188可以沉积在图23的接触开口182中。导电接触材料188可以包括,但不限于多晶硅、钨、钌、钯、铂、钴、镍、铪、锆、钛、钽、铝、碳化钛、碳化锆、碳化钽、碳化铪、碳化铝、其它金属碳化物、金属氮化物和金属氧化物。可理解的是,各种粘合层、阻挡物层、硅化物层和/或导电层可以在导电接触材料188沉积之前共形布置或形成在图23的接触开口182中。
如图26所示,可以去除图27的过量导电接触材料188(例如不在图24的接触开口182内的导电接触材料188)以形成源/漏极触点190。通过本领域中已知的任何技术可以去除过量的导电接触材料188,其包括但不限于化学机械抛光(CMP)、蚀刻等。
如前面所讨论的,在一个实施方案中,第一介电材料层152和介电材料层168不同于栅极间隔件144和帽盖介电结构166两者的介电材料,使得第一介电材料层152和第二介电层168的蚀刻可以对栅极间隔件144和帽盖介电结构166有选择性(即蚀刻得更快)。由此,下凹的非平坦晶体管162在接触开口182的形成过程中受保护。这可以使得形成尺寸相对较大的源/漏极触点190,其可以增加晶体管驱动电流的性能,而没有在源/漏极触点190和下凹的非平坦晶体管栅极162之间短路的危险。
尽管本说明书涉及非平坦的NMOS晶体管,但可理解的是,结合非平坦NMOS晶体管的集成电路也可以包括非平坦的PMOS晶体管。因此,制造非平坦NMOS晶体管的工艺可以结合入整个集成电路制造工艺中。
在一个实施方案中,如图27中的流程图的工艺200所示,根据图2-13形成结构之后,如方框210中所述,PMOS功函数材料,例如氮化钛可被沉积在栅极沟道中。如方框220中所述,可以例如通过抗蚀剂图案化和蚀刻,在制造NMOS栅极的区域内去除一部分PMOS功函数材料,这是本领域已知的。然后可以从图14开始继续该工艺,例如在沉积NMOS功函数材料的同时,使图案化的抗蚀剂留在原位。
在一个实施方案中,如图28中的流程图的工艺300所示,根据图2-14形成结构之后,如本领域所知,可以例如通过抗蚀剂图案化和蚀刻,可以去除用于PMOS制造的区域内的一部分NMOS功函数材料。如方框310中所述,PMOS功函数材料,例如氮化钛可被沉积在栅极沟道中,如方框320中所述。然后可以从图15开始继续该工艺。可理解的是,可以不要求独立形成栅极填充阻挡物158(如图15所示),因为沉积在方框310中的PMOS功函数也可以起栅极填充阻挡物158的作用。
可理解的是,本说明书的主题不必限于图1-28中所述的特定应用。所述主题可以应用于其它的微电子器件制造应用,正如本领域技术人员所能理解的。
虽然已经以详细的本发明实施方案进行描述,可理解的是,随附的权利要求所限定的本发明不受上述描述所阐述的具体细节的限制,因为其可以有许多明显的变化,而不会背离其精神和范围。

Claims (25)

1.一种晶体管栅极,其包括:
成对的栅极间隔件;和
布置在成对的栅极间隔件之间的栅极电极,其中所述栅极电极包括:
NMOS功函数材料,所述NMOS功函数材料邻近成对的栅极间隔件的至少一部分,并且包含铝、钛和碳;
含钛的栅极填充阻挡物,所述栅极填充阻挡物邻近NMOS功函数材料;以及
含钨的栅极填充材料,所述栅极填充材料邻近栅极填充阻挡物。
2.权利要求1的晶体管栅极,其中所述栅极电极是非平坦的。
3.权利要求1的晶体管栅极,其中所述NMOS功函数材料包含约20-40重量%的铝、约30-50重量%的钛、以及约10-30重量%的碳。
4.权利要求1的晶体管栅极,其中所述NMOS功函数材料包含约33重量%的铝、约43重量%的钛、以及约24重量%的碳。
5.权利要求1的晶体管栅极,其还包括帽盖介电结构,所述帽盖介电结构布置在非平坦栅极电极的邻近处,以及布置在成对的栅极间隔件之间。
6.一种制造晶体管栅极的方法,其包括:
形成成对的栅极间隔件;以及
形成布置在成对的栅极间隔件之间的栅极电极,其包括:
共形沉积NMOS功函数材料,所述NMOS功函数材料邻近成对的栅极间隔件,并包含铝、钛和碳;
共形沉积含钛的栅极填充阻挡物,所述栅极填充阻挡物邻近NMOS功函数材料;以及
沉积含钨的栅极填充材料,所述栅极填充材料邻近栅极填充阻挡物。
7.权利要求6的方法,其中共形沉积NMOS功函数材料包括共形沉积组成为约20-40重量%的铝、约30-50重量%的钛、以及约10-30重量%的碳的NMOS功函数材料。
8.权利要求7的方法,其中共形沉积NMOS功函数材料包括共形沉积组成为约33重量%的铝、约43重量%的钛、以及约24重量%的碳的NMOS功函数材料。
9.权利要求6的方法,其还包括:
共形沉积PMOS功函数材料,所述PMOS功函数材料邻近成对的栅极间隔件;以及
在沉积NMOS功函数材料之前,去除用于制造NMOS栅极电极的区域内的一部分PMOS功函数材料。
10.权利要求9的方法,其中共形沉积PMOS功函数材料包括共形沉积氮化钛PMOS功函数材料。
11.权利要求6的方法,其还包括:
去除用于制造PMOS栅极电极的区域内的一部分NMOS功函数材料;以及
共形沉积PMOS功函数材料,所述PMOS功函数材料邻近成对的栅极间隔件,并且在用于制造NMOS栅极电极的区域内的NMOS功函数材料之上。
12.权利要求11的方法,其中共形沉积PMOS功函数材料包括共形沉积氮化钛PMOS功函数材料。
13.权利要求6的方法,其还包括:
去除用于制造PMOS栅极电极的区域内的一部分NMOS功函数材料;以及
将含钛的层共形沉积作为邻近用于制造NMOS栅极电极的区域内的NMOS功函数材料的栅极填充阻挡物,以及作为用于制造PMOS栅极电极的区域内的PMOS功函数材料。
14.权利要求13的方法,其中所述共形沉积含钛的层包括共形沉积氮化钛层。
15.权利要求6的方法,其还包括形成帽盖介电结构,所述帽盖介电结构布置在非平坦的栅极电极的邻近处,以及布置在成对的栅极间隔件之间。
16.权利要求15的方法,其中所述帽盖介电结构布置在非平坦的栅极电极的邻近处及布置在成对的栅极间隔件之间的形成帽盖介电结构包括:
通过去除一部分栅极电极而在栅极间隔件之间形成凹陷;以及
在凹陷内沉积帽盖介电材料。
17.一种制造非平坦晶体管栅极的方法,其包括:
在非平坦晶体管鳍的上面形成牺牲性非平坦晶体管栅极;
在所述牺牲性非平坦晶体管栅极和非平坦晶体管鳍的上面沉积介电材料层;
由邻近所述牺牲性非平坦晶体管栅极的一部分介电材料层形成非平坦晶体管栅极间隔件;
形成源/漏极区;
去除所述牺牲性非平坦晶体管栅极,在非平坦晶体管栅极间隔件之间形成栅极沟道,以及暴露一部分非平坦晶体管鳍;
形成栅极介电体,所述栅极介电体邻近栅极沟道内的非平坦晶体管鳍;
形成布置在成对的栅极间隔件之间的栅极电极,其包括:
共形沉积NMOS功函数材料,所述NMOS功函数材料邻近成对的栅极间隔件,并且包含铝、钛和碳;
共形沉积含钛的栅极填充阻挡物,所述栅极填充阻挡物邻近NMOS功函数材料;以及
沉积含钨的栅极填充材料,所述栅极填充材料邻近栅极填充阻挡物;
去除一部分栅极电极而在非平坦晶体管栅极间隔件之间形成凹陷;
在凹陷内形成帽盖介电结构;
在源/漏极区、非平坦晶体管栅极间隔件和帽盖介电结构之上形成至少一个介电材料层;以及
形成通过至少一个介电材料的接触开口,以接触至少一部分的源/漏极区。
18.权利要求17的方法,其中共形沉积NMOS功函数材料包括共形沉积组成为约20-40重量%的铝、约30-50重量%的钛、以及约10-30重量%的碳的NMOS功函数材料。
19.权利要求17的方法,其中共形沉积NMOS功函数材料包括共形沉积组成为约33重量%的铝、约43重量%的钛、以及约24重量%的碳的NMOS功函数材料。
20.权利要求17的方法,其还包括:
共形沉积PMOS功函数材料,所述PMOS功函数材料邻近成对的栅极间隔件;以及
在沉积NMOS功函数材料之前,去除用于制造NMOS栅极电极的区域内的一部分PMOS功函数材料。
21.权利要求20的方法,其中共形沉积PMOS功函数材料包括共形沉积氮化钛PMOS功函数材料。
22.权利要求17的方法,其还包括:
去除用于制造PMOS栅极电极的区域内的一部分NMOS功函数材料;以及
共形沉积PMOS功函数材料,所述PMOS功函数材料邻近成对的栅极间隔件,并且在用于制造NMOS栅极电极的区域内的NMOS功函数材料之上。
23.权利要求22的方法,其中共形沉积PMOS功函数材料包括共形沉积氮化钛PMOS功函数材料。
24.权利要求17的方法,其还包括:
去除用于制造PMOS栅极电极的区域内的一部分NMOS功函数材料;以及
将含钛的层共形沉积作为邻近用于制造NMOS栅极电极的区域内的NMOS功函数材料的栅极填充阻挡物,以及作为用于制造PMOS栅极电极的区域内的PMOS功函数材料。
25.权利要求22的方法,其中共形沉积含钛的栅极填充阻挡物包括共形沉积氮化钛层。
CN201180073728.1A 2011-09-30 2011-09-30 用于非平坦晶体管的钨栅极 Active CN103843143B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710339421.0A CN107275404A (zh) 2011-09-30 2011-09-30 用于非平坦晶体管的钨栅极
CN201710009225.7A CN106783971A (zh) 2011-09-30 2011-09-30 用于非平坦晶体管的钨栅极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/054294 WO2013048449A1 (en) 2011-09-30 2011-09-30 Tungsten gates for non-planar transistors

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201710339421.0A Division CN107275404A (zh) 2011-09-30 2011-09-30 用于非平坦晶体管的钨栅极
CN201710009225.7A Division CN106783971A (zh) 2011-09-30 2011-09-30 用于非平坦晶体管的钨栅极

Publications (2)

Publication Number Publication Date
CN103843143A true CN103843143A (zh) 2014-06-04
CN103843143B CN103843143B (zh) 2017-07-11

Family

ID=47996182

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201180073728.1A Active CN103843143B (zh) 2011-09-30 2011-09-30 用于非平坦晶体管的钨栅极
CN201710009225.7A Pending CN106783971A (zh) 2011-09-30 2011-09-30 用于非平坦晶体管的钨栅极
CN201710339421.0A Pending CN107275404A (zh) 2011-09-30 2011-09-30 用于非平坦晶体管的钨栅极

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201710009225.7A Pending CN106783971A (zh) 2011-09-30 2011-09-30 用于非平坦晶体管的钨栅极
CN201710339421.0A Pending CN107275404A (zh) 2011-09-30 2011-09-30 用于非平坦晶体管的钨栅极

Country Status (6)

Country Link
US (1) US9177867B2 (zh)
EP (4) EP3506367A1 (zh)
KR (4) KR101685555B1 (zh)
CN (3) CN103843143B (zh)
TW (4) TWI512986B (zh)
WO (1) WO2013048449A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448693A (zh) * 2014-09-30 2016-03-30 中芯国际集成电路制造(上海)有限公司 钨电极的形成方法
CN105990280A (zh) * 2014-10-16 2016-10-05 台湾积体电路制造股份有限公司 用于半导体制造的改进的接触件
CN107731747A (zh) * 2016-08-12 2018-02-23 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2761664A4 (en) 2011-09-30 2015-06-17 Intel Corp DIELECTRIC RECOVERY STRUCTURE FOR TRANSISTOR GRIDS
US9580776B2 (en) 2011-09-30 2017-02-28 Intel Corporation Tungsten gates for non-planar transistors
US9177867B2 (en) 2011-09-30 2015-11-03 Intel Corporation Tungsten gates for non-planar transistors
US8981435B2 (en) 2011-10-01 2015-03-17 Intel Corporation Source/drain contacts for non-planar transistors
US9087915B2 (en) 2011-12-06 2015-07-21 Intel Corporation Interlayer dielectric for non-planar transistors
US9034703B2 (en) * 2012-09-13 2015-05-19 International Business Machines Corporation Self aligned contact with improved robustness
US20150118836A1 (en) * 2013-10-28 2015-04-30 United Microelectronics Corp. Method of fabricating semiconductor device
US9472456B2 (en) 2013-12-24 2016-10-18 Intel Corporation Technology for selectively etching titanium and titanium nitride in the presence of other materials
CN105765696B (zh) 2013-12-26 2020-09-29 英特尔公司 直接等离子体致密化工艺以及半导体器件
US10096513B2 (en) 2013-12-26 2018-10-09 Intel Corporation Direct plasma densification process and semiconductor devices
MY173962A (en) 2014-03-19 2020-02-28 Intel Corp Method, apparatus and system for single-ended communication of transaction layer packets
MY187344A (en) 2014-03-20 2021-09-22 Intel Corp Method, apparatus and system for configuring a protocol stack of an integrated circuit chip
US9698261B2 (en) * 2014-06-30 2017-07-04 Taiwan Semiconductor Manufacturing Co., Ltd. Vertical device architecture
US9818841B2 (en) * 2015-05-15 2017-11-14 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure with unleveled gate structure and method for forming the same
US9583485B2 (en) 2015-05-15 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Fin field effect transistor (FinFET) device structure with uneven gate structure and method for forming the same
US9853123B2 (en) * 2015-10-28 2017-12-26 United Microelectronics Corp. Semiconductor structure and fabrication method thereof
KR102379707B1 (ko) 2017-09-13 2022-03-28 삼성전자주식회사 반도체 소자
CN111211045A (zh) * 2018-11-21 2020-05-29 中芯国际集成电路制造(上海)有限公司 金属栅极及其形成方法
US10755964B1 (en) * 2019-05-31 2020-08-25 Taiwan Semiconductor Manufacturing Co., Ltd. Source/drain isolation structure and methods thereof
US11211462B2 (en) * 2020-03-05 2021-12-28 International Business Machines Corporation Using selectively formed cap layers to form self-aligned contacts to source/drain regions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598026A (zh) * 2003-08-15 2005-03-23 英特尔公司 用作栅电极的过渡金属合金和包括这些合金的器件
CN1846313A (zh) * 2003-09-09 2006-10-11 国际商业机器公司 用于高性能器件的金属替换栅极的结构和方法
US20080090397A1 (en) * 2004-09-30 2008-04-17 Brask Justin K Nonplanar transistors with metal gate electrodes
US20080265321A1 (en) * 2007-04-27 2008-10-30 Chen-Hua Yu Fin Field-Effect Transistors
CN102104061A (zh) * 2009-12-21 2011-06-22 台湾积体电路制造股份有限公司 用于场效应晶体管的栅极电极以及场效应晶体管
US20110156107A1 (en) * 2009-12-30 2011-06-30 Bohr Mark T Self-aligned contacts

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399415A (en) 1993-02-05 1995-03-21 Cornell Research Foundation, Inc. Isolated tungsten microelectromechanical structures
US6030692A (en) 1996-09-13 2000-02-29 Netpco Incorporated Cover tape for formed tape packing system and process for making same
JP3025478B2 (ja) * 1998-07-13 2000-03-27 松下電器産業株式会社 半導体装置およびその製造方法
US6136697A (en) 1998-07-27 2000-10-24 Acer Semiconductor Manufacturing Inc. Void-free and volcano-free tungsten-plug for ULSI interconnection
US6331481B1 (en) 1999-01-04 2001-12-18 International Business Machines Corporation Damascene etchback for low ε dielectric
KR20020029531A (ko) 2000-10-13 2002-04-19 박종섭 다마신 금속게이트를 이용한 반도체소자의 제조방법
KR20020056285A (ko) * 2000-12-29 2002-07-10 박종섭 반도체 소자의 게이트 제조방법
KR100399357B1 (ko) 2001-03-19 2003-09-26 삼성전자주식회사 코발트 실리사이드를 이용한 반도체 장치 및 그 형성 방법
US7358121B2 (en) * 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
JP3654285B2 (ja) 2002-10-04 2005-06-02 セイコーエプソン株式会社 半導体装置の製造方法
KR100567056B1 (ko) 2002-12-10 2006-04-04 주식회사 하이닉스반도체 에스램 소자의 제조방법
JP4408653B2 (ja) 2003-05-30 2010-02-03 東京エレクトロン株式会社 基板処理方法および半導体装置の製造方法
KR100487567B1 (ko) 2003-07-24 2005-05-03 삼성전자주식회사 핀 전계효과 트랜지스터 형성 방법
US7033931B2 (en) 2003-08-01 2006-04-25 Agere Systems Inc. Temperature optimization of a physical vapor deposition process to prevent extrusion into openings
JP4447280B2 (ja) 2003-10-16 2010-04-07 リンテック株式会社 表面保護用シートおよび半導体ウエハの研削方法
US7026689B2 (en) 2004-08-27 2006-04-11 Taiwan Semiconductor Manufacturing Company Metal gate structure for MOS devices
TWI277210B (en) 2004-10-26 2007-03-21 Nanya Technology Corp FinFET transistor process
US7230296B2 (en) 2004-11-08 2007-06-12 International Business Machines Corporation Self-aligned low-k gate cap
US7282766B2 (en) 2005-01-17 2007-10-16 Fujitsu Limited Fin-type semiconductor device with low contact resistance
KR100585178B1 (ko) 2005-02-05 2006-05-30 삼성전자주식회사 금속 게이트 전극을 가지는 FinFET을 포함하는반도체 소자 및 그 제조방법
KR100578818B1 (ko) 2005-02-24 2006-05-11 삼성전자주식회사 핀 전계 효과 트랜지스터 및 이의 형성 방법
US20070090416A1 (en) * 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
DE102005052000B3 (de) * 2005-10-31 2007-07-05 Advanced Micro Devices, Inc., Sunnyvale Halbleiterbauelement mit einer Kontaktstruktur auf der Grundlage von Kupfer und Wolfram
KR100653711B1 (ko) 2005-11-14 2006-12-05 삼성전자주식회사 쇼트키 배리어 핀 펫 소자 및 그 제조방법
KR100841094B1 (ko) 2005-12-20 2008-06-25 주식회사 실트론 실리콘 웨이퍼 연마장치, 이에 이용되는 리테이닝어셈블리, 및 이를 이용한 실리콘 웨이퍼 평평도 보정방법
WO2007105611A1 (ja) 2006-03-15 2007-09-20 Shin-Etsu Polymer Co., Ltd. 保持治具、半導体ウエハの研削方法、半導体ウエハの保護構造及びこれを用いた半導体ウエハの研削方法、並びに半導体チップの製造方法
US20070235763A1 (en) * 2006-03-29 2007-10-11 Doyle Brian S Substrate band gap engineered multi-gate pMOS devices
KR100764360B1 (ko) * 2006-04-28 2007-10-08 주식회사 하이닉스반도체 반도체 소자 및 그 제조 방법
KR20070122319A (ko) * 2006-06-26 2007-12-31 삼성전자주식회사 반도체 소자 및 그 제조 방법
US7517764B2 (en) 2006-06-29 2009-04-14 International Business Machines Corporation Bulk FinFET device
US7968425B2 (en) 2006-07-14 2011-06-28 Micron Technology, Inc. Isolation regions
KR100818433B1 (ko) 2006-09-05 2008-04-01 동부일렉트로닉스 주식회사 완전 실리사이드 게이트 구조를 갖는 모스 트랜지스터 및그 제조 방법
US7456471B2 (en) 2006-09-15 2008-11-25 International Business Machines Corporation Field effect transistor with raised source/drain fin straps
US8450165B2 (en) * 2007-05-14 2013-05-28 Intel Corporation Semiconductor device having tipless epitaxial source/drain regions
KR100903383B1 (ko) 2007-07-31 2009-06-23 주식회사 하이닉스반도체 일함수가 조절된 게이트전극을 구비한 트랜지스터 및 그를구비하는 메모리소자
US8597780B2 (en) 2007-08-10 2013-12-03 Dai Nippon Printing Co., Ltd. Hard coat film
DE102008030854B4 (de) 2008-06-30 2014-03-20 Advanced Micro Devices, Inc. MOS-Transistoren mit abgesenkten Drain- und Source-Bereichen und nicht-konformen Metallsilizidgebieten und Verfahren zum Herstellen der Transistoren
US7939863B2 (en) 2008-08-07 2011-05-10 Texas Instruments Incorporated Area efficient 3D integration of low noise JFET and MOS in linear bipolar CMOS process
US8153526B2 (en) 2008-08-20 2012-04-10 Taiwan Semiconductor Manufacturing Company, Ltd. High planarizing method for use in a gate last process
JP2010050215A (ja) * 2008-08-20 2010-03-04 Toshiba Corp 半導体装置
JP5561166B2 (ja) 2008-09-05 2014-07-30 旭硝子株式会社 粘着体、粘着シートおよびその用途
DE102008059500B4 (de) * 2008-11-28 2010-08-26 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Herstellung eines Mehr-Gatetransistors mit homogen silizidierten Stegendbereichen
US8227867B2 (en) 2008-12-23 2012-07-24 International Business Machines Corporation Body contacted hybrid surface semiconductor-on-insulator devices
US7838356B2 (en) * 2008-12-31 2010-11-23 Texas Instruments Incorporated Gate dielectric first replacement gate processes and integrated circuits therefrom
US8497528B2 (en) 2010-05-06 2013-07-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a strained structure
JP5493096B2 (ja) 2009-08-06 2014-05-14 富士通セミコンダクター株式会社 半導体装置の製造方法
US8304841B2 (en) 2009-09-14 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Metal gate transistor, integrated circuits, systems, and fabrication methods thereof
US8530971B2 (en) * 2009-11-12 2013-09-10 International Business Machines Corporation Borderless contacts for semiconductor devices
US20110147851A1 (en) * 2009-12-18 2011-06-23 Thomas Christopher D Method For Depositing Gate Metal For CMOS Devices
US8313999B2 (en) 2009-12-23 2012-11-20 Intel Corporation Multi-gate semiconductor device with self-aligned epitaxial source and drain
US8334184B2 (en) 2009-12-23 2012-12-18 Intel Corporation Polish to remove topography in sacrificial gate layer prior to gate patterning
US20110147831A1 (en) 2009-12-23 2011-06-23 Steigerwald Joseph M Method for replacement metal gate fill
CN102130057B (zh) * 2010-01-14 2013-05-01 中芯国际集成电路制造(上海)有限公司 制作互补金属氧化物半导体器件的方法和结构
KR101675373B1 (ko) * 2010-03-24 2016-11-11 삼성전자주식회사 반도체 소자 및 그 제조 방법
US8492852B2 (en) 2010-06-02 2013-07-23 International Business Machines Corporation Interface structure for channel mobility improvement in high-k metal gate stack
US8278173B2 (en) 2010-06-30 2012-10-02 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating gate structures
US8466473B2 (en) 2010-12-06 2013-06-18 International Business Machines Corporation Structure and method for Vt tuning and short channel control with high k/metal gate MOSFETs
CN103814139B (zh) 2011-04-01 2018-11-13 澳康姆生物实验室公司 用于检测无细胞的病原体特异性核酸的方法和试剂盒
US8637359B2 (en) 2011-06-10 2014-01-28 International Business Machines Corporation Fin-last replacement metal gate FinFET process
US8466027B2 (en) 2011-09-08 2013-06-18 Taiwan Semiconductor Manufacturing Company, Ltd. Silicide formation and associated devices
US8557666B2 (en) 2011-09-13 2013-10-15 GlobalFoundries, Inc. Methods for fabricating integrated circuits
US9177867B2 (en) 2011-09-30 2015-11-03 Intel Corporation Tungsten gates for non-planar transistors
EP2761664A4 (en) 2011-09-30 2015-06-17 Intel Corp DIELECTRIC RECOVERY STRUCTURE FOR TRANSISTOR GRIDS
US8981435B2 (en) 2011-10-01 2015-03-17 Intel Corporation Source/drain contacts for non-planar transistors
US9087915B2 (en) 2011-12-06 2015-07-21 Intel Corporation Interlayer dielectric for non-planar transistors
US20130334713A1 (en) 2011-12-22 2013-12-19 Dingying D. Xu Electrostatic discharge compliant patterned adhesive tape

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598026A (zh) * 2003-08-15 2005-03-23 英特尔公司 用作栅电极的过渡金属合金和包括这些合金的器件
CN1846313A (zh) * 2003-09-09 2006-10-11 国际商业机器公司 用于高性能器件的金属替换栅极的结构和方法
US20080090397A1 (en) * 2004-09-30 2008-04-17 Brask Justin K Nonplanar transistors with metal gate electrodes
US20080265321A1 (en) * 2007-04-27 2008-10-30 Chen-Hua Yu Fin Field-Effect Transistors
CN102104061A (zh) * 2009-12-21 2011-06-22 台湾积体电路制造股份有限公司 用于场效应晶体管的栅极电极以及场效应晶体管
US20110156107A1 (en) * 2009-12-30 2011-06-30 Bohr Mark T Self-aligned contacts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈力俊主编: "《微电子材料与制程》", 31 March 2005 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448693A (zh) * 2014-09-30 2016-03-30 中芯国际集成电路制造(上海)有限公司 钨电极的形成方法
CN105990280A (zh) * 2014-10-16 2016-10-05 台湾积体电路制造股份有限公司 用于半导体制造的改进的接触件
CN105990280B (zh) * 2014-10-16 2019-04-12 台湾积体电路制造股份有限公司 用于半导体制造的改进的接触件
CN107731747A (zh) * 2016-08-12 2018-02-23 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法

Also Published As

Publication number Publication date
EP2761662A4 (en) 2015-08-05
CN106783971A (zh) 2017-05-31
KR101780916B1 (ko) 2017-09-21
TW201810675A (zh) 2018-03-16
TW201614847A (en) 2016-04-16
CN107275404A (zh) 2017-10-20
KR20150116915A (ko) 2015-10-16
EP2761662A1 (en) 2014-08-06
EP2761662B1 (en) 2022-02-02
TW201717407A (zh) 2017-05-16
KR20140054358A (ko) 2014-05-08
US20150041926A1 (en) 2015-02-12
KR101685555B1 (ko) 2016-12-12
KR101690449B1 (ko) 2016-12-27
WO2013048449A1 (en) 2013-04-04
TW201320343A (zh) 2013-05-16
EP3174106A1 (en) 2017-05-31
EP3923347B1 (en) 2024-04-03
EP3506367A1 (en) 2019-07-03
TWI643345B (zh) 2018-12-01
KR20160150123A (ko) 2016-12-28
KR20170106657A (ko) 2017-09-21
TWI595666B (zh) 2017-08-11
TWI512986B (zh) 2015-12-11
EP3923347A1 (en) 2021-12-15
US9177867B2 (en) 2015-11-03
TWI585980B (zh) 2017-06-01
CN103843143B (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
CN103843143A (zh) 用于非平坦晶体管的钨栅极
US10770591B2 (en) Source/drain contacts for non-planar transistors
CN103858215B (zh) 非平坦晶体管以及其制造的方法
US10020375B2 (en) Tungsten gates for non-planar transistors
KR20220118284A (ko) 트랜지스터 소스/드레인 접촉부 및 그 형성 방법
CN114551578A (zh) 半导体装置和其形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210423

Address after: Tokyo, Japan

Patentee after: Sony Corp.

Address before: California, USA

Patentee before: INTEL Corp.

TR01 Transfer of patent right