CN103578704A - 线性电磁装置 - Google Patents

线性电磁装置 Download PDF

Info

Publication number
CN103578704A
CN103578704A CN201310299638.5A CN201310299638A CN103578704A CN 103578704 A CN103578704 A CN 103578704A CN 201310299638 A CN201310299638 A CN 201310299638A CN 103578704 A CN103578704 A CN 103578704A
Authority
CN
China
Prior art keywords
core body
conductor
primary conductor
elongated slot
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310299638.5A
Other languages
English (en)
Inventor
J·L·佩克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Priority to CN201910870584.0A priority Critical patent/CN110690033A/zh
Publication of CN103578704A publication Critical patent/CN103578704A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • H02H7/263Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of measured values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • H02J13/0004Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers involved in a protection system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F2038/006Adaptations of transformers or inductances for specific applications or functions matrix transformer consisting of several interconnected individual transformers working as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

本发明涉及一种线性电磁装置(200),例如电感器(200)、变压器或类似装置,其可以包括芯体,在其中可产生磁通量(106)和(108)。该装置还可以包括穿过芯体(204)的开口(208)。该装置可以额外地包括被容纳在开口(208)内并延伸穿过芯体(204)的初级导体(212)。初级导体(212)可以包括基本正方形或矩形(206)截面。流过初级导体(212)的电流产生围绕初级导体(212)的磁场,其中基本整个磁场被芯体(204)吸收以便在芯体(204)内产生磁通量。

Description

线性电磁装置
技术领域
本公开涉及电磁装置,例如变压器和电感器,并且更具体地涉及线性电磁装置,例如线性变压器。线性电感器或类似装置。
背景技术
图1是电磁装置100的示例,其可以是电感器或变压器。电磁装置100包括多个电导体、围绕铁磁芯体104包裹或缠绕的金属丝或绕组102。芯体104是电磁材料,并且响应于在绕组102内流动的电流而被磁化。由虚线106和108所示的磁通量也由电磁装置100响应于流过绕组102的电流而产生。如图1所示,磁通量106和108会在穿过芯体102的路径内以及在电磁装置100周围的自由空间内流动。相应地,在电磁装置100周围的自由空间内流动的磁通量106和108不产生任何有用的能量耦合或能量转移,因此是无效的。由于这种无效,这些现有技术的电磁装置、电感器、变压器等通常需要较大较重的电磁芯体以及额外的绕组来提供期望的能量转换或能量转移。
发明内容
根据一个实施例,一种线性电磁装置如线性电感器、变压器或类似装置可以包括芯体,在该芯体内可产生磁通量。该装置还可以包括穿过芯体的开口。该装置可以额外地包括被容纳在开口内并延伸穿过芯体的初级导体。该初级导体可以包括基本正方形或矩形截面。流过初级导体的电流产生围绕初级导体的磁场,其中基本整个磁场被芯体吸收以便在芯体内产生磁通量。
根据另一个实施例,一种线性电磁装置可以包括芯体,在该芯体内可产生磁通量。该电磁装置还可以包括穿过芯体的开口以及被容纳在开口内并延伸穿过芯体的初级导体。该初级导体可以包括基本正方形或矩形截面。流过初级导体的电流产生围绕初级导体的磁场,其中基本整个磁场被芯体吸收以便在芯体内产生磁通量。该电磁装置还可以包括被容纳在开口内并延伸穿过芯体的次级导体。该次级导体可以包括基本正方形或矩形截面,以接收由芯体传输的电动势。
根据另一个实施例,一种增加来自电磁装置的磁通量的方法可以包括提供芯体,在该芯体内可产生磁通量。该方法也可以包括使初级导体延伸穿过芯体内的开口。该初级导体可以包括基本正方形或矩形截面。该方法可以进一步包括使电流经过初级导体以产生围绕初级导体的磁场,其中基本整个磁场被芯体吸收以便在芯体内产生磁通量。
通过阅读本公开的非限制性的具体实施例方式并结合附图,对本领域技术人员来说,由权利要求唯一限定的本公开的其他方面和特征将变得显而易见。
附图说明
以下实施例的具体实施方式涉及附图,其图示说明本公开的具体实施例。具有不同结构和操作的其他实施例不偏离本公开的范围。
图1是现有技术的变压器的示例。
图2A是根据本公开实施例的电磁装置的示例的立体图。
图2B是图2A中的电磁装置的顶视图。
图2C是根据本公开实施例包括图1A中的线性电感器的电路示例的框图。
图3A是根据本公开实施例被配置为线性变压器的电磁装置示例的立体图。
图3B是根据本公开实施例包括图3A中的线性变压器的电路示例的框图。
图4是根据本公开另一实施例的线性电感器的示例的立体图。
图5是根据本公开另一实施例的线性变压器的示例的立体图。
图6是根据本公开另一实施例的线性变压器的示例的图示说明。
图7A是根据本公开又一实施例的线性变压器的示例的图示说明。
图7B是根据本公开实施例包括图6中的线性变压器的电路的框图。
图8是根据本公开实施例的另一线性变压器的示例的图示说明。
图9是根据本公开实施例的增加来自电磁装置的磁通量的方法示例的流程图。
具体实施方式
以下实施例的具体实施方式涉及附图,其图示说明本公开的具体实施例。具有不同结构和操作的其他实施例不偏离本公开的范围。相同的参考数字指代不同附图中相同的元件或部件。
根据本公开的实施例,线性变压器是一种磁性装置,其中线性初级电导体或多个导体以及一个或更多个线性次级电导体或金属丝穿过磁性芯体。芯体可以整块的,并且不需要初级和次级电导体围绕芯体的线匝。尽管芯体可以是整块的,但是整块芯体可以由多个堆叠的板或叠片制成。交流电可以被引导穿过初级导体。来自初级导体内的电流的磁通量被芯体吸收。当初级导体内的电流减小时,芯体将电动势传入(释放)到次级金属丝内。线性变压器的特征是初级和次级导体线性穿过芯体。一个芯体可以用作独立装置,或者一系列的两个或更多个芯体可以在需要更长线性暴露物的情况下使用。这种变压器的另一特征是由初级导体内的电流产生的整个磁场或至少相当大的一部分磁场被芯体吸收,并释放到次级导体内。变压器的芯体可以被设置尺寸或包括尺度,以使得由电流产生的基本整个磁场都被芯体吸收并使得磁通量基本完全包含在该芯体内。这形成高度有效的变压器,其具有非常低的铜耗、高效的能量转移、低的热排放以及非常低的辐射排放物。另外,线性变压器的体积和重量比现有结构最小降低50%。
图2A是根据本公开实施例的电磁装置200的示例的立体图。图2A中所示的电磁装置200被配置为线性电感器202。线性电感器202可以包括芯体204。芯体204可以包括堆叠在彼此之上的多个板206或叠片。板206可以由硅钢合金、镍铁合金或能产生与本文所描述的磁通量类似的磁通量的其他金属材料制成。例如,芯体204可以是包括大约20%重量的铁和大约80%重量的镍的镍铁合金。板206可以是基本正方形或矩形的,或者可以具有其他几何形状,这取决于电磁装置的应用以及电磁装置200可以被放置的环境。例如,基本正方形或矩形的板206可以被限定为任何类型的多边形以适合某一应用。
开口被形成为穿过每一个板206,并且当具有相互对齐的板开口的板206堆叠在彼此之上时,开口被对齐以成形穿过芯体204的开口208或通道。开口208或通道可以被形成为基本位于芯体204的中心或中心部分,并且基本垂直于由这堆板206或叠片中的每个板206限定的平面延伸。在另一实施例中,为了提供特定的磁通量或为了满足某些限制条件,开口208可以被形成为从由每个板206限定的平面内的芯体204的中心部分偏离中心。
电导体210或金属丝可以被容纳在开口208中,并且可以垂直于每个板206的平面延伸穿过芯体204。电导体210可以是初级导体。在图2A所示的示例性实施例中,电导体210是多个电导体212或金属丝。在另一实施例中,电导体210可以是单个导体。
同样参照图2B,图2B是图1A中的线性电感器202的顶视图。穿过芯体204的开口208可以是细长槽214。如前所述,开口208或细长槽可以被形成为在观察顶板206的平面时穿过芯体204的中心或中心部分。开口208或细长槽214可以与芯体204的相对侧相距相等的距离,或如图2B所示,细长槽214可以被偏置并且可以更靠近芯体204的一侧。对于一些应用,开口208也可以形成为不同于细长槽214的形状,这取决于芯体内产生的磁通量的应用和期望路径。
如前所述,电导体210可以是多个初级导体212,其彼此相邻对齐或以单行216的形式被设置在细长槽214内。每个导体212可以包括基本正方形或矩形截面,如图2B所示。基本正方形或矩形截面可以被限定为精确的正方形或矩形,或者可以具有倒圆的棱边或其他特征,这取决于应用和电流流过导体212时进入到芯体204的期望磁通量耦合或磁通量转移。导体210还可以是在细长槽214内延伸并具有对应于细长槽或其他开口形状的截面的单个细长带状导体。
每个初级导体212的截面在对应于细长槽214的细长尺寸或长度“L”的方向上可以具有预定宽度“W”。在单行导体216的每一端处的端部初级导体218与细长槽214的端部220相距小于预定宽度“W”的大约一半。每个导体212还具有预定高度“H”。每个导体212与细长槽214的侧壁222相距小于预定高度“H”的大约一半。
图2C是根据本公开实施例包括线性电感器226的电路224的示例的框图。线性电感器226可以与图2A和图2B中的线性电感器202相同。发电机208可以被连接到线性电感器226,从而传导电流通过线性电感器226。响应于电流在导体或多个导体内流动,磁场在电导体210(图2A和图2B)或多个电导体212中的每个电导体周围产生。芯体204可以被设置尺寸,以使得基本整个磁场被芯体204吸收,从而在芯体204内产生如图2A中虚线228和230所示的磁通量,并且芯体204可以被设置尺寸以使得磁通量被基本完全容纳在芯体内。在一个实施例中,相对于导体或多个导体以及在导体或多个导体内流动的电流,芯体204可以被设置尺寸为吸收至少大约96%的磁场以便在芯体204内产生磁通量。磁通量也可以至少大约96%被容纳在芯体204内。与被容纳在芯体204内的磁通量相比,在芯体204外部产生的任何磁通量都可能是极其小的。
图3A是根据本公开实施例的线性变压器300的结构中的电磁装置示例的立体图。线性变压器300与图2A中的线性电感器202相似,但是包括次级导体302或多个次级导体。相应地,线性变压器300包括芯体304,在该芯体中可以产生磁通量。与之前所述类似,芯体304可以包括多个板或叠片306,其可以如图3A所示堆叠在彼此之上。每个板306均具有在其中形成的开口,以提供穿过芯体304的开口308或通道。穿过芯体304的开口308或通道可以基本垂直于由每个板306限定的平面。次级导体或多个导体302在开口308内延伸穿过芯体304。初级导体或多个初级导体310可以在开口308内邻近次级导体302延伸穿过芯体304。
与之前所述类似,每个初级导体310可以具有基本正方形或矩形截面。流过初级导体或多个初级导体的电流在初级导体周围产生磁场。芯体304可以被设置尺寸或包括板306的长度和宽度尺度以吸收基本整个磁场,从而产生如图3A中虚线312和314所示的磁通量。芯体304也可以被设置尺寸或包括长度和宽度尺度以使得磁通量被基本完全容纳在芯体304内。在一个实施例中,芯体304可以被设置尺寸或可以包括板306的长度和宽度尺度以吸收至少大约96%的磁场和/或包含至少大约96%的磁通量。
延伸穿过芯体304的每个次级导体302也可以具有基本正方形或矩形截面,以接收由芯体304传输的电动势。
穿过芯体304的开口308可以是与图2A和图2B中的细长槽214相似的细长槽316。多个初级导体310和多个次级导体302均可以被彼此相邻地单行布置在细长槽316内。
类似于图2B所示,多个导体中的每个初级导体310和多个导体中的每个次级导体302的截面可以在对应于细长槽316的长度的方向上具有预定宽度“W”。邻近细长槽316的一端的端部初级导体距离细长槽316的所述一端小于预定宽度“W”的大约一半。邻近细长槽316的相对端的端部次级导体距离细长槽316的所述相对端小于预定宽度“W”的大约一半。
每个初级导体310和次级导体302的截面可以具有预定高度“H”。每个初级导体310和次级导体302距离细长槽316的侧壁小于预定高度“H”的大约一半。
图3B是根据本公开的实施例包括线性变压器320的电路318的示例的框图。线性变压器320可以与图3A中的线性变压器300相同。发电机322可以连接到初级导体310,并且负载324可以连接到次级导体302。基于初级导体或绕组的数量与特性以及次级导体或绕组和芯体304的数量与特性,转换或变换由发电机322供应给线性变压器320的电压和电流。
图4是根据本公开的另一实施例的线性电感器400的示例的立体图。线性电感器400可以类似于图2A中的线性电感器202,不同之处在于线性电感器400可以包括两个或更多个芯体402和404。每个芯体402和404具有形成为从其中穿通的各自开口406和408。电导体410延伸穿过开口406和408中的每一个。开口406和408中的每一个可以是类似于之前所述的细长槽。电导体410可以是多个导体,其可以彼此相邻地单行布置在形成每个开口406和408的细长槽内。多个导体中的每一个可以具有基本正方形或矩形截面。
穿过层叠芯体的层叠槽或开口通常是层叠芯体为保持磁通量存储与磁通量流动之间的分离的一个槽。然而,如果间距使得每个通量存储区域与通量流动区域不干扰相邻的槽,则两个或更多个槽或开口可以位于相同的叠片或芯体内。每个槽或开口内的总电流限定叠片或芯体用于存储的面积或体积。每个槽的单独叠片或芯体确保没有干扰。
发电机412或电源可以连接到线性电感器400。发电机412可以向导体410或多个导体供应电流,以便在导体410周围产生磁场。芯体402和404基本完全吸收磁场,从而在每个芯体402和404内产生磁通量。
图5是根据本公开的另一实施例的线性变压器500的示例的立体图。除了变压器500可以包括两个或更多个芯体502和504外,线性变压器500可以与图3A中的线性变压器300相同。与变压器300类似,每个芯体502和504可以具有开口506,其被形成为穿过芯体的中心或基本中心部分。每个开口506可以是基本细长槽。
初级导体508和次级导体510可以延伸穿过每个芯体502和504内的开口506。初级导体508可以是单个导体或者如图5所示的多个电导体或金属丝,并且次级导体510可以是单个导体或者也可以包括如图5所示的多个电导体或金属丝。与图2B所示的导体212相似,每个初级导体508和次级导体510可以具有基本正方形或矩形截面。初级导体508可以彼此相邻地单行布置在细长槽内,这与图2B中所示的相似。次级导体510也可以彼此相邻地单行布置在细长槽内。多个次级导体510可以被设置成以多个导体之间的预定距离在相同行中与初级导体508相邻。初级和次级导体508和510可以以相对于槽侧面的某一间距布置在细长槽内,以提供导体508和510与芯体502和504之间的基本完全磁性耦合。因此,当电流穿过初级导体508或多个导体时,在初级导体周围的基本整个磁场被耦合到芯体502和504内,从而在芯体502和504内产生磁通量。芯体502和504还可以被设置尺寸或包括尺度,以使得至少大约96%的磁通量被耦合到芯体502和504内或被芯体502和504吸收。类似地,磁通量会基本完全或至少大约96%被耦合到次级导体510或多个导体,从而在次级导体510或多个导体中产生电流。
发电机512或电源可以连接到初级导体508或多个导体,以便将电流施加于初级导体。负载514可以连接到次级导体510或多个次级导体,以便接收来自线性变压器500的转变电力。
图6是根据本公开的另一实施例的线性变压器600的示例的图示说明。线性变压器600可以与图3A中的线性变压器300类似,不同之处在于变压器600包括多个芯体602-612。芯体602-612中的每一个可以具有被形成为穿过芯体的开口614。开口614可以基本穿过芯体602-612的中心或中心部分。每个开口614可以是细长槽或其他结构。初级导体616或多个导体和次级导体618或多个导体可以穿过每个芯体602-612中的开口614。初级导体616和次级导体618中的每一个可以具有基本正方形或矩形截面,并且可以彼此相邻地单行布置在细长槽内。电源620可以连接到初级导体616或多个导体,并且负载622可以连接到次级导体618或多个导体。
图7A是根据本公开的另一实施例的线性变压器700的示例的图示说明。线性变压器700可以类似于图3A中的线性变压器300,不同之处在于线性变压器700包括多个芯体702-712。芯体702-712中的每一个可以具有被形成为穿过芯体的开口714。开口714可以基本穿过芯体702-712的中心或中心部分。每个开口714可以是细长槽或其他结构。单个初级导体716或多个初级导体可以穿过每个芯体702-712中的开口714。初级导体716可以被连接至电源718。
线性变压器700也可以包括多个次级导体720、722和724,其用于将所选数量的芯体耦合到各自的负载726、728和730,以便向各自的负载726、728和730供应不同幅值的输出电压和电流。例如,次级导体720可以穿过芯体702、704和706中的开口714并且可以连接到负载726。次级导体722可以穿过芯体708和710中的开口714并连接到负载728。次级导体724可以穿过芯体712中的开口714并连接到负载730。
次级导体720、722和724中的每一个可以是单个导体或金属丝或者多个导体或金属丝。如果次级导体720、722和724均包括多个导体,则每个次级导体720、722和724中的导体或金属丝的数量可以是不同数量的导体或金属丝,这取决于将由次级导体供应的期望电压和电流。
初级导体或多个导体716以及次级导体或多个导体720、722和724中的每一个可以具有基本正方形或矩形截面,并且可以类似于图2A所示的导体212彼此相邻地单行布置在细长槽内。
图7B是根据本公开的实施例包括图7A的线性变压器700的电路732的框图。
图8是根据本公开实施例的另一线性变压器800的示例的图示说明。变压器800也包括多个芯体802-820。每个芯体802-820可以具有形成于其中的至少一个开口822。所述至少一个开口822可以形成在每个芯体802-820的中心或中心部分。每个开口822可以是基本细长槽。
初级导体824和次级导体826可以延伸穿过每个芯体802-820中的每个开口822。初级导体824可以是单个导体或金属丝或者多个导体或金属丝。次级导体826也可以是单个导体或多个导体。
初级导体824或多个初级导体中的每一个以及次级导体826或多个次级导体中的每一个可以具有基本正方形或矩形截面,并且可以彼此相邻地单行设置在开口822或细长槽内。电源828可以被连接到初级导体824,并且负载830可以被连接到次级导体826。
图9是根据本公开的实施例的增加来自电磁装置的磁通量的方法900的示例的流程图。在方框902处,可以提供至少一个芯体,其包括在芯体内形成的开口。开口可以基本形成在芯体的中心或中心部分。芯体可以包括多个叠片或堆叠板,其与本文所描述的芯体相似。开口可以是细长槽或其他形状,这取决于应用以及芯体与延伸穿过芯体内的开口的电导体之间的期望磁性耦合。
在方框904处,单个初级导体或多个初级导体可以延伸穿过开口。如前所述,这些导体可以具有基本正方形或矩形截面。初级导体可以彼此相邻地单行布置在细长槽内。
在方框906处,如果电磁装置是变压器,则单个次级导体或多个次级导体可以延伸穿过开口。该次级导体或多个导体也可以具有基本正方形或矩形截面。次级导体可以彼此相邻地单行布置在细长槽内。该组次级导体可以被布置为在同一行中与该组初级导体相邻,其中两组导体之间存在预定间距。
在方框908处,初级导体或多个导体可以被连接到电源,并且如果电磁装置是包括次级导体的变压器,则次级导体可以被连接到负载。
在方框910处,电流可以穿过初级导体或多个导体以便在该导体或多个导体周围产生磁场。延伸穿过基本在芯体的中心或中心部分的开口的导体或多个导体的结构使得基本整个磁场或至少大约96%的磁场被芯体吸收,从而在芯体内产生磁通量。芯体也可以被设置尺寸以使得磁通量同样被基本完全包含在芯体内。
本文使用的术语是为了仅仅描述特定实施例的目的,并不是意欲限制本公开。如本文所使用的,单数形式“一”、“一个”和“该”也意欲包括复数,除非上下文另有明确指出。还应理解,术语“包括”和/或“包含”在本说明书中使用时指定陈述的特征、整体、步骤、操作、元件和/或部件的存在,但不排除存在或增加一个或更多个其他的特征、整体、步骤、操作、元件、部件和/或其群组。
尽管具体实施例已经在本文被示出和说明,但本领域技术人员明白意欲实现相同目的的任何装置可以用示出的具体实施例替代,并且本文中的实施例在其他环境中具有其他应用。本申请意欲覆盖本公开的任何修改或变体。以下权利要求绝不是意图将公开的范围限制于本文所描述的具体实施例。

Claims (16)

1.一种线性电磁装置,其包括:
芯体,在所述芯体中可产生磁通量;
穿过所述芯体的开口;以及
被容纳在所述开口内并延伸穿过所述芯体的初级导体,所述初级导体包括基本正方形或矩形截面;其中流过所述初级导体的电流产生围绕所述初级导体的磁场,基本整个磁场被所述芯体吸收以便在所述芯体内产生磁通量。
2.根据权利要求1所述的线性电磁装置,其中穿过所述芯体的所述开口包括细长槽,并且其中所述电磁装置还包括在所述细长槽内单行布置的多个初级导体,每个所述初级导体包括基本正方形或矩形截面,并且其中所述线性电磁装置限定线性电感器。
3.根据权利要求2所述的线性电磁装置,其中多个导体中的每个初级导体的截面包括在对应于所述细长槽的长度的方向上的预定宽度,并且该单行初级导体的每一端上的端部初级导体距离所述细长槽的端部小于所述预定宽度的大约一半,并且所述多个导体中的每个初级导体的所述截面包括预定高度,每个初级导体距离所述细长槽的侧壁小于所述预定高度的大约一半。
4.根据权利要求1所述的线性电磁装置,其中所述芯体包括堆叠在彼此之上的多个板。
5.根据权利要求1所述的线性电磁装置,其还包括被容纳在所述开口内并延伸穿过所述芯体的次级导体,其中所述电磁装置限定变压器。
6.根据权利要求1所述的线性电磁装置,其还包括至少一个其他芯体,所述至少一个其他芯体包括开口,所述初级导体通过所述开口延伸穿过所述至少一个其他芯体。
7.根据权利要求1所述的线性电磁装置,其中所述芯体包括对应于预定磁通穿透量的尺寸。
8.一种线性电磁装置,其包括:
芯体,在所述芯体中可产生磁通量;
穿过所述芯体的开口;以及
被容纳在所述开口内并延伸穿过所述芯体的初级导体,所述初级导体包括基本正方形或矩形截面,其中流过所述初级导体的电流产生围绕所述初级导体的磁场,基本整个磁场被所述芯体吸收以便在所述芯体内产生磁通量;以及
被容纳在所述开口内并延伸穿过所述芯体的次级导体,所述次级导体包括基本正方形或矩形截面,以接收由所述芯体传输的电动势。
9.根据权利要求8所述的线性电磁装置,其中穿过所述芯体的所述开口包括细长槽,并且其中所述电磁装置还包括:
在所述细长槽内单行布置的多个初级导体;以及
在所述细长槽内单行布置的多个次级导体。
10.根据权利要求9所述的线性电磁装置,其中所述多个导体中的每个初级导体和所述多个导体中的每个次级导体的截面包括在对应于所述细长槽的长度的方向上的预定宽度,并且邻近所述细长槽的一端的端部初级导体距离所述细长槽的所述一端小于所述预定宽度的大约一半,且邻近所述细长槽的相对端的端部次级导体距离所述细长槽的所述相对端小于所述预定宽度的大约一半,并且每个初级导体和次级导体的所述截面包括预定高度,每个初级导体和次级导体距离所述细长槽的侧壁小于所述预定高度的大约一半。
11.根据权利要求8所述的线性电磁装置,其还包括至少一个其他芯体,所述至少一个其他芯体包括开口,所述初级导体和所述次级导体均通过所述开口延伸穿过所述至少一个其他芯体。
12.根据权利要求11所述的线性电磁装置,其中所述芯体和所述至少一个其他芯体均包括堆叠在彼此之上的多个板。
13.一种增加来自电磁装置的磁通量的方法,其包括:
提供芯体,在所述芯体中可产生磁通量;
使初级导体延伸穿过所述芯体内的开口,所述初级导体包括基本正方形或矩形截面;以及
使电流经过所述初级导体,以便产生围绕所述初级导体的磁场,其中基本整个磁场被所述芯体吸收,以便在所述芯体内产生磁通量。
14.根据权利要求13所述的方法,其中提供所述芯体包括提供包括用于所述开口的细长槽的芯体,并且其中使所述初级导体延伸穿过所述芯体内的所述开口包括使多个初级导体延伸穿过所述细长槽,所述初级导体被单行布置在所述细长槽内,并且每个初级导体包括基本正方形或矩形截面。
15.根据权利要求14所述的方法,其还包括使多个次级导体延伸穿过所述芯体中的所述细长槽,所述次级导体被单行布置在所述细长槽内,并且每个次级导体包括基本正方形或矩形截面。
16.根据权利要求15所述的方法,其还包括使所述初级导体和次级导体中的每个与所述细长槽的侧壁的间隔小于所述导体的所述截面的尺寸的大约一半。
CN201310299638.5A 2012-07-19 2013-07-17 线性电磁装置 Pending CN103578704A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910870584.0A CN110690033A (zh) 2012-07-19 2013-07-17 线性电磁装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/553,267 2012-07-19
US13/553,267 US9159487B2 (en) 2012-07-19 2012-07-19 Linear electromagnetic device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910870584.0A Division CN110690033A (zh) 2012-07-19 2013-07-17 线性电磁装置

Publications (1)

Publication Number Publication Date
CN103578704A true CN103578704A (zh) 2014-02-12

Family

ID=48703166

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201310299638.5A Pending CN103578704A (zh) 2012-07-19 2013-07-17 线性电磁装置
CN201910870584.0A Pending CN110690033A (zh) 2012-07-19 2013-07-17 线性电磁装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910870584.0A Pending CN110690033A (zh) 2012-07-19 2013-07-17 线性电磁装置

Country Status (8)

Country Link
US (3) US9159487B2 (zh)
EP (1) EP2688076B1 (zh)
JP (1) JP6333525B2 (zh)
KR (1) KR102086355B1 (zh)
CN (2) CN103578704A (zh)
BR (1) BR102013018176B1 (zh)
ES (1) ES2757822T3 (zh)
RU (1) RU2662798C2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941042A (zh) * 2016-01-05 2017-07-11 波音公司 抗饱和电磁装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9947450B1 (en) 2012-07-19 2018-04-17 The Boeing Company Magnetic core signal modulation
US9568563B2 (en) 2012-07-19 2017-02-14 The Boeing Company Magnetic core flux sensor
US9159487B2 (en) 2012-07-19 2015-10-13 The Boeing Company Linear electromagnetic device
US9389619B2 (en) 2013-07-29 2016-07-12 The Boeing Company Transformer core flux control for power management
US9455084B2 (en) 2012-07-19 2016-09-27 The Boeing Company Variable core electromagnetic device
US9651633B2 (en) 2013-02-21 2017-05-16 The Boeing Company Magnetic core flux sensor
US20150123470A1 (en) * 2013-11-04 2015-05-07 911 Circuits LLC Electrical equipment power manager for vehicle battery protection
CA2997184C (en) * 2014-09-05 2023-09-19 Yaroslav Andreyevitch Pichkur Transformer
WO2016110549A1 (en) * 2015-01-07 2016-07-14 Universite Catholique De Louvain Winding for an electrical machine
CN105280354A (zh) * 2015-09-30 2016-01-27 江苏华辰变压器有限公司 一种矩形截面铁芯的变压器
US10403429B2 (en) * 2016-01-13 2019-09-03 The Boeing Company Multi-pulse electromagnetic device including a linear magnetic core configuration
US10218277B2 (en) 2016-02-22 2019-02-26 The Boeing Company Adaptable high efficiency power inverter system
US10177641B2 (en) * 2016-07-26 2019-01-08 The Boeing Company Stator assembly including stator elements with slotted stator cores for use in an electrical motor
SG11201900906UA (en) * 2016-08-05 2019-02-27 Faraday Grid Ltd An electrical power supply system and process
RU2644764C1 (ru) * 2016-08-11 2018-02-14 Открытое акционерное общество "Российский институт мощного радиостроения" Высокочастотный трансформатор

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US352105A (en) * 1886-11-02 op buda-pesth
JP2001167933A (ja) * 1999-12-06 2001-06-22 Tdk Corp 電磁ノイズ抑制部品
CN2528090Y (zh) * 2002-02-28 2002-12-25 峻达电子有限公司 具有形成平行贯穿槽磁导体的变压器
CN1577647A (zh) * 2003-07-16 2005-02-09 马维尔国际贸易有限公司 具有降低的直流电流饱和度的功率电感器
CN1615462A (zh) * 2001-11-21 2005-05-11 马格技术公司 可控制的变压器
CN1637969A (zh) * 2003-12-22 2005-07-13 马维尔国际贸易有限公司 具有减小的直流电流饱和度的电力电感器
CN1763872A (zh) * 2004-10-22 2006-04-26 胜美达集团株式会社 磁性元件
US7362206B1 (en) * 2003-04-03 2008-04-22 Edward Herbert Variable transformer
US20110279100A1 (en) * 2002-12-13 2011-11-17 Volterra Semiconductor Corporation Powder core material coupled inductors and associated methods
JP2011238653A (ja) * 2010-05-06 2011-11-24 Fdk Corp 磁性体コアの製造方法およびインダクタ

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB480443A (en) * 1935-08-31 1938-02-23 British Thomson Houston Co Ltd Improvements in and relating to electric transformers
US2215521A (en) 1938-05-20 1940-09-24 Rca Corp Vacuum tube filament supply
US2411374A (en) 1943-01-07 1946-11-19 Westinghouse Electric Corp Magnetic core structure for threephase transformers
US2569675A (en) 1948-09-09 1951-10-02 Oscar A Keefe Variable transformer
US2780771A (en) 1953-04-21 1957-02-05 Vickers Inc Magnetic amplifier
US3042849A (en) * 1958-04-03 1962-07-03 Ite Circuit Breaker Ltd Saturable balancing reactors for rectifier systems
US3451130A (en) 1966-03-18 1969-06-24 Westinghouse Electric Corp Method of making a magnetic core structure for inductive apparatus
US3411121A (en) 1967-06-27 1968-11-12 Gen Electric Insulated clamping means for laminated magnetic core
US3464002A (en) * 1967-09-28 1969-08-26 Rudolf G Hentschel Low q test coils for magnetic field sensing
US3602859A (en) 1970-05-18 1971-08-31 Air Reduction Inductive reactor
JPS5129929Y2 (zh) * 1971-10-30 1976-07-28
US4338657A (en) * 1974-05-21 1982-07-06 Lisin Vladimir N High-voltage transformer-rectifier device
US4080725A (en) 1974-06-26 1978-03-28 Thomas & Skinner, Inc. Ferromagnetic core with variable shunt air gap and method of making it
US4020440A (en) 1975-11-25 1977-04-26 Moerman Nathan A Conversion and control of electrical energy by electromagnetic induction
DE2926423A1 (de) 1979-06-27 1981-01-08 Licentia Gmbh Spannungsmesseinrichtung zur ventilsteuerung von stromrichtern in hgue-anlagen
US4520556A (en) 1981-05-04 1985-06-04 General Electric Company Methods for assembling a transformer core
JPS5875813A (ja) 1981-10-30 1983-05-07 Mitsubishi Electric Corp 静止誘導器用鉄心
US4577175A (en) * 1982-09-13 1986-03-18 Marelco Power Systems Transformer with fluid cooled windings
JPS59119810A (ja) * 1982-12-27 1984-07-11 Toshiba Corp 相間リアクトル装置
US4684882A (en) * 1983-02-18 1987-08-04 Blain Aurele J Electrical transformer having a solid core surrounding winding in a loop configuration
US4520335A (en) 1983-04-06 1985-05-28 Westinghouse Electric Corp. Transformer with ferromagnetic circuits of unequal saturation inductions
JPS6142810U (ja) * 1984-08-21 1986-03-19 株式会社村田製作所 トロイダルコイル
US4616205A (en) 1985-03-08 1986-10-07 At&T Bell Laboratories Preformed multiple turn transformer winding
US4668931A (en) 1986-02-18 1987-05-26 General Electric Company Composite silicon steel-amorphous steel transformer core
GB2211671A (en) * 1987-10-28 1989-07-05 Johan Christian Fitter Electromagnetic devices with superconducting windings
JPH01242333A (ja) 1988-03-18 1989-09-27 Nippon Steel Corp 吊上電磁石の鋼板枚数制御装置
JPH0296797A (ja) 1988-10-04 1990-04-09 Fuji Electric Co Ltd 画像診断装置
JPH02172209A (ja) * 1988-12-24 1990-07-03 Tokin Corp インダクタンス装置
JPH0296797U (zh) * 1989-01-20 1990-08-01
JPH0644539B2 (ja) 1989-01-21 1994-06-08 株式会社西日本抵抗器製作所 内鉄形変圧器
US4972353A (en) 1989-02-21 1990-11-20 Ford Motor Company Radio-frequency transformer providing automatic gain control and overload protection
JPH0745934Y2 (ja) * 1991-02-20 1995-10-18 北川工業株式会社 雑音吸収体固定具
DE4129265A1 (de) 1991-08-30 1993-03-04 Mannesmann Ag Elektromagnetisches schaltgeraet
CA2100135C (en) 1992-07-10 1997-11-04 Makoto Kawakami Dc current sensor
US5539369A (en) * 1993-01-14 1996-07-23 International Business Machines Corporation Multiple-toroid induction device
JPH06260869A (ja) 1993-03-04 1994-09-16 Nippon Telegr & Teleph Corp <Ntt> ノイズフィルタ
JP2599427Y2 (ja) * 1993-09-30 1999-09-06 株式会社トーキン インダクタ
EP0993065B1 (en) 1993-10-04 2002-12-11 Matsushita Electric Industrial Co., Ltd. Dual mode resonator in which two microwaves are independently resonated
JP2866797B2 (ja) * 1993-12-28 1999-03-08 日立フェライト電子株式会社 Isdn用パルストランス
JP3219586B2 (ja) * 1994-03-01 2001-10-15 ティーディーケイ株式会社 ノーマルモード・コモンモード兼用チョークコイル
JPH07320969A (ja) * 1994-05-26 1995-12-08 Matsushita Electric Works Ltd コイル装置の製造方法
US5534837A (en) 1994-07-28 1996-07-09 Rockwell International Orthogonal-field electrically variable magnetic device
US5557249A (en) 1994-08-16 1996-09-17 Reynal; Thomas J. Load balancing transformer
US5737203A (en) 1994-10-03 1998-04-07 Delco Electronics Corp. Controlled-K resonating transformer
US5668707A (en) 1994-10-04 1997-09-16 Delco Electronics Corp. Multi-phase power converter with harmonic neutralization
JP3634463B2 (ja) 1995-09-11 2005-03-30 日立機電工業株式会社 吊上電磁石を用いたクレーンの自動運転方法
SE510452C2 (sv) 1997-02-03 1999-05-25 Asea Brown Boveri Transformator med spänningsregleringsorgan
US5999078A (en) 1997-06-09 1999-12-07 Herbert; Edward Transformer and rectifier module with half-turn secondary windings
JPH11214229A (ja) * 1998-01-23 1999-08-06 Kankyo Denji Gijutsu Kenkyusho:Kk コモンモードチョークコイル
JPH11261276A (ja) * 1998-03-10 1999-09-24 Tdk Corp フラットケーブル用ノイズ対策部品
US6683522B2 (en) * 1999-02-24 2004-01-27 Milli Sensor Systems & Actuators, Inc. Planar miniature inductors and transformers
US6380735B1 (en) * 1999-04-30 2002-04-30 Sumitomo Special Metals Co., Ltd. Orthogonal flux-gate type magnetic sensor
KR100318670B1 (ko) 1999-05-27 2002-01-04 윤종용 방열 리브를 가지는 고압 트랜스포머
US6181079B1 (en) 1999-12-20 2001-01-30 Philips Electronics North America Corporation High power electronic ballast with an integrated magnetic component
US6531945B1 (en) 2000-03-10 2003-03-11 Micron Technology, Inc. Integrated circuit inductor with a magnetic core
US7026905B2 (en) 2000-05-24 2006-04-11 Magtech As Magnetically controlled inductive device
US6734778B2 (en) 2000-12-19 2004-05-11 Fmtt, Inc. Module for matrix transformers having a four turn secondary winding
WO2002059915A2 (en) * 2001-01-23 2002-08-01 Buswell Harrie R Wire core inductive devices having a biassing magnet and methods of making the same
JP3523608B2 (ja) 2001-04-03 2004-04-26 本田技研工業株式会社 磁束検出装置および方法
WO2002095775A1 (en) * 2001-05-21 2002-11-28 Milli Sensor Systems & Actuators, Inc. Planar miniature inductors and transformers and miniature transformers for millimachined instruments
JP2002353045A (ja) * 2001-05-29 2002-12-06 Hitachi Metals Ltd パワートランス及びこれを用いた電力変換装置
US6990725B2 (en) 2001-10-05 2006-01-31 Fontanella Mark D Fabrication approaches for the formation of planar inductors and transformers
KR100464093B1 (ko) 2002-03-13 2005-01-03 삼성전기주식회사 인쇄회로기판에 집적된 자계검출소자 및 그 제조방법
JP2003309033A (ja) * 2002-04-15 2003-10-31 Aiko Denki Kk コイルの巻回方法とそのトランス類
US6972657B1 (en) 2002-06-14 2005-12-06 Lockheed Martin Corporation Power converter and planar transformer therefor
KR100481552B1 (ko) 2002-07-30 2005-04-07 삼성전기주식회사 2축 자계검출소자가 집적된 인쇄회로기판 및 그 제조방법
US7109837B2 (en) * 2003-03-18 2006-09-19 Pulse Engineering, Inc. Controlled inductance device and method
US8299885B2 (en) * 2002-12-13 2012-10-30 Volterra Semiconductor Corporation Method for making magnetic components with M-phase coupling, and related inductor structures
KR100494472B1 (ko) 2002-12-31 2005-06-10 삼성전기주식회사 인쇄회로기판 기술을 이용한 미약자계 감지용 센서 및 그제조 방법
KR100544475B1 (ko) 2003-01-25 2006-01-24 삼성전자주식회사 반도체기판에 집적된 자계검출소자 및 그 제조방법
US7023317B1 (en) 2003-04-03 2006-04-04 Edward Herbert Cellular transformers
US7071807B1 (en) * 2003-04-03 2006-07-04 Edward Herbert Laminated windings for matrix transformers and terminations therefor
US7573000B2 (en) * 2003-07-11 2009-08-11 Lincoln Global, Inc. Power source for plasma device
JP4103713B2 (ja) 2003-07-18 2008-06-18 株式会社デンソー 電流検出器
JP2005116666A (ja) * 2003-10-06 2005-04-28 Matsushita Electric Ind Co Ltd 磁性素子
JP2005236026A (ja) * 2004-02-19 2005-09-02 Matsushita Electric Works Ltd コイルユニット及び複合コイルユニット
JP2005308635A (ja) 2004-04-23 2005-11-04 Denso Corp 電流センサ
US7378828B2 (en) 2004-11-09 2008-05-27 The Boeing Company DC-DC converter having magnetic feedback
KR20070086217A (ko) * 2004-12-14 2007-08-27 알렉스 액셀로드 자기 유도 디바이스
JP4294602B2 (ja) 2005-02-18 2009-07-15 パナソニック株式会社 多相モータのロータ磁極位置検出装置及びそれを備えたモータ駆動装置並びにモータ駆動方法
US7342477B2 (en) 2005-07-01 2008-03-11 The Boeing Company Inductor
US20070145952A1 (en) 2005-12-23 2007-06-28 Cogeneration Energy Corp. Efficient power system
US7449987B2 (en) 2006-07-06 2008-11-11 Harris Corporation Transformer and associated method of making
JP4905828B2 (ja) * 2006-07-14 2012-03-28 Tdkラムダ株式会社 インダクタンス素子
US9048022B2 (en) 2006-08-28 2015-06-02 Youngtack Shim Electromagnetically-countered transformer systems and methods
US20080143465A1 (en) * 2006-12-15 2008-06-19 General Electric Company Insulation system and method for a transformer
US7639520B1 (en) 2007-02-26 2009-12-29 Network Appliance, Inc. Efficient power supply
JP4793758B2 (ja) * 2007-04-16 2011-10-12 Tdkラムダ株式会社 インダクタンス素子
WO2008125022A1 (fr) 2007-04-17 2008-10-23 Innopower Superconductor Cable Co., Ltd Limiteur de courant de défaut supraconducteur à noyau saturé et procédé de commande de ce limiteur
US8314674B2 (en) 2007-06-12 2012-11-20 Siemens Ag Österreich Electrical transformer with unidirectional flux compensation
US7986209B2 (en) 2007-11-20 2011-07-26 Intel Corporation Inductor using bulk metallic glass material
CN101896982B (zh) * 2007-12-12 2012-08-29 松下电器产业株式会社 电感部件及其制造方法
AT506454B1 (de) 2008-02-22 2015-10-15 Egston System Electronics Eggenburg Gmbh Wandleranordnung
US20090244937A1 (en) 2008-03-28 2009-10-01 American Superconductor Corporation Dc bus voltage harmonics reduction
US7961071B2 (en) * 2008-10-20 2011-06-14 Eaton Corporation Multiphase inductor and filter assemblies using bundled bus bars with magnetic core material rings
KR100920181B1 (ko) * 2008-11-28 2009-10-06 주식회사 상용조명 다등용 안정기 및 그의 제조 방법
JP5121679B2 (ja) 2008-12-01 2013-01-16 三菱電機株式会社 フラックスゲート型磁気センサ
US8212505B2 (en) 2008-12-02 2012-07-03 GM Global Technology Operations LLC Method and system for creating a vibration in an automobile
EP2460247A1 (en) 2009-07-31 2012-06-06 Gridmanager A/S Method and apparatus for managing transmission of power in a power transmission network
JP5414420B2 (ja) 2009-08-21 2014-02-12 ジェコー株式会社 電流センサ及びその製造方法
WO2011027195A1 (en) 2009-09-07 2011-03-10 Abb Technology Ltd Method and system for power management
CA2999563C (en) * 2009-11-19 2019-03-12 Hydro-Quebec System and method for treating an amorphous alloy ribbon
US8633688B2 (en) 2009-11-30 2014-01-21 Stmicroelectronics S.R.L. Integrated magnetic sensor for detecting horizontal magnetic fields and manufacturing process thereof
US8390418B2 (en) 2010-01-05 2013-03-05 Cardiac Pacemakers, Inc. Apparatus and method for reducing inductor saturation in magnetic fields
EP2558875B8 (de) 2010-04-14 2014-05-14 Siemens Aktiengesellschaft Verfahren und vorrichtung zum detektieren einer magnetischen kenngrösse in einem kern
US9106125B1 (en) 2010-06-28 2015-08-11 The Boeing Company Augmented power converter
US8572838B2 (en) 2011-03-02 2013-11-05 Honeywell International Inc. Methods for fabricating high temperature electromagnetic coil assemblies
US20120315792A1 (en) 2011-06-07 2012-12-13 Tyco Electronics Corporation Magnetic device
US20130082814A1 (en) * 2011-09-30 2013-04-04 Piotr Markowski Multi-winding magnetic structures
US10128035B2 (en) 2011-11-22 2018-11-13 Volterra Semiconductor LLC Coupled inductor arrays and associated methods
KR101290708B1 (ko) 2011-12-26 2013-07-29 문영현 자계소호 원리를 이용한 전력전자형 한류기
US20120150679A1 (en) 2012-02-16 2012-06-14 Lazaris Spyros J Energy management system for power transmission to an intelligent electricity grid from a multi-resource renewable energy installation
US8980053B2 (en) 2012-03-30 2015-03-17 Sabic Innovative Plastics Ip B.V. Transformer paper and other non-conductive transformer components
US20130328165A1 (en) * 2012-06-08 2013-12-12 The Trustees Of Dartmouth College Microfabricated magnetic devices and associated methods
US9568563B2 (en) 2012-07-19 2017-02-14 The Boeing Company Magnetic core flux sensor
US9159487B2 (en) * 2012-07-19 2015-10-13 The Boeing Company Linear electromagnetic device
US9455084B2 (en) 2012-07-19 2016-09-27 The Boeing Company Variable core electromagnetic device
CN202839278U (zh) 2012-10-18 2013-03-27 中国人民解放军信息工程大学 绕线平面变压器
US9651633B2 (en) * 2013-02-21 2017-05-16 The Boeing Company Magnetic core flux sensor
WO2016049316A1 (en) 2014-09-24 2016-03-31 Hiq Solar, Inc. Novel construction of double-gap inductor
US10937586B2 (en) 2015-08-06 2021-03-02 Teledyne Scientific & Imaging, Llc Electromagnetic device having layered magnetic material components and methods for making same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US352105A (en) * 1886-11-02 op buda-pesth
JP2001167933A (ja) * 1999-12-06 2001-06-22 Tdk Corp 電磁ノイズ抑制部品
CN1615462A (zh) * 2001-11-21 2005-05-11 马格技术公司 可控制的变压器
CN2528090Y (zh) * 2002-02-28 2002-12-25 峻达电子有限公司 具有形成平行贯穿槽磁导体的变压器
US20110279100A1 (en) * 2002-12-13 2011-11-17 Volterra Semiconductor Corporation Powder core material coupled inductors and associated methods
US7362206B1 (en) * 2003-04-03 2008-04-22 Edward Herbert Variable transformer
CN1577647A (zh) * 2003-07-16 2005-02-09 马维尔国际贸易有限公司 具有降低的直流电流饱和度的功率电感器
CN1637969A (zh) * 2003-12-22 2005-07-13 马维尔国际贸易有限公司 具有减小的直流电流饱和度的电力电感器
CN1763872A (zh) * 2004-10-22 2006-04-26 胜美达集团株式会社 磁性元件
JP2011238653A (ja) * 2010-05-06 2011-11-24 Fdk Corp 磁性体コアの製造方法およびインダクタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941042A (zh) * 2016-01-05 2017-07-11 波音公司 抗饱和电磁装置
CN106941042B (zh) * 2016-01-05 2021-07-16 波音公司 抗饱和电磁装置

Also Published As

Publication number Publication date
KR102086355B1 (ko) 2020-03-09
US9159487B2 (en) 2015-10-13
US10033178B2 (en) 2018-07-24
BR102013018176A2 (pt) 2015-06-30
KR20140011920A (ko) 2014-01-29
EP2688076A3 (en) 2015-12-02
EP2688076A2 (en) 2014-01-22
CN110690033A (zh) 2020-01-14
ES2757822T3 (es) 2020-04-30
US9472946B2 (en) 2016-10-18
EP2688076B1 (en) 2019-08-21
JP2014022750A (ja) 2014-02-03
BR102013018176B1 (pt) 2020-12-08
RU2662798C2 (ru) 2018-07-31
RU2013130327A (ru) 2015-01-10
US20160012959A1 (en) 2016-01-14
US20140022040A1 (en) 2014-01-23
JP6333525B2 (ja) 2018-05-30
US20150043119A1 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
CN103578704A (zh) 线性电磁装置
US9633776B2 (en) Variable core electromagnetic device
JP6400663B2 (ja) 非接触給電トランス
JP2020004990A (ja) 誘導電力伝達装置
US9651633B2 (en) Magnetic core flux sensor
US10037845B2 (en) Variable inductor and method for manufacturing the same
EP2879273A1 (en) Contactless power supply device
US11972896B2 (en) Compact inductor employing redistributed magnetic flux
CN107302298A (zh) 具有两路或多路输出电压的电源模块
US11495394B2 (en) Compact magnetic power unit for a power electronics system
CN210805499U (zh) 磁集成器件
TW201539495A (zh) 具有堆疊組件承納的表面安裝功率電感器組件
JP2015038986A (ja) 電力管理のための変圧器コア磁束制御
US20210090789A1 (en) Inductor structure with multiple windings with uncoupled magnetic fields
EP3319174B1 (en) A magnetic power unit
Mohamadi et al. Airgap-less integrated magnetic array using high performance magnetic material in the EV chargers
KR101392045B1 (ko) 고전압용 트랜스포머 구조체
KR102625012B1 (ko) 포화 방지 전자기 장치
KR101438394B1 (ko) 차량 방향에 강인한 급전선로 및 집전장치
CN117355914A (zh) 矩阵变压器
KR20220111872A (ko) 인덕터 일체형 트랜스포머
JP2014216366A (ja) トランス
Jiang et al. Design and analysis of cubical compact coils for wireless power transfer
CN113439315A (zh) 变压器
KR20200094420A (ko) E-타입 코어를 갖는 자성체 소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140212