CN103515450A - 一种沟槽电荷补偿肖特基半导体装置及其制造方法 - Google Patents

一种沟槽电荷补偿肖特基半导体装置及其制造方法 Download PDF

Info

Publication number
CN103515450A
CN103515450A CN201210235883.5A CN201210235883A CN103515450A CN 103515450 A CN103515450 A CN 103515450A CN 201210235883 A CN201210235883 A CN 201210235883A CN 103515450 A CN103515450 A CN 103515450A
Authority
CN
China
Prior art keywords
semiconductor material
semiconductor device
groove
layer
charge compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210235883.5A
Other languages
English (en)
Other versions
CN103515450B (zh
Inventor
朱江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihai Huike Semiconductor Technology Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201210235883.5A priority Critical patent/CN103515450B/zh
Publication of CN103515450A publication Critical patent/CN103515450A/zh
Application granted granted Critical
Publication of CN103515450B publication Critical patent/CN103515450B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • H01L29/8725Schottky diodes of the trench MOS barrier type [TMBS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种沟槽电荷补偿肖特基半导体装置,其中具有电荷补偿结构,当半导体装置接一定的反向偏压时,第一导电半导体材料与第二导电半导体材料可以形成电荷补偿,提高器件的反向阻断特性;通过沟槽上部引入多晶半导体材料,可以降低半导体装置接反向偏压时肖特基结表面的峰值电场强度,从而进一步提高器件的反向阻断特性。本发明还提供了一种沟槽电荷补偿肖特基半导体装置的制造方法。

Description

一种沟槽电荷补偿肖特基半导体装置及其制造方法
技术领域
本发明涉及到一种沟槽电荷补偿肖特基半导体装置,本发明还涉及一种沟槽电荷补偿肖特基半导体装置的制造方法。本发明的半导体装置是制造功率整流器件的基本结构。
背景技术
功率半导体器件被大量使用在电源管理和电源应用上,特别涉及到肖特基结的半导体器件已成为器件发展的重要趋势,肖特基器件具有正向开启电压低开启关断速度快等优点,同时肖特基器件也具有反向漏电流大,不能被应用于高压环境等缺点。
肖特基二极管可以通过多种不同的布局技术制造,最常用的为平面布局,传统的平面肖特基二极管在漂移区具有突变的电场分布曲线,影响了器件的反向击穿特性,同时传统的平面肖特基二极管具有较高的导通电阻。
发明内容
本发明针对上述问题提出,提供一种沟槽电荷补偿肖特基半导体装置及其制造方法。
一种沟槽电荷补偿肖特基半导体装置,其特征在于:包括:衬底层,为半导体材料构成;漂移层,为第一导电半导体材料构成,位于衬底层之上;多个沟槽结构,沟槽位于漂移层中,漂移层中临靠沟槽内壁区域设置有第二导电半导体材料,沟槽内下部填充有绝缘材料,沟槽内上部填充半导体材料;肖特基势垒结,位于漂移层第一导电半导体材料上表面。
一种沟槽电荷补偿肖特基半导体装置的制造方法,其特征在于:包括如下步骤:在衬底层表面形成第一导电半导体材料层,然后表面形成绝缘材料层;进行光刻腐蚀工艺去除表面部分绝缘介质,然后刻蚀去除部分裸露半导体材料形成沟槽;在沟槽内进行第二导电杂质扩散;在沟槽内淀积绝缘材料,反刻蚀绝缘材料,淀积多晶半导体材料,反刻蚀多晶半导体材料,去除表面绝缘材料;淀积势垒金属,进行烧结形成肖特基势垒结。
当半导体装置接一定的反向偏压时,第一导电半导体材料与第二导电半导体材料可以形成电荷补偿,提高器件的反向击穿电压。因此也可以提高漂移区的杂质掺杂浓度,从而可以降低器件的正向导通电阻,改善器件的正向导通特性。
通过沟槽上部引入多晶半导体材料,可以改变肖特基表面电场分布,降低半导体装置接反向偏压时肖特基结表面的峰值电场强度,从而进一步提高器件的反向阻断特性。
附图说明
图1为本发明的一种沟槽电荷补偿肖特基半导体装置剖面示意图;
图2为本发明的一种沟槽电荷补偿肖特基半导体装置剖面示意图。
其中,
1、衬底层;
2、二氧化硅;
3、第一导电半导体材料;
4、第二导电半导体材料;
5、肖特基势垒结;
6、氮化硅;
7、多晶第二导电半导体材料;
10、上表面金属层;
11、下表面金属层。
具体实施方式
实施例1
图1为本发明的一种沟槽电荷补偿肖特基半导体装置剖面图,下面结合图1详细说明本发明的半导体装置。
一种肖特基半导体装置,包括:衬底层1,为N导电类型半导体硅材料,磷原子的掺杂浓度为1E19/CM3,在衬底层1下表面,通过下表面金属层11引出电极;第一导电半导体材料3,位于衬底层1之上,为N传导类型的半导体硅材料,磷原子的掺杂浓度为1E16/CM3;第二导电半导体材料4,位于沟槽内壁附近,为P传导类型的半导体硅材料,硼原子的掺杂浓度为3E16/CM3;肖特基势垒结5,位于第一导电半导体材料3的表面,为半导体硅材料与势垒金属形成的硅化物;二氧化硅2,位于沟槽内下部;多晶第二导电半导体材料7,为高浓硼掺杂的多晶半导体硅材料,位于沟槽内上部;器件上表面附有上表面金属层10,为器件引出另一电极。
其制作工艺包括如下步骤:
第一步,在衬底层1表面外延形成第一导电半导体材料层,淀积形成氮化硅层;
第二步,进行光刻腐蚀工艺,半导体材料表面去除部分氮化硅,然后刻蚀去除部分裸露半导体硅材料形成沟槽;
第三步,在沟槽内进行硼杂质扩散;
第四步,在沟槽内淀积形成二氧化硅2,反刻蚀二氧化硅2,淀积多晶第二导电半导体材料7,反刻多晶第二导电半导体材料7,蚀腐蚀去除氮化硅层;
第五步,在半导体材料表面淀积势垒金属,进行烧结形成肖特基势垒结5,然后在表面淀积金属形成上表面金属层10;
第六步,进行背面金属化工艺,在背面形成下表面金属层11,如图1所示。
实施例2
图2为本发明的一种沟槽电荷补偿肖特基半导体装置剖面图,下面结合图2详细说明本发明的半导体装置。
一种肖特基半导体装置,包括:衬底层1,为N导电类型半导体硅材料,磷原子的掺杂浓度为1E19/CM3,在衬底层1下表面,通过下表面金属层11引出电极;第一导电半导体材料3,位于衬底层1之上,为N传导类型的半导体硅材料,磷原子的掺杂浓度为1E16/CM3;第二导电半导体材料4,位于沟槽内壁附近,为P传导类型的半导体硅材料,硼原子的掺杂浓度为3E16/CM3;肖特基势垒结5,位于第一导电半导体材料3的表面,为半导体硅材料与势垒金属形成的硅化物;二氧化硅2,位于沟槽内壁;氮化硅6,位于沟槽内下部;多晶第二导电半导体材料7,为高浓硼掺杂的多晶半导体硅材料,位于沟槽内上部;器件上表面和沟槽内上部附有上表面金属层10,为器件引出另一电极。
其制作工艺包括如下步骤:
第一步,在衬底层1表面外延形成第一导电半导体材料层,淀积形成氮化硅层;
第二步,进行光刻腐蚀工艺,半导体材料表面去除部分氮化硅,然后刻蚀去除部分裸露半导体硅材料形成沟槽;
第三步,在沟槽内进行硼杂质扩散,同时在沟槽内壁形成二氧化硅2;
第四步,在沟槽内淀积形成氮化硅6,反刻蚀氮化硅6,淀积多晶第二导电半导体材料7,反刻多晶第二导电半导体材料7;
第五步,在半导体材料表面淀积势垒金属,进行烧结形成肖特基势垒结5,然后在表面淀积金属形成上表面金属层10;
第六步,进行背面金属化工艺,在背面形成下表面金属层11,如图2所示。
通过上述实例阐述了本发明,同时也可以采用其它实例实现本发明,本发明不局限于上述具体实例,因此本发明由所附权利要求范围限定。

Claims (10)

1.一种沟槽电荷补偿肖特基半导体装置,其特征在于:包括:
衬底层,为半导体材料构成;
漂移层,为第一导电半导体材料构成,位于衬底层之上;多个
沟槽结构,沟槽位于漂移层中,漂移层中临靠沟槽内壁区域设置有第二导电半导体材料,沟槽内下部填充有绝缘材料,沟槽内上部填充半导体材料;
肖特基势垒结,位于漂移层第一导电半导体材料上表面。
2.如权利要求1所述的半导体装置,其特征在于:所述的衬底层为高浓度杂质掺杂的半导体材料。
3.如权利要求1所述的半导体装置,其特征在于:所述的衬底层可以为高浓度杂质掺杂的半导体材料层和低浓度杂质掺杂的半导体材料层的叠加层。
4.如权利要求1所述的半导体装置,其特征在于:所述的沟槽内下部填充的绝缘材料可以为二氧化硅。
5.如权利要求1所述的半导体装置,其特征在于:所述的沟槽内上部填充半导体材料为多晶半导体材料。
6.如权利要求1所述的半导体装置,其特征在于:所述的第二导电半导体材料侧壁可以直接与沟槽内上部填充半导体材料相连。
7.如权利要求1所述的半导体装置,其特征在于:所述的第二导电半导体材料侧壁与沟槽内上部填充半导体材料之间也可以具有绝缘材料层进行隔离。
8.如权利要求1所述的半导体装置,其特征在于:所述的第二导电半导体材料与漂移层第一导电半导体材料可以形成电荷补偿结构。
9.如权利要求1所述的半导体装置,其特征在于:所述的肖特基势垒结为势垒金属与第一导电半导体材料形成的势垒结。
10.如权利要求1所述的一种沟槽电荷补偿肖特基半导体装置的制造方法,其特征在于:包括如下步骤:
1)在衬底层表面形成第一导电半导体材料层,然后表面形成绝缘材料层;
2)进行光刻腐蚀工艺去除表面部分绝缘介质,然后刻蚀去除部分裸露半导体材料形成沟槽;
3)在沟槽内进行第二导电杂质扩散;
4)在沟槽内淀积绝缘材料,反刻蚀绝缘材料,淀积多晶半导体材料,反刻蚀多晶半导体材料,去除表面绝缘材料;
5)淀积势垒金属,进行烧结形成肖特基势垒结。
CN201210235883.5A 2012-06-29 2012-06-29 一种沟槽电荷补偿肖特基半导体装置及其制造方法 Active CN103515450B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210235883.5A CN103515450B (zh) 2012-06-29 2012-06-29 一种沟槽电荷补偿肖特基半导体装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210235883.5A CN103515450B (zh) 2012-06-29 2012-06-29 一种沟槽电荷补偿肖特基半导体装置及其制造方法

Publications (2)

Publication Number Publication Date
CN103515450A true CN103515450A (zh) 2014-01-15
CN103515450B CN103515450B (zh) 2017-02-08

Family

ID=49897863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210235883.5A Active CN103515450B (zh) 2012-06-29 2012-06-29 一种沟槽电荷补偿肖特基半导体装置及其制造方法

Country Status (1)

Country Link
CN (1) CN103515450B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206755A (zh) * 2015-05-27 2016-12-07 丰田自动车株式会社 肖特基势垒二极管
CN107293601A (zh) * 2016-04-12 2017-10-24 朱江 一种肖特基半导体装置及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060231915A1 (en) * 2004-12-27 2006-10-19 Third Dimension (3D) Semiconductor, Inc. Process for high voltage superjunction termination
CN101510557A (zh) * 2008-01-11 2009-08-19 艾斯莫斯技术有限公司 具有电介质终止的超结半导体器件及制造该器件的方法
CN101937927A (zh) * 2009-07-01 2011-01-05 上海先进半导体制造股份有限公司 深沟槽超级pn结结构及其形成方法
KR20120004645U (ko) * 2010-12-17 2012-06-27 타이완 세미컨덕터 컴퍼니, 리미티드 쇼트키 다이오드 구조

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060231915A1 (en) * 2004-12-27 2006-10-19 Third Dimension (3D) Semiconductor, Inc. Process for high voltage superjunction termination
CN101510557A (zh) * 2008-01-11 2009-08-19 艾斯莫斯技术有限公司 具有电介质终止的超结半导体器件及制造该器件的方法
CN101937927A (zh) * 2009-07-01 2011-01-05 上海先进半导体制造股份有限公司 深沟槽超级pn结结构及其形成方法
KR20120004645U (ko) * 2010-12-17 2012-06-27 타이완 세미컨덕터 컴퍼니, 리미티드 쇼트키 다이오드 구조

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206755A (zh) * 2015-05-27 2016-12-07 丰田自动车株式会社 肖特基势垒二极管
CN107293601A (zh) * 2016-04-12 2017-10-24 朱江 一种肖特基半导体装置及其制备方法
CN107293601B (zh) * 2016-04-12 2021-10-22 朱江 一种肖特基半导体装置及其制备方法

Also Published As

Publication number Publication date
CN103515450B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
CN103137710B (zh) 一种具有多种绝缘层隔离的沟槽肖特基半导体装置及其制备方法
CN103199119B (zh) 一种具有超结结构的沟槽肖特基半导体装置及其制备方法
CN103378171B (zh) 一种沟槽肖特基半导体装置及其制备方法
CN103247694A (zh) 一种沟槽肖特基半导体装置及其制备方法
CN103545381A (zh) 一种水平结构沟槽肖特基半导体装置及其制备方法
CN103367396B (zh) 一种超级结肖特基半导体装置及其制备方法
CN103515450A (zh) 一种沟槽电荷补偿肖特基半导体装置及其制造方法
CN103378178B (zh) 一种具有沟槽结构肖特基半导体装置及其制备方法
CN103515449B (zh) 一种具有电荷补偿沟槽肖特基半导体装置及其制备方法
CN103199102A (zh) 一种具有超结结构的肖特基半导体装置及其制备方法
CN103390651A (zh) 一种沟槽肖特基半导体装置及其制备方法
CN103378177B (zh) 一种具有沟槽肖特基半导体装置及其制备方法
CN103378170A (zh) 一种具有超级结肖特基半导体装置及其制备方法
CN103378131A (zh) 一种电荷补偿肖特基半导体装置及其制造方法
CN103579371A (zh) 一种沟槽终端结构肖特基器件及其制备方法
CN103367462A (zh) 一种具有绝缘层隔离超结结构肖特基半导体装置及其制备方法
CN103383968A (zh) 一种界面电荷补偿肖特基半导体装置及其制备方法
CN103137711A (zh) 一种具有绝缘层隔离结构肖特基半导体装置及其制备方法
CN103390652A (zh) 一种沟槽电荷补偿肖特基半导体装置及其制备方法
CN103383969B (zh) 一种肖特基器件及其制备方法
CN103594493A (zh) 一种沟槽结构电荷补偿肖特基半导体装置及其制备方法
CN103579373A (zh) 一种沟槽结构电荷补偿肖特基半导体装置及其制造方法
CN103378172A (zh) 一种肖特基半导体装置及其制备方法
CN103378174B (zh) 一种具有电荷补偿肖特基半导体装置及其制备方法
CN103378175A (zh) 一种电荷补偿肖特基半导体装置及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210426

Address after: Room 301, 3rd floor, building 16, Guangxi Huike Technology Co., Ltd., No. 336, East extension of Beihai Avenue, Beihai Industrial Park, 536000, Guangxi Zhuang Autonomous Region

Patentee after: Beihai Huike Semiconductor Technology Co.,Ltd.

Address before: 113200 Liaoning Province Xinbin Manchu Autonomous County Federation of disabled persons

Patentee before: Zhu Jiang