CN103339252A - 具有纤维素分解增强活性的嵌合多肽及其编码多核苷酸 - Google Patents

具有纤维素分解增强活性的嵌合多肽及其编码多核苷酸 Download PDF

Info

Publication number
CN103339252A
CN103339252A CN2011800655050A CN201180065505A CN103339252A CN 103339252 A CN103339252 A CN 103339252A CN 2011800655050 A CN2011800655050 A CN 2011800655050A CN 201180065505 A CN201180065505 A CN 201180065505A CN 103339252 A CN103339252 A CN 103339252A
Authority
CN
China
Prior art keywords
polypeptide
seq
chimeric
another aspect
parent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800655050A
Other languages
English (en)
Inventor
M.沃古利斯
M.斯威尼
T.休
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novozymes Inc
Original Assignee
Novozymes Biotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novozymes Biotech Inc filed Critical Novozymes Biotech Inc
Publication of CN103339252A publication Critical patent/CN103339252A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/38Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Aspergillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及具有纤维素分解增强活性的多肽的嵌合GH61多肽。本发明亦涉及编码所述嵌合GH61多肽的多核苷酸;包含所述多核苷酸的核酸构建体、载体和宿主细胞;和使用所述嵌合GH61多肽的方法。

Description

具有纤维素分解增强活性的嵌合多肽及其编码多核苷酸
对于在联邦资助的研究和开发下完成的发明的权利的声明
该发明是在由能源部授予的Cooperative Agreement DE-FC36-08GO18080下以政府支持完成的。政府在该发明中具有一定权利。
对相关申请的交叉引用
该申请要求2010年11月18日提交的美国临时申请系列号61/415,066的权益,其通过提述并入本文。
涉及序列表
本申请包含计算机可读形式的序列表,其通过提述并入本文。
发明背景
技术领域
本发明涉及具有纤维素分解增强活性的嵌合GH61多肽,编码所述嵌合GH61多肽的多核苷酸,产生所述嵌合GH61多肽的方法,和使用所述嵌合GH61多肽的方法。
背景技术
纤维素是单糖葡萄糖通过β-1,4-键共价连接的聚合物。许多微生物产生水解β-连接的葡聚糖的酶。这些酶包括内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。内切葡聚糖酶在随机位置消化纤维素聚合物,使其暴露于纤维二糖水解酶攻击(attack)。纤维二糖水解酶从纤维素聚合物的末端顺序地释放纤维二糖的分子。纤维二糖是水溶性的β-1,4-连接的葡萄糖二聚体。β-葡糖苷酶将纤维二糖水解成葡萄糖。
将含木素纤维素原料(lignocellulosic feedstock)转化为乙醇具有以下优势:大量原料现成可用,避免燃烧或填埋材料的合意性和乙醇燃料的清洁性。木材、农业残余物、草本作物和城市固体废物被认为是用于乙醇生产的原料。这些材料主要由纤维素、半纤维素和木质素组成。一旦将纤维素转化成葡萄糖,葡萄糖容易地由酵母发酵成乙醇。
WO 2005/074647,WO 2008/148131,和WO 2011/035027公开了来自土生梭孢霉(Thielavia terrestris)的具有纤维素分解增强活性的GH61多肽及其多核苷酸。WO 2005/074656和WO 2010/065830公开了来自桔橙嗜热子囊菌(Thermoascus aurantiacus)的具有纤维素分解增强活性的GH61多肽及其多核苷酸。WO 2007/089290公开了来自里氏木霉(Trichoderma reesei)的具有纤维素分解增强活性的GH61多肽及其多核苷酸。WO 2009/085935,WO 2009/085859,WO 2009/085864,和WO 2009/085868公开了来自嗜热毁丝霉(Myceliophthorathermophila)的具有纤维素分解增强活性的GH61多肽及其多核苷酸。WO2010/138754公开了来自烟曲霉(Aspergillus fumigatus)的具有纤维素分解增强活性的分离的GH61多肽及其多核苷酸。WO 2011/005867公开了来自嗜松青霉(Penicillium pinophilum)的具有纤维素分解增强活性的分离的GH61多肽及其多核苷酸。WO 2011/039319公开了来自嗜热子囊菌属菌种(Thermoascus sp)的具有纤维素分解增强活性的分离的GH61多肽及其多核苷酸。WO 2011/041397公开了来自青霉属菌种(Penicillium sp)的具有纤维素分解增强活性的分离的GH61多肽及其多核苷酸。WO 2011/041504公开了来自甲壳嗜热子囊菌(Thermoascuscrustaceous)的具有纤维素分解增强活性的分离的GH61多肽及其多核苷酸。WO2008/151043公开了通过将可溶性活化二价金属阳离子添加至包含具有纤维素分解增强活性的GH61多肽的组合物来增加该多肽的活性的方法。
在本领域中,改善具有纤维素分解增强活性的多肽增强木素纤维素原料的酶降解的能力会是有利的。
本发明提供了具有改善的性质的具有纤维素分解增强活性的嵌合GH61多肽。
发明内容
本发明涉及分离的具有纤维素分解增强活性的嵌合GH61多肽,其包含:
(a)第一GH61多肽片段,其位于所述嵌合GH61多肽的N端,选自下组:(i)多肽片段,其与SEQ ID NO:78的氨基酸22至84具有至少60%序列同一性;(ii)多肽片段,其由多核苷酸编码,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:77的核苷酸64至301或其cDNA序列,或它们的全长互补链;(iii)多肽片段,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:77的核苷酸64至301或其cDNA序列具有至少60%序列同一性;和(iv)多肽片段,其包含或组成为SEQ ID NO:78的氨基酸22至84;
(b)第二GH61多肽片段,其位于所述第一多肽片段的C端,选自下组:(i)多肽片段,其与SEQ ID NO:94的氨基酸85至207具有至少60%序列同一性;(ii)多肽片段,其由多核苷酸编码,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:93的核苷酸306至730或其cDNA序列,或它们的全长互补链;(iii)多肽片段,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:93的核苷酸306至730或其cDNA序列具有至少60%序列同一性;和(iv)多肽片段,其包含或组成为SEQ ID NO:94的氨基酸85至207;和
(c)第三GH61多肽片段,其位于所述第二多肽片段的C端,选自下组:(i)多肽片段,其与SEQ ID NO:78的氨基酸208至249具有至少60%序列同一性;(ii)多肽片段,其由多核苷酸编码,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:77的核苷酸671至796或其cDNA序列,或它们的全长互补链;(iii)多肽片段,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:77的核苷酸671至796或其cDNA序列具有至少60%序列同一性;和(iv)多肽片段,其包含或组成为SEQ ID NO:78的氨基酸208至249。
本发明亦涉及编码所述嵌合GH61多肽的分离的多核苷酸;包含所述多核苷酸的核酸构建体、载体和宿主细胞;以及产生所述嵌合GH61多肽的方法。
本发明亦涉及用于降解或转化纤维素材料的方法,其包括:在此种具有纤维素分解增强活性的嵌合GH61多肽的存在下用酶组合物处理所述纤维素材料。
本发明亦涉及用于产生发酵产物的方法,其包括:
(a)在此种具有纤维素分解增强活性的嵌合GH61多肽的存在下用酶组合物糖化纤维素材料;
(b)用一种或多种(例如几种)发酵微生物发酵经糖化的纤维素材料以产生发酵产物;和
(c)从发酵回收所述发酵产物。
本发明亦涉及发酵纤维素材料的方法,其包括用一种或多种(例如几种)发酵微生物发酵所述纤维素材料,其中所述纤维素材料是在此种具有纤维素分解增强活性的嵌合GH61多肽的存在下用酶组合物糖化的。
本发明亦涉及包含此种嵌合GH61多肽和表面活性剂的去污剂组合物。
附图说明
图1显示烟曲霉(Aspergillus fumigatus)GH61B和桔橙嗜热子囊菌(Thermoascus aurantiacus)GH61A嵌合多肽对烟曲霉β-葡糖苷酶转化磷酸溶胀的纤维素(PASC)的作用。
图2A和2B显示通过差示扫描量热法分别确定烟曲霉野生型GH61B多肽以及烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合多肽的Td(变性温度)。
定义
乙酰木聚糖酯酶:术语“乙酰木聚糖酯酶”意指羧基酯酶(EC3.1.1.72),其催化乙酰基从聚合木聚糖、乙酰化木糖、乙酰化葡萄糖、乙酸α-萘酯(alpha-napthyl acetate)和乙酸对硝基苯酯(p-nitrophenyl acetate)的水解。就本发明而言,乙酰木聚糖酯酶活性是使用含有0.01%TWEENTM20(聚氧乙烯山梨坦单月桂酸酯)的50mM乙酸钠pH5.0中的0.5mM乙酸对硝基苯酯作为底物确定的。一个单位的乙酰木聚糖酯酶定义为能够在pH5,25℃每分钟释放1微摩尔对硝基苯酚阴离子(p-nitrophenolate anion)的酶量。
等位变体(allelic variant):术语“等位变体”意指占据相同染色体基因座的基因的任何两种或更多种可选形式。等位变异通过突变天然地发生,并且可导致种群内的多态性。基因突变可以是沉默的(在编码的多肽中无变化)或可以编码具有改变的氨基酸序列的多肽。多肽的等位变体是由基因的等位变体编码的多肽。
α-L-阿拉伯呋喃糖苷酶:术语“α-L-阿拉伯呋喃糖苷酶”意指α-L-阿拉伯呋喃糖苷阿拉伯呋喃水解酶(EC3.2.1.55),其催化对α-L-阿拉伯糖苷中的末端非还原性α-L-阿拉伯呋喃糖苷残基的水解。该酶对α-L-阿拉伯呋喃糖苷、含有(1,3)-和/或(1,5)-键的α-L-阿拉伯聚糖、阿拉伯木聚糖和阿拉伯半乳聚糖起作用。α-L-阿拉伯呋喃糖苷酶也称为阿拉伯糖苷酶、α-阿拉伯糖苷酶、α-L-阿拉伯糖苷酶、α-阿拉伯呋喃糖苷酶、多糖α-L-阿拉伯呋喃糖苷酶、α-L-阿拉伯呋喃糖苷水解酶、L-阿拉伯糖苷酶或α-L-阿拉伯聚糖酶。就本发明而言,α-L-阿拉伯呋喃糖苷酶活性是使用总体积200μl中的每ml的100mM乙酸钠pH5中5mg的中等粘度小麦阿拉伯木聚糖(Megazyme International Ireland,Ltd.,Bray,Co.Wicklow,Ireland)在40℃进行30分钟,接着通过AMINEXHPX-87H柱层析(Bio-Rad Laboratories,Inc.,Hercules,CA,USA)的阿拉伯糖分析来确定的。
α-葡糖醛酸糖苷酶:术语“α-葡糖醛酸糖苷酶”意指α-D-葡糖苷酸葡糖醛酸水解酶(alpha-D-glucosiduronate glucuronohydrolase)(EC 3.2.1.139),其催化α-D-葡糖醛酸糖苷水解为D-葡糖醛酸和醇。就本发明而言,α-葡糖醛酸糖苷酶活性是根据de Vries,1998,J.Bacteriol.180:243-249确定的。一个单位的α-葡糖醛酸糖苷酶等于能够在pH5,40℃每分钟释放1微摩尔葡糖醛酸或4-O-甲基葡糖醛酸的酶量。
β-葡糖苷酶:术语“β-葡糖苷酶”意指β-D-葡糖苷葡糖水解酶(beta-D-glucoside glucohydrolase)(E.C.No.3.2.1.21),其催化末端非还原β-D-葡萄糖残基的水解,并释放β-D-葡萄糖。就本发明而言,β-葡糖苷酶根据Venturi等,2002,Extracellular beta-D-glucosidase from Chaetomiumthermophilum var.coprophilum:production,purification and some biochemicalproperties,J.Basic Microbiol.42:55-66的方法使用对硝基苯基-β-D-葡糖吡喃糖苷作为底物确定。一个单位的β-葡糖苷酶定义为在25℃,pH4.8,在含有0.01%TWEEN
Figure BDA00003531984600052
20的50mM柠檬酸钠中从作为底物的1mM对硝基苯基-β-D-葡糖吡喃糖苷每分钟产生1.0微摩尔对硝基苯酚阴离子。
β-木糖苷酶:术语“β-木糖苷酶”意指β-D木糖苷木糖水解酶(β-D-xylosidexylohydrolase)(E.C.3.2.1.37),其催化短β(1→4)木寡糖(xylooligosaccharide)的外水解以从非还原端去除连续的D-木糖残基。就本发明而言,一个单位的β-木糖苷酶定义为在40℃,pH5在含有0.01%TWEEN
Figure BDA00003531984600053
20的100mM柠檬酸钠中从作为底物的1mM对硝基苯基-β-D-木糖苷每分钟产生1.0微摩尔对硝基苯酚阴离子。
cDNA:术语“cDNA”意指能够通过反转录从得自真核或原核细胞的成熟的、已剪接的mRNA分子制备的DNA分子。cDNA缺少通常存在于相应基因组DNA中的内含子序列。起始的(initial)、初级的RNA转录物是mRNA的前体,其通过一系列的步骤加工包括剪接,然后作为成熟的已剪接的mRNA出现。
纤维二糖水解酶:术语“纤维二糖水解酶”意指1,4-β-D-葡聚糖纤维二糖水解酶(1,4-beta-D-glucan cellobiohydrolase)(E.C.3.2.1.91和E.C.3.2.1.176),其催化纤维素、纤维寡糖,或任何包含β-1,4-连接的葡萄糖的聚合物中的1,4-β-D-糖苷键的水解,从链的还原或非还原末端释放纤维二糖(Teeri,1997,Crystalline cellulose degradation:New insight into the function ofcellobiohydrolases,Trends in Biotechnology15:160-167;Teeri等,1998,Trichoderma reesei cellobiohydrolases:why so efficient on crystalline cellulose?,Biochem.Soc.Trans.26:173-178)。根据Lever等,1972,Anal.Biochem.47:273-279;van Tilbeurgh等,1982,FEBS Letters149:152-156;van Tilbeurgh和Claeyssens,1985,FEBS Letters187:283-288;以及Tomme等,1988,Eur.J.Biochem.170:575-581描述的方法确定纤维二糖水解酶活性。在本发明中,Tomme等的方法可用于确定纤维二糖水解酶活性。
纤维素分解酶或纤维素酶:术语“纤维素分解酶”或“纤维素酶”意指一种或多种(例如几种)水解纤维素材料的酶。此类酶包括内切葡聚糖酶,纤维二糖水解酶,β-葡糖苷酶,或其组合。测量纤维素分解活性的两种基本方法包括:(1)测量总纤维素分解活性,和(2)测量单独的纤维素分解活性(内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶),如Zhang等,Outlook for cellulaseimprovement:Screening and selection strategies,2006,Biotechnology Advances24:452-481所综述的。总纤维素分解活性通常是使用不溶性底物来测定的,所述底物包括Whatman No.1滤纸、微晶纤维素、细菌纤维素、藻类纤维素、棉花、经预处理的木素纤维素等。最常见的总纤维素分解活性测定法是使用Whatman No.1滤纸作为底物的滤纸测定法。该测定法是由International Unionof Pure and Applied Chemistry(IUPAC)(Ghose,1987,Measurement of cellulaseactivities,Pure Appl.Chem.59:257-68)确立的。
就本发明而言,纤维素分解酶活性通过测量在下述条件下由纤维素分解酶进行的纤维素材料水解的增加来确定:1-50mg的纤维素分解酶蛋白/g的PCS中纤维素(或其它经预处理的纤维素材料)在合适的温度,例如50℃、55℃或60℃进行3-7日,与未添加纤维素分解酶蛋白的对照水解相比较。通常条件为:1ml反应液,经洗涤或未洗涤的PCS,5%不溶性固形物,50mM乙酸钠pH5,1mM MnSO4,50℃、55℃或60℃,72小时,通过AMINEXHPX-87H柱(Bio-Rad Laboratories,Inc.,Hercules,CA,USA)进行糖分析。
纤维素材料:术语“纤维素材料”意指包含纤维素的任何材料。生物质的初生细胞壁(primary cell wall)中的主要多糖是纤维素,其次最丰富的是半纤维素,而第三是果胶。次生细胞壁(secondary cell wall)在细胞停止生长后产生,其同样含有多糖并通过共价交联至半纤维素的聚合木质素而加强。纤维素是脱水纤维二糖的均聚物,并且因此是直链β-(1-4)-D-葡聚糖,而半纤维素包括多种化合物,例如木聚糖、木葡聚糖(xyloglucan)、阿拉伯木聚糖和甘露聚糖,具有系列取代基的复杂分支结构。尽管通常是多形的,存在于植物组织中的纤维素主要是平行葡聚糖链的不溶晶体基质。半纤维素通常与纤维素以及其它半纤维素以氢键相连,其帮助稳定细胞壁基质。
纤维素通常见于例如植物的茎、叶、壳、皮和穗轴,或树的叶、枝和木材。纤维素材料可以是,但不限于,农业残余物、草本材料(包括能量作物)、城市固体废物、纸浆与造纸厂残余物、废纸和木材(包括林业残余物)(参见,例如,Wiselogel等,1995,于Handbook on Bioethanol(Charles E.Wyman编),pp.105-118,Taylor&Francis,Washington D.C.;Wyman,1994,BioresourceTechnology50:3-16;Lynd,1990,Applied Biochemistry and Biotechnology24/25:695-719;Mosier等,1999,Recent Progress in Bioconversion of Lignocellulosics,于Advances in Biochemical Engineering/Biotechnology,T.Scheper主编,Volume65,pp.23-40,Springer-Verlag,New York)。在本文中应理解的是,纤维素可以是任何形式的木素纤维素,在混合基质中包含木质素、纤维素和半纤维素的植物细胞壁材料。在一个优选的方面,纤维素材料是任何生物质材料。在另一个优选的方面,所述纤维素材料是木素纤维素,其包含纤维素、半纤维素和木质素。
在一个方面,纤维素材料是农业残余物。在另一个方面,纤维素材料是草本材料(包括能量作物)。在另一个方面,纤维素材料是城市固体废物。在另一个方面,纤维素材料是纸浆和造纸厂残余物。在另一个方面,纤维素材料是废纸。在另一个方面,纤维素材料是木材(包括林业残余物)。
在另一个方面,纤维素材料是芦竹(arundo)。在另一个方面,纤维素材料是甘蔗渣。在另一个方面,纤维素材料是竹材。在另一个方面,纤维素材料是玉米穗轴。在另一个方面,纤维素材料是玉米纤维。在另一个方面,纤维素材料是玉米秸秆。在另一个方面,纤维素材料是芒草属。在另一个方面,纤维素材料是橙皮。在另一个方面,纤维素材料是稻杆。在另一个方面,纤维素材料是柳枝稷(switch grass)。在另一个方面,纤维素材料是麦杆。
在另一个方面,纤维素材料是白杨。在另一个方面,纤维素材料是桉树。在另一个方面,纤维素材料是枞树。在另一个方面,纤维素材料是松树。在另一个方面,纤维素材料是杨树。在另一个方面,纤维素材料是云杉。在另一个方面,纤维素材料是柳树。
在另一个方面,纤维素材料是藻类纤维素。在另一个方面,纤维素材料是细菌纤维素。在另一个方面,纤维素材料是棉线头(cotton linter)。在另一个方面,纤维素材料是滤纸。在另一个方面,纤维素材料是微晶纤维素。在另一个方面,纤维素材料是磷酸处理的纤维素。
在另一个方面,纤维素材料是水生生物质。如用于本文中,“水生生物质”意指在水生环境中由光合作用过程产生的生物质。水生生物质可为藻类、挺水植物(emergent plant)、浮叶植物(floating-leaf plant)或沉水植物(submerged plant)。
纤维素材料可以按原样(as is)使用或进行预处理,使用本领域已知的常规方法,如本文所述。在一个优选的方面,预处理纤维素材料。
嵌合GH61多肽:术语“嵌合GH61多肽”意指多肽,其组成通过如下生成:将来自一个亲本GH61多肽的氨基酸序列用来自一个或多个(例如几个)其它亲本GH61多肽的同源位置的氨基酸序列替代。
本发明的GH61多肽具有SEQ ID NO:144的成熟多肽的纤维素分解增强活性的至少20%,例如至少40%,至少50%,至少60%,至少70%,至少80%,至少90%,至少95%,和至少100%。
所述具有纤维素分解增强活性的嵌合GH61多肽通过将达到同样程度的水解所需的纤维素分解酶的量减少优选至少1.01倍,例如至少1.05倍,至少1.10倍,至少1.25倍,至少1.5倍,至少2倍,至少3倍,至少4倍,至少5倍,至少10倍,或至少20倍,来增强由具有纤维素分解活性的酶催化的纤维素材料的水解。
编码序列:术语“编码序列”意指直接指定多肽的氨基酸序列的多核苷酸。编码序列的边界通常由开读框决定,所述开读框以起始密码子如ATG、GTG或TTG开始,并且以终止密码子如TAA、TAG或TGA结束。编码序列可以是基因组DNA、cDNA、合成DNA或其组合。
调控序列(control sequence):术语“调控序列”意指对编码本发明的嵌合GH61多肽的多核苷酸表达是必需的核酸序列。各个调控序列对于编码所述多肽的多核苷酸可以是天然的(即,来自同一基因)或外源的(即,来自不同基因),或各个调控序列对于彼此可以是天然的或外源的。这些调控序列包括但不限于前导序列、聚腺苷酸化序列、前肽序列、启动子、信号肽序列和转录终止子。最少的情况,调控序列包括启动子和转录和翻译的终止信号。调控序列可以和用于引入特异性限制位点的接头一起提供,所述特异性限制位点促进调控序列与编码多肽的多核苷酸编码区的连接。
内切葡聚糖酶:术语“内切葡聚糖酶”意指内切-1,4-(1,3;1,4)-β-D-葡聚糖4-葡聚糖水解酶(endo-1,4-β-D-glucan4-glucanohydrolase)(E.C.3.2.1.4),其催化纤维素、纤维素衍生物(例如羧甲基纤维素和羟乙基纤维素)、地衣淀粉(lichenin)中的1,4-β-D-糖苷键、混合的β-1,3葡聚糖例如谷类β-D-葡聚糖或木葡聚糖和含有纤维素组分的其它植物材料中的β-1,4键的内水解(endohydrolysis)。内切葡聚糖酶活性可通过测量底物粘度的减少或由还原糖测定法(Zhang等,2006,Biotechnology Advances24:452-481)确定的还原端增加来确定。就本发明而言,根据Ghose,1987,Pure and Appl.Chem.59:257-268的方法,在pH5,40℃使用羧甲基纤维素(CMC)作为底物来确定内切葡聚糖酶活性。
表达:术语“表达”包括涉及多肽产生的任何步骤,其包括但不限于转录、转录后修饰、翻译、翻译后修饰和分泌。
表达载体:术语“表达载体”意指线性的或环状的DNA分子,其包含编码多肽的多核苷酸,并且所述多核苷酸与提供用于其表达的调控序列可操作地连接。
家族61糖苷水解酶:术语“家族61糖苷水解酶”或“家族GH61”或“GH61”在本文中定义为根据Henrissat B.,1991,A classification of glycosyl hydrolasesbased on amino-acid sequence similarities,Biochem.J.280:309-316,及Henrissat B.和Bairoch A.,1996,Updating the sequence-based classification of glycosylhydrolases,Biochem.J.316:695-696属于糖苷水解酶家族61的多肽。该家族中的酶原先基于在一个家族成员测量到的非常弱的内切-1,4-β-D葡聚糖酶活性而归类为糖苷水解酶家族。这些酶的结构和作用模式是非经典的,且它们无法视为真正的(bona fide)糖苷酶。然而,基于当与纤维素酶或纤维素酶的混合物一同使用时,其增强木素纤维素分解的能力,它们被保留在CAZy分类中。
阿魏酸酯酶:术语“阿魏酸酯酶(feruloyl esterase)”意指4-羟基-3-甲氧基肉桂酰-糖水解酶(EC3.1.1.73),其催化4-羟基-3-甲氧基肉桂酰(阿魏酰)基团从酯化的糖(其在天然生物质底物中通常为阿拉伯糖)的水解,以产生阿魏酸(4-羟基-3-甲氧基肉桂酸)。阿魏酸酯酶也称作阿魏酸酯酶(ferulic acid esterase)、羟基肉桂酰基酯酶、FAE-III、肉桂酸酯水解酶、FAEA、cinnAE、FAE-I或FAE-II。就本发明而言,阿魏酸酯酶活性是使用50mM乙酸钠pH5.0中的0.5mM阿魏酸对硝基苯酯作为底物确定的。一个单位的阿魏酸酯酶等于能够在pH5,25℃每分钟释放1微摩尔对硝基苯酚阴离子的酶量。
片段:术语“片段”意指从成熟多肽的氨基和/或羧基末端缺失一个或多个(例如几个)氨基酸的多肽;其中所述片段具有生物活性。
半纤维素分解酶或半纤维素酶:术语“半纤维素分解酶”或“半纤维素酶”意指一种或多种(例如几种)水解半纤维素材料的酶。参见,例如Shallom,D.和Shoham,Y.Microbial hemicellulases.Current Opinion In Microbiology,2003,6(3):219-228)。半纤维素酶是植物生物质降解中的关键成分。半纤维素酶的实例包括但不限于乙酰甘露聚糖酯酶、乙酰木聚糖酯酶、阿拉伯聚糖酶、阿拉伯呋喃糖苷酶、香豆酸酯酶、阿魏酸酯酶、半乳糖苷酶、葡糖醛酸糖苷酶、葡糖醛酸酯酶、甘露聚糖酶、甘露糖苷酶、木聚糖酶和木糖苷酶。这些酶的底物,半纤维素,是支化和直链多糖的混杂集团,这些多糖通过氢键键合于植物细胞壁中的纤维素微纤维,将其交联为鲁棒(robust)的网络。半纤维素亦共价地附于木质素,与纤维素一同形成高度复杂的结构。半纤维素的可变的结构和组织形式需要许多酶的协同作用使其完全降解。半纤维素酶的催化模块为水解糖苷键的糖苷水解酶(GH),或水解乙酸或阿魏酸侧基的酯连接的糖酯酶(CE)。这些催化模块,基于其一级结构的同源性,可指派为GH和CE家族。一些家族,具有总体上类似的折叠,可进一步归类为宗族(clan),以字母标记(例如,GH-A)。最具信息性和最新的这些和其他糖活性酶的分类可在Carbohydrate-Active Enzymes(CAZy)数据库获得。半纤维素分解酶活性可根据Ghose和Bisaria,1987,Pure&Appl.Chem.59:1739-1752在合适的温度,例如50℃、55℃或60℃,和pH,例如5.0或5.5进行测量。
高严格条件:术语“高严格条件”意指对于长度至少100个核苷酸的长探针,在42℃,在5X SSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和50%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。使用2X SSC、0.2%SDS在65℃将载体材料最终洗涤三次,每次15分钟。
宿主细胞:术语“宿主细胞”意指任何细胞类型,所述细胞类型对于使用包含本发明多核苷酸的核酸构建体或表达载体的转化、转染、转导等是易感的(susceptible)。术语“宿主细胞”涵盖任何亲本细胞的后代,其由于在复制中发生的突变而不同于亲本细胞。
增加的热活性:术语“增加的热活性”意指与其亲本GH61多肽的热依存性活性概貌相比,嵌合GH61多肽的更高或更宽的温度依存性活性概貌。嵌合GH61多肽增加的热活性在一个或多个(例如几个)特定温度相对于其亲本GH61多肽增强对反应的催化。更具热活性的嵌合GH61多肽会导致对于催化反应所需时间的减少和/或所需酶浓度的减少。嵌合GH61多肽相对于其亲本GH61多肽的增加的热活性可在例如一个或多个(例如几个)温度的条件下进行评估。例如,所述一个或多个(例如几个)温度可为任何温度或25℃至95℃范围内的温度,例如25,30,35,40,45,50,55,60,65,70,75,80,85,90,或95℃(或在此之间),在3至9范围的一个或多个(例如几个)pH,例如3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0,7.5,8.0,8.5或9.0(或在此之间)。在一个方面,热活性的增加在选自25℃至95℃的温度的温度范围中确定。
相对于其亲本GH61多肽,嵌合GH61多肽增加的热活性可使用本领域中对于具有纤维素分解增强活性的GH61多肽任何已知的酶测定来确定。参见,例如WO 2005/074647,WO 2008/148131WO 2005/074656,WO2010/065830,WO 2007/089290,WO 2009/085935,WO 2009/085859,WO2009/085864,WO 2009/085868和WO 2008/151043,其通过提述并入本文。或者,相对于其亲本GH61多肽,嵌合GH61多肽增加的热活性可使用任何对于嵌合GH61多肽的实用测定法来确定,其中将嵌合GH61多肽的性能与亲本GH61多肽相比较。举例而言,可使用实施例8中所述的实用测定法。
可使用一种或多种(例如几种)亲本GH61多肽确定嵌合GH61多肽的热活性的增加,其中将所述亲本GH61多肽的片段组合以产生所述嵌合GH61多肽。
具有增加的热活性的嵌合GH61多肽可或可不显示相对于其亲本GH61多肽增加的热稳定性。例如,嵌合GH61多肽可具有相对于其亲本GH61多肽增加的热活性,但并不具有增加的热稳定性。
增加的热稳定性:术语“增加的热稳定性”意指相对于其亲本GH61多肽,嵌合GH61多肽在某温度一定时间的温育之后更高的纤维素分解增强活性的保留。嵌合GH61多肽相对于其亲本GH61多肽增加的热稳定性可例如在一个或多个(例如几个)温度的条件下评估。例如,所述一个或多个(例如几个)温度可为任何温度或45℃至95℃范围的温度,例如45,50,55,60,65,70,75,80,85,或95℃(或在此之间),在3至9的范围的一个或多个(例如几个)pH,例如3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0,7.5,8.0,8.5或9.0(或在此之间),进行合适时间的温育,例如1分钟,5分钟,10分钟,15分钟,30分钟,45分钟,或60分钟,使得所述嵌合GH61多肽保留剩余活性。然而,亦可使用更长的温育时间。
嵌合GH61多肽相对于其亲本GH61多肽增加的热稳定性可通过差示扫描量热法(DSC)使用本领域中的标准方法(参见,例如Sturtevant,1987,AnnualReview of Physical Chemistry38:463-488;本文中的实施例9)来确定。嵌合GH61多肽相对于其亲本GH61多肽增加的热稳定性可使用任何本领域中已知的对于具有纤维素分解增强活性的GH61多肽的酶测定法来确定。参见例如WO 2005/074647,WO 2008/148131,WO 2005/074656,WO 2010/065830,WO 2007/089290,WO 2009/085935,WO 2009/085859,WO 2009/085864,WO 2009/085868和WO 2008/151043,其通过提述并入本文。
可使用一种或多种(例如几种)亲本GH61多肽确定嵌合GH61多肽的热稳定性的增加,其中将所述亲本GH61多肽的片段组合以产生所述嵌合GH61多肽。
具有增加的热稳定性的嵌合GH61多肽可或可不显示相对于亲本GH61多肽增加的热活性。例如,嵌合GH61多肽可具有相对于其亲本GH61多肽增加的热稳定性,但不具有增加的热活性。
分离的:术语“分离的”意指以不在自然界出现的形式或环境存在的物质。分离的物质的非限定性实例包括(1)任何非天然存在的物质,(2)任何至少部分地从一种或多种或全部与其天然结合的天然存在的成分移出的物质,包括但不限于任何酶、变体、核酸、蛋白质、肽或辅因子;(3)任何相对于见于自然界的该物质经人工修饰的物质;或(4)任何通过相对于与其自然结合的其他组分增加该物质的量(例如,编码该物质的基因的多拷贝;比与编码该物质的基因自然结合的启动子更强的启动子的使用)而修饰的物质。本发明的嵌合GH61多肽可以以发酵液产物的形式用于工业应用,即所述嵌合GH61多肽是在工业应用(例如乙醇产生)中作为产物使用的发酵液的组分。所述发酵液产物除了所述嵌合GH61多肽之外,还会包含其它用于发酵工艺的成分,如例如细胞(包括含有编码本发明的嵌合GH61多肽的基因的宿主细胞,其用于产生感兴趣的多肽),细胞碎片,生物质,发酵培养基和/或发酵产物。可任选地对发酵液进行一个或多个纯化(包括过滤)步骤以去除或减少一种或多种发酵工艺的组分。相应地,分离的物质可在此种发酵液产物中存在。
低严格条件:术语“低严格条件”意指对于长度至少100个核苷酸的长探针,在42℃,在5X SSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和25%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。使用2X SSC、0.2%SDS在50℃将载体材料最终洗涤三次,每次15分钟。
成熟多肽:术语“成熟多肽”意指以其在翻译和任何翻译后修饰之后的最终形式存在的多肽,所述修饰例如N-末端加工、C-末端截短、糖基化、磷酸化等。在本领域中已知宿主细胞可产生由相同多核苷酸表达的两种或更多种不同成熟多肽(即具有不同的C端和/或N端氨基酸)的混合物。
成熟多肽编码序列:术语“成熟多肽编码序列”意指编码具有生物活性的成熟多肽的多核苷酸。
中等严格条件:术语“中等严格条件”意指对于长度至少100个核苷酸的长探针,在42℃,在5X SSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和35%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。使用2X SSC、0.2%SDS在55℃将载体材料最终洗涤三次,每次15分钟。
中等-高严格条件:术语“中等-高严格条件”意指对于长度至少100个核苷酸的长探针,在42℃,在5X SSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和35%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。使用2X SSC、0.2%SDS在60℃将载体材料最终洗涤三次,每次15分钟。
核酸构建体:术语“核酸构建体”意指单链或双链的核酸分子,其分离自天然存在的基因,或其经修饰以本来不存在于(not otherwise exist)自然界中的方式含有核酸的区段,或其为合成的,其包含一个或多个调控序列。
可操作地连接:术语“可操作地连接”意指这样的构型,其中将调控序列置于相对于多核苷酸的编码序列的适当位置,使得调控序列指导编码序列的表达。
亲本或亲本GH61多肽:术语“亲本”或“亲本GH61多肽”意指两种或多种(例如几种)GH61多肽之一,其中将这些多肽的片段组合以产生本发明的嵌合GH61多肽。所述亲本可为天然存在的(野生型)多肽和/或其变体。术语“亲本”或“亲本GH61多肽”亦可以以复数形式使用。
亲本具有纤维素分解增强活性的GH61多肽可选自下组:SEQ ID NO:66,SEQ ID NO:68,SEQ ID NO:70,SEQ ID NO:72,SEQ ID NO:74,SEQ ID NO:76,SEQ ID NO:78,SEQ ID NO:80,SEQ ID NO:82,SEQ ID NO:84,SEQID NO:86,SEQ ID NO:88,SEQ ID NO:90,SEQ ID NO:92,SEQ ID NO:94,SEQ ID NO:96,SEQ ID NO:98,SEQ ID NO:100,SEQ ID NO:102,SEQ IDNO:104,SEQ ID NO:106,SEQ ID NO:108,SEQ ID NO:110,SEQ ID NO:112,SEQ ID NO:114,SEQ ID NO:116,SEQ ID NO:118,SEQ ID NO:120,SEQ ID NO:122,SEQ ID NO:124,SEQ ID NO:126,SEQ ID NO:128,SEQID NO:144,SEQ ID NO:146,SEQ ID NO:148,SEQ ID NO:150,SEQ ID NO:152,SEQ ID NO:154,SEQ ID NO:156,SEQ ID NO:158,SEQ ID NO:160,SEQ ID NO:162,SEQ ID NO:164,SEQ ID NO:166,SEQ ID NO:168,和SEQ ID NO:170。任何具有纤维素分解增强活性的GH61多肽可依照本文中的公开用于本发明中。
具有纤维素分解增强活性的多肽:术语“具有纤维素分解增强的多肽”意指催化具有纤维素分解活性的酶对纤维素材料的水解的增强的GH61多肽。就本发明而言,通过测量来自由纤维素分解酶在下述条件下水解纤维素材料的还原糖增加或纤维二糖与葡萄糖的总量增加来确定纤维素分解增强活性:1-50mg总蛋白/g PCS中纤维素,其中总蛋白包含50-99.5%w/w的纤维素分解酶蛋白,及0.5-50%w/w的具有纤维素分解增强活性的GH61多肽的蛋白质,在合适的温度,例如50℃、55℃或60℃和pH,例如5.0或5.5历时1-7天,与用等量的总蛋白加载量而无纤维素分解增强活性(1-50mg纤维素分解蛋白/g PCS中纤维素)所进行的对照水解相比。在一个优选的方面,使用在总蛋白重量的2-3%的米曲霉β-葡糖苷酶(根据WO 02/095014在米曲霉中重组产生)或者总蛋白质量的2-3%的烟曲霉β-葡糖苷酶(如WO 2002/095014所述在米曲霉中重组产生)的纤维素酶蛋白加载量存在下的CELLUCLAST
Figure BDA00003531984600141
1.5L(Novozymes A/S,
Figure BDA00003531984600142
Denmark)的混合物作为纤维素分解活性的来源。
具有纤维素分解增强活性的GH61多肽通过降低达到相同水解水平所需的纤维素分解酶的量而增强由具有纤维素分解活性的酶催化的纤维素材料的水解,优选降低至少1.01倍,例如至少1.05倍,至少1.10倍,至少1.25倍,至少1.5倍,至少2倍,至少3倍,至少4倍,至少5倍,至少10倍,或至少20倍。
预处理的玉米秸秆:术语“PCS”或“预处理的玉米秸秆”意指通过用热和稀硫酸处理、碱预处理或中性预处理的源自玉米秸秆的纤维素材料。
序列同一性:参数“序列同一性”描述两个氨基酸序列之间或两个核苷酸序列之间的相关性。
就本发明而言,两个氨基酸序列之间的序列同一性程度使用如EMBOSS软件包(EMBOSS:The European Molecular Biology Open Software Suite,Rice等,2000,Trends Genet.16:276-277),优选3.0.0、5.0.0版或更高版本的Needle程序中所执行的Needleman-Wunsch算法(Needleman和Wunsch,1970,J.Mol.Biol.48:443-453)来测定。使用的参数为缺口罚分(gap penalty)10,缺口延伸罚分(gap extension penalty)0.5和EBLOSUM62(BLOSUM62的EMBOSS版)取代矩阵。使用Needle标记为“最高同一性(longest identity)”的输出结果(使用-nobrief选项获得)作为同一性百分比,并计算如下:
(同样的残基×100)/(比对长度-比对中缺口的总数)
就本发明而言,两个核苷酸序列之间的序列同一性程度使用如EMBOSS软件包(EMBOSS:The European Molecular Biology Open Software Suite,Rice等,2000,见上文),优选3.0.0、5.0.0版或更高版本的Needle程序中所执行的Needleman-Wunsch算法(Needleman和Wunsch,1970,见上文)来测定。使用的参数为缺口罚分10,缺口延伸罚分0.5和EDNAFULL(NCBI NUC4.4的EMBOSS版)取代矩阵。使用Needle标记为“最高同一性”的输出结果(使用-nobrief选项获得)作为同一性百分比,并计算如下:
(同样的脱氧核糖核苷酸×100)/(比对长度-比对中缺口的总数)
亚序列:术语“亚序列(subsequence)”意指从成熟多肽编码序列的5’和/或3’端缺失一个或多个(例如几个)核苷酸的多核苷酸;其中所述亚序列编码具有生物活性的片段。
变体:术语“变体”意指在一个或多个(例如几个)位置包含改变,即取代、插入和/或缺失的具有生物活性的多肽。取代意指将占据某位置的氨基酸用不同的氨基酸替代;缺失意指去除占据某位置的氨基酸;而插入意指在邻接并紧接着占据某位置的氨基酸之后添加氨基酸。
非常高严格条件:术语“非常高严格条件”意指对于长度至少100个核苷酸的长探针,在42℃,在5X SSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和50%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。使用2X SSC、0.2%SDS在70℃将载体材料最终洗涤三次,每次15分钟。
非常低严格条件:术语“非常低严格条件”意指对于长度至少100个核苷酸的长探针,在42℃,在5X SSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和25%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。使用2X SSC、0.2%SDS在45℃将载体材料最终洗涤三次,每次15分钟。
含木聚糖材料:术语“含木聚糖材料”意指任何包含含有β-(1-4)连接的木糖残基骨架的植物细胞壁多糖的材料。陆生植物的木聚糖是具有β-(1-4)-吡喃木糖骨架的杂聚物,其由短的糖链分支。它们包含D-葡糖醛酸或其4-O-甲基醚,L-阿拉伯糖和/或多种包含D-木糖、L-阿拉伯糖、D-或L-半乳糖和D-葡萄糖的寡糖。木聚糖类型的多糖可分为均木聚糖(homoxylan)和杂木聚糖(heteroxylan),后者包括葡糖醛酸木聚糖,(阿拉伯)葡糖醛酸木聚糖,(葡糖醛酸)阿拉伯木聚糖,阿拉伯木聚糖和复合杂木聚糖。参见,例如Ebringerova等,2005,Adv.Polym.Sci.186:1-67。
在本发明的方法中,可使用任何含有木聚糖的材料。在一个优选的方面,所述含木聚糖材料是木素纤维素。
木聚糖降解活性或木聚糖分解活性:术语“木聚糖降解活性”或“木聚糖分解活性”意指水解含木聚糖材料的生物学活性。两种测定木聚糖分解活性的基础方法包括:(1)测定总木聚糖分解活性,和(2)测定单独的木聚糖分解活性(例如内切木聚糖酶、β-木糖苷酶、阿拉伯呋喃糖苷酶、α-葡糖醛酸糖苷酶、乙酰木聚糖酯酶、阿魏酸酯酶和α-葡糖醛酸酯酶(α-glucuronyl esterase))。最近在木聚糖分解酶测定法的进展总结于几个公开文献中,包括Biely和Puchard,Recent progress in the assays of xylanolytic enzymes,2006,Journal ofthe Science of Food和Agriculture86(11):1636-1647;Spanikova和Biely,2006,Glucuronoyl esterase-Novel carbohydrate esterase produced by Schizophyllumcommune,FEBS Letters580(19):4597-4601;Herrmann,Vrsanska,Jurickova,Hirsch,Biely和Kubicek,1997,The beta-D-xylosidase of Trichoderma reesei is amultifunctional beta-D-xylan xylohydrolase,Biochemical Journal321:375-381。
总木聚糖降解活性可通过确定从多种类型的木聚糖形成的还原糖来测量,所述木聚糖包括例如燕麦小麦(oat spelt)、山毛榉木(beechwood)和落叶松木(larchwood)木聚糖,或者可通过光度法确定从多种共价染色的木聚糖释放出的染色的木聚糖片段来测量。最常见的总木聚糖分解活性测定法基于从多聚的4-O-甲基葡糖醛酸木聚糖产生还原糖,如Bailey,Biely,Poutanen,1992,Interlaboratory testing of methods for assay of xylanase activity,Journal ofBiotechnology23(3):257-270中所述。木聚糖酶活性亦可用0.2%AZCL-阿拉伯木聚糖作为底物在37℃在0.01%TRITON
Figure BDA00003531984600171
X-100(4-(1,1,3,3-四甲基丁基)苯基-聚乙二醇)和200mM磷酸钠缓冲液pH6中来确定。一个单位的木聚糖酶活性定义为在37℃,pH6在200mM磷酸钠pH6缓冲液中从作为底物的0.2%AZCL-阿拉伯木聚糖每分钟产生1.0微摩尔天青精。
就本发明而言,木聚糖降解活性是通过测量由木聚糖降解酶在下述通常条件下造成的桦木木聚糖(Sigma Chemical Co.,Inc.,St.Louis,MO,USA)水解的增加来确定的:1ml反应液,5mg/ml底物(总固形物),5mg木聚糖分解蛋白质/g底物,50mM乙酸钠,pH5,50℃,24小时,如Lever,1972,A new reactionfor colorimetric determination of carbohydrates,Anal.Biochem47:273-279所述使用对羟基苯甲酸酰肼(PHBAH)测定法进行糖分析。
木聚糖酶:术语“木聚糖酶”意指1,4-β-D-木聚糖-木糖水解酶(1,4-β-D-xylan-xylohydrolase)(E.C.3.2.1.8),其催化木聚糖中1,4-β-D-木糖苷键的内水解。就本发明而言,木聚糖酶活性是使用0.2%AZCL-阿拉伯木聚糖作为底物确定的。一个单位的木聚糖酶活性定义为在37℃,pH6在200mM磷酸钠pH6缓冲液中从作为底物的0.2%AZCL-阿拉伯木聚糖每分钟产生1.0微摩尔天青精。
发明详述
本发明涉及分离的具有纤维素分解增强活性的嵌合GH61多肽,其包含:
(a)第一GH61多肽片段,其位于所述嵌合GH61多肽的N端,选自下组:(i)多肽片段,其与SEQ ID NO:78的氨基酸22至84具有至少60%序列同一性;(ii)多肽片段,其由多核苷酸编码,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:77的核苷酸64至301或其cDNA序列,或它们的全长互补链;(iii)多肽片段,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:77的核苷酸64至301或其cDNA序列具有至少60%序列同一性;和(iv)多肽片段,其包含或组成为SEQ ID NO:78的氨基酸22至84;
(b)第二GH61多肽片段,其位于所述第一多肽片段的C端,选自下组:(i)多肽片段,其与SEQ ID NO:94的氨基酸85至207具有至少60%序列同一性;(ii)多肽片段,其由多核苷酸编码,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:93的核苷酸306至730或其cDNA序列,或它们的全长互补链;(iii)多肽片段,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:93的核苷酸306至730或其cDNA序列具有至少60%序列同一性;和(iv)多肽片段,其包含或组成为SEQ ID NO:94的氨基酸85至207;和
(c)第三GH61多肽片段,其位于所述第二多肽片段的C端,选自下组:(i)多肽片段,其与SEQ ID NO:78的氨基酸208至249具有至少60%序列同一性;(ii)多肽片段,其由多核苷酸编码,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:77的核苷酸671至796或其cDNA序列,或它们的全长互补链;(iii)多肽片段,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:77的核苷酸671至796或其cDNA序列具有至少60%序列同一性;和(iv)多肽片段,其包含或组成为SEQ ID NO:78的氨基酸208至249。
在第一个方面,在嵌合GH61多肽的N端的第一GH61多肽片段与SEQID NO:78的氨基酸22至84具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。在一个实施方案中,所述第一多肽片段与SEQ ID NO:78的氨基酸22至84相差多至10个氨基酸,例如1,2,3,4,5,6,7,8,9,或10个氨基酸。
在另一个实施方案中,所述第一GH61多肽片段为至少30个氨基酸,例如至少35,至少40,至少45,至少50,至少55,至少60,至少65,至少70,至少75,至少80,至少85,至少90,或至少95个氨基酸。在另一个实施方案中,所述第一GH61多肽片段为63个氨基酸。
在另一个实施方案中,所述第一GH61多肽片段包含或组成为SEQ ID NO:78的氨基酸22至84或其等位变体;或为它们的片段。在另一个方面,所述第一GH61多肽片段包含或组成为SEQ ID NO:78的氨基酸22至84。
在另一个第一个方面,在所述第一多肽片段C端的第二GH61多肽片段与SEQ ID NO:94的氨基酸85至207具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。在一个实施方案中,所述第二多肽片段与SEQ ID NO:94的氨基酸85至207相差多至10个氨基酸,例如1,2,3,4,5,6,7,8,9,或10个氨基酸。
在另一个实施方案中,所述第二GH61多肽片段为至少60个氨基酸,例如至少65,至少70,至少75,至少85,至少90,至少95,至少100,至少105,至少110,至少115,至少120,至少125,至少130,至少135,至少140,至少145,至少150,至少155,至少160,至少165,至少170,至少175,或至少180个氨基酸。在另一个实施方案中,所述第二GH61多肽片段为123个氨基酸。
在另一个实施方案中,所述第二GH61多肽片段包含或组成为SEQ ID NO:94的氨基酸85至207或其等位变体;或为它们的片段。在另一个实施方案中,所述第二GH61多肽片段包含或组成为SEQ ID NO:94的氨基酸85至207。
在另一个第一个方面,在所述第二多肽片段C端的第三GH61多肽片段与SEQ ID NO:78的氨基酸208至249具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。在一个实施方案中,所述第三多肽片段与SEQ ID NO:78的氨基酸208至249相差多至10个氨基酸,例如1,2,3,4,5,6,7,8,9,或10个氨基酸。
在另一个实施方案中,所述第二GH61多肽片段为至少20个氨基酸,例如至少25,至少30,至少35,至少40,至少45,至少50,至少55或至少60个氨基酸.在另一个实施方案中,所述第二GH61多肽片段为42个氨基酸。
在另一个实施方案中,所述第三GH61多肽片段包含或组成为SEQ ID NO:78的氨基酸208至249或其等位变体;或为它们的片段。在另一个实施方案中,所述第三GH61多肽片段包含或组成为SEQ ID NO:78的氨基酸208至249。
在第二个方面,所述第一GH61多肽片段由多核苷酸编码,所述多核苷酸在非常低严格条件,低严格条件,中等严格条件,中等-高严格条件,高严格条件,或非常高严格条件下与以下杂交:(i)SEQ ID NO:77的核苷酸64至301,(ii)SEQ ID NO:77的核苷酸64至301的cDNA序列,或(iii)(i)或(ii)的全长互补链(J.Sambrook,E.F.Fritsch,和T.Maniatis,1989,Molecular Cloning,A Laboratory Manual,第2版,Cold Spring Harbor,New York)。
在另一个第二个方面,所述第二GH61多肽片段由多核苷酸编码,所述多核苷酸在非常低严格条件,低严格条件,中等严格条件,中等-高严格条件,高严格条件,或非常高严格条件下与以下杂交:(i)SEQ ID NO:93的核苷酸306至730,(ii)SEQ ID NO:93的核苷酸306至730的cDNA序列,或(iii)的全长互补链(i)或(ii)(Sambrook et al.,1989,supra)。
在另一个第二个方面,所述第三GH61多肽片段由多核苷酸编码,所述多核苷酸在非常低严格条件,低严格条件,中等严格条件,中等-高严格条件,高严格条件,或非常高严格条件下与以下杂交:(i)SEQ ID NO:77的核苷酸671至796,(ii)SEQ ID NO:77的核苷酸671至796的cDNA序列,或(iii)(i)或(ii)的全长互补链(Sambrook等,1989,见上文)。
SEQ ID NO:77的核苷酸64至301,SEQ ID NO:93的核苷酸306至730,或SEQ ID NO:77的核苷酸671至796,或其亚序列,以及SEQ ID NO:78的氨基酸22至84,SEQ ID NO:94的氨基酸85至207,或SEQ ID NO:78的氨基酸208至249,或其片段,可用于设计核酸探针,以根据本领域内公知的方法从不同属或种的菌株鉴定和克隆编码具有纤维素分解增强活性的多肽的DNA。具体而言,根据标准的Southern印迹方法,可将这些探针用于与感兴趣的属或种的基因组DNA或cDNA杂交,以鉴定和从其中分离相应的基因。这些探针可明显短于完整序列,但长度上应为至少15,例如至少25,至少35,或至少70个核苷酸。优选地,所述核酸探针是至少100个核苷酸的长度,例如,至少200个核苷酸,至少300个核苷酸,至少400个核苷酸,至少500个核苷酸,至少600个核苷酸,至少700个核苷酸,至少800个核苷酸,或至少900个核苷酸的长度。DNA和RNA探针二者均可使用。通常将探针标记以探测相应的基因(例如,用32P、3H、35S、生物素或抗生物素蛋白(avidin)标记)。这些探针涵盖于本发明中。
可从由这些其它菌株制备的基因组DNA或cDNA文库中筛选DNA,所述DNA与上述探针杂交并且编码具有纤维素分解增强活性的多肽。可以通过琼脂糖或聚丙烯酰胺凝胶电泳,或通过其它分离技术分离来自这些其它菌株的基因组或其它DNA。可以将来自文库的DNA或分离的DNA转移至硝化纤维素(nitrocellulose)或其它合适的载体材料并且固定于其上。为了鉴定与克隆或DNA,将所述载体材料优选用在Sounthern印迹中。
就本发明而言,杂交表示多核苷酸在非常低至非常高的严格条件下与标记的核酸探针杂交,所述核酸探针对应于下述:SEQ ID NO:77的核苷酸64至301或其cDNA序列;SEQ ID NO:93的核苷酸306至730或其cDNA序列;或SEQ ID NO:77的核苷酸671至796或其cDNA序列;或其全长互补链;或它们的亚序列。可使用例如X射线片(X-ray film)检测在这些条件下与核酸探针杂交的分子。
在一个实施方案中,所述核酸探针是SEQ ID NO:77的核苷酸64至301或其cDNA序列。在另一个实施方案中,所述核酸探针是SEQ ID NO:93的核苷酸306至730或其cDNA序列。在另一个实施方案中,所述核酸探针是SEQ ID NO:77的核苷酸671至796或其cDNA序列。在另一个实施方案中,所述核酸探针是多核苷酸,其编码SEQ ID NO:78的氨基酸22至84或其片段。在另一个实施方案中,所述核酸探针是多核苷酸,其编码SEQ ID NO:94的氨基酸85至207或其片段。在另一个实施方案中,所述核酸探针是多核苷酸,其编码SEQ ID NO:78的氨基酸208至249或其片段。
对于长度大约15个核苷酸至大约70个核苷酸的短探针,将严格条件定义为在比使用根据Bolton和McCarthy的计算法(1962,Proc.Natl.Acad.Sci.USA48:1390)计算出的Tm低大约5℃至大约10℃,在0.9M NaCl,0.09MTris-HCl pH7.6,6mM EDTA,0.5%NP-40,1×Denhardt溶液,1mM焦磷酸钠(sodium pyrophosphate),1mM磷酸二氢钠(sodium monobasic phosphate),0.1mM ATP和0.2mg每ml的酵母RNA中,根据标准的Southern印迹步骤进行预杂交和杂交最佳12至24小时。将所述载体材料在6×SSC加0.1%SDS中最终洗涤一次15分钟,并用6×SSC在比计算的Tm低5℃至10℃的温度洗涤两次,每次15分钟。
在第三个方面,所述第一GH61多肽片段由多核苷酸编码,所述多核苷酸与SEQ ID NO:77的核苷酸64至301或其cDNA序列具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。
在另一个第三个方面,所述第二GH61多肽片段由多核苷酸编码,所述多核苷酸与SEQ ID NO:93的核苷酸306至730或其cDNA序列具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。
在另一个第三个方面,所述第三GH61多肽片段由多核苷酸编码,所述多核苷酸与SEQ ID NO:77的核苷酸671至796或其cDNA序列具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。
在一个实施方案中,所述具有纤维素分解增强活性的嵌合GH61多肽包含或组成为SEQ ID NO:144或其成熟多肽。在另一个实施方案中,所述具有纤维素分解增强活性的嵌合GH61多肽包含或组成为SEQ ID NO:144的氨基酸22至249。
在每个上述方面,所述成熟嵌合GH61多肽可进一步包含信号肽。在一个实施方案中,所述信号肽是SEQ ID NO:78的信号肽。在另一个实施方案中,所述信号肽是SEQ ID NO:78的氨基酸1至21。
在另一个方面,本发明的嵌合GH61多肽与其亲本GH61多肽相比具有增加的热活性。在另一个方面,本发明的嵌合GH61多肽与其亲本GH61多肽相比具有增加的热稳定性。在另一个方面,本发明的嵌合GH61多肽与其亲本GH61多肽相比具有增加的热活性和增加的热稳定性。
在一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.0和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.0和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.5和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.5和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.5和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.5和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.5和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.5和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.5和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.5和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.5和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.5和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.5和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH3.5和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.0和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.0和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.5和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.5和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.5和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.5和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.5和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.5和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.5和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.5和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.5和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.5和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.5和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH4.5和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.0和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.0和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.5和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.5和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.5和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.5和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.5和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.5和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.5和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.5和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.5和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.5和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.5和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH5.5和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.0和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.0和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.5和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.5和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.5和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.5和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.5和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.5和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.5和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.5和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.5和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.5和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.5和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH6.5和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.0和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.0和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.5和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.5和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.5和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.5和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.5和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.5和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.5和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.5和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.5和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.5和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.5和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH7.5和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.0和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.0和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.5和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.5和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.5和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.5和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.5和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.5和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.5和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.5和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.5和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.5和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.5和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH8.5和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH9.0和40℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH9.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH9.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH9.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH9.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH9.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH9.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH9.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH9.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH9.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH9.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热活性在pH9.0和95℃确定。
在一个方面,所述嵌合GH61多肽的热活性是其亲本GH61多肽的至少1.01倍,例如至少1.025倍,至少1.05倍,至少1.1倍,至少1.5倍,至少1.8倍,至少2倍,至少5倍,至少10倍,至少15倍,至少20倍,至少25倍,和至少50倍。
在一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.0和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.5和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.5和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.5和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.5和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.5和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.5和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.5和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.5和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.5和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.5和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH3.5和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.0和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.5和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.5和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.5和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.5和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.5和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.5和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.5和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.5和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.5和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.5和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH4.5和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.0和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.5和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.5和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.5和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.5和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.5和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.5和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.5和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.5和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.5和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.5和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH5.5和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.0和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.5和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.5和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.5和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.5和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.5和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.5和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.5和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.5和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.5和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.5和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH6.5和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.0和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.5和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.5和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.5和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.5和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.5和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.5和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.5和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.5和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.5和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.5和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH7.5和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.0和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.5和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.5和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.5和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.5和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.5和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.5和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.5和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.5和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.5和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.5和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH8.5和95℃确定。
在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH9.0和45℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH9.0和50℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH9.0和55℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH9.0和60℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH9.0和65℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH9.0和70℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH9.0和75℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH9.0和80℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH9.0和85℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH9.0和90℃确定。在另一个方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性在pH9.0和95℃确定。
在每个上述方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性通过将所述嵌合GH61多肽和所述亲本GH61多肽温育1分钟来确定。在每个上述方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性通过将所述嵌合GH61多肽和所述亲本GH61多肽温育5分钟来确定。在每个上述方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性通过将所述嵌合GH61多肽和所述亲本GH61多肽温育10分钟来确定。在每个上述方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性通过将所述嵌合GH61多肽和所述亲本GH61多肽温育15分钟来确定。在每个上述方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性通过将所述嵌合GH61多肽和所述亲本GH61多肽温育30分钟来确定。在每个上述方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性通过将所述嵌合GH61多肽和所述亲本GH61多肽温育45分钟来确定。在每个上述方面,所述嵌合GH61多肽相对于其亲本GH61多肽的热稳定性通过将所述嵌合GH61多肽和所述亲本GH61多肽温育60分钟来确定。
在一个方面,所述具有纤维素分解增强活性的嵌合GH61多肽的热稳定性是其亲本GH61多肽的至少1.01倍,例如至少1.025倍.至少1.05倍,至少1.1倍,至少1.5倍,至少1.8倍,至少2倍,至少5倍,至少10倍,至少15倍,至少20倍,至少25倍,和至少50倍。
多核苷酸
本发明涉及编码具有纤维素分解增强活性的嵌合GH61多肽的分离的多核苷酸,其包含:
(a)第一多核苷酸,其编码位于所述嵌合GH61多肽的N端的第一GH61多肽片段,选自下组:(i)多核苷酸,其编码多肽片段,所述多肽片段与SEQ IDNO:78的氨基酸22至84具有至少60%序列同一性;(ii)多核苷酸,其编码多肽片段,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:77的核苷酸64至301或其cDNA序列,或它们的全长互补链;(iii)多核苷酸,其编码多肽片段,所述多核苷酸与SEQ ID NO:77的核苷酸64至301或其cDNA序列具有至少60%序列同一性;和(iv)多核苷酸,其编码多肽片段,所述多肽片段包含或组成为SEQ ID NO:78的氨基酸22至84;
(b)第二多核苷酸,其编码位于所述第一多肽片段的C端的第二GH61多肽片段,选自下组:(i)多核苷酸,其编码多肽片段,所述多肽片段与SEQ IDNO:94的氨基酸85至207具有至少60%序列同一性;(ii)多核苷酸,其编码多肽片段,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:93的核苷酸306至730或其cDNA序列,或它们的全长互补链;(iii)多核苷酸,其编码多肽片段,所述多核苷酸与SEQ ID NO:93的核苷酸306至730或其cDNA序列具有至少60%序列同一性;和(iv)多核苷酸,其编码多肽片段,所述多肽片段包含或组成为SEQ ID NO:94的氨基酸85至207;和
(c)第三多核苷酸,其编码位于所述第二多肽片段的C端的第三GH61多肽片段,选自下组:(i)多核苷酸,其编码多肽片段,所述多肽片段与SEQ IDNO:78的氨基酸208至249具有至少60%序列同一性;(ii)多核苷酸,其编码多肽片段,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:77的核苷酸671至796或其cDNA序列,或它们的全长互补链;(iii)多核苷酸,其编码多肽片段,所述多核苷酸与SEQ ID NO:77的核苷酸671至796或其cDNA序列具有至少60%序列同一性;和(iv)多核苷酸,其编码多肽片段,所述多肽片段包含或组成为SEQ ID NO:78的氨基酸208至249。
在第一个方面,所述第一多核苷酸编码第一GH61多肽片段,所述多肽片段与SEQ ID NO:78的氨基酸22至84具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。
在另一个第一个方面,所述第二多核苷酸编码位于所述第一多肽片段的C端的第二GH61多肽片段,所述多肽片段与SEQ ID NO:94的氨基酸85至207具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。
在另一个第一个方面,所述第三多核苷酸编码第三GH61多肽片段,所述多肽片段与SEQ ID NO:78的氨基酸208至249具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。
在第二个方面,所述第一多核苷酸,其编码所述第一GH61多肽片段,在非常低严格条件,低严格条件,中等严格条件,中等-高严格条件,高严格条件,或非常高严格条件下与以下杂交:(i)SEQ ID NO:77的核苷酸64至301,(ii)SEQ ID NO:77的核苷酸64至301的cDNA序列,或(iii)(i)或(ii)的全长互补链(Sambrook等,1989,见上文)。
在另一个第二个方面,所述第二多核苷酸,其编码所述第二GH61多肽片段,在非常低严格条件,低严格条件,中等严格条件,中等-高严格条件,高严格条件,或非常高严格条件下与以下杂交:(i)SEQ ID NO:93的核苷酸306至730,(ii)SEQ ID NO:93的核苷酸306至730的cDNA序列,或(iii)(i)或(ii)的全长互补链(Sambrook等,1989,见上文)。
在另一个第二个方面,所述第三多核苷酸,其编码所述第三GH61多肽片段,在非常低严格条件,低严格条件,中等严格条件,中等-高严格条件,高严格条件,或非常高严格条件下与以下杂交:(i)SEQ ID NO:77的核苷酸671至796,(ii)SEQ ID NO:77的核苷酸671至796的cDNA序列,或(iii)(i)或(ii)的全长互补链(Sambrook等,1989,见上文)。
在第三个方面,所述第一多核苷酸,其编码所述第一GH61多肽片段,与SEQ ID NO:77的核苷酸64至301或其cDNA序列具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。在一个实施方案中,所述第一多核苷酸包含或组成为SEQ ID NO:77的核苷酸64至301或其cDNA序列。
在另一个第三个方面,所述第二多核苷酸,其编码所述第二GH61多肽片段,与SEQ ID NO:93的核苷酸306至730或其cDNA序列具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。在一个实施方案中,所述第二多核苷酸包含或组成为SEQ ID NO:93的核苷酸306至730或其cDNA序列。
在另一个第三个方面,所述第三多核苷酸,其编码所述第三GH61多肽片段,与SEQ ID NO:77的核苷酸671至796或其cDNA序列具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。在一个实施方案中,所述第三多核苷酸包含或组成为SEQ ID NO:77的核苷酸671至796或其cDNA序列。
在一个实施方案中,所述具有纤维素分解增强活性的嵌合GH61多肽由多核苷酸编码,所述多核苷酸包含或组成为SEQ ID NO:143或其成熟多肽编码序列;或其cDNA。在另一个实施方案中,所述具有纤维素分解增强活性的嵌合GH61多肽由多核苷酸编码,所述多核苷酸包含或组成为SEQ ID NO:143的核苷酸64至852。在另一个实施方案中,所述具有纤维素分解增强活性的嵌合GH61多肽包含或组成为SEQ ID NO:144的成熟多肽。在另一个实施方案中,所述具有纤维素分解增强活性的嵌合GH61多肽包含或组成为SEQID NO:144的氨基酸22至249。
在每个上述实施方案中,成熟嵌合GH61多肽编码序列可进一步包含信号肽编码序列。在一个实施方案中,所述信号肽是SEQ ID NO:78的信号肽。在另一个实施方案中,所述信号肽是SEQ ID NO:78的氨基酸1至21。在另一个实施方案中,所述信号肽编码序列是SEQ ID NO:77的信号肽编码序列。在另一个实施方案中,所述信号肽编码序列是SEQ ID NO:77的核苷酸1至63。
核酸构建体
本发明还涉及包含编码本发明的嵌合GH61多肽的多核苷酸的核酸构建体,所述多核苷酸与一个或多个调控序列可操作地连接,所述调控序列在合适的宿主细胞中在与该调控序列相容的条件下指导编码序列的表达。
可以用许多方式操作所述多核苷酸以提供嵌合GH61多肽的表达。依赖于表达载体,在将多核苷酸插入载体之前对其进行操作可能是理想的或必需的。使用重组DNA方法修饰多核苷酸的技术是本领域熟知的。
调控序列可为启动子,其由用于表达编码本发明的嵌合GH61多肽的多核苷酸的宿主细胞所识别。启动子含有介导多肽的表达的转录调控序列。启动子可以是在宿主细胞中显示转录活性的任何多核苷酸,包括突变的、截短的和杂合的启动子,并且可以从编码与宿主细胞同源或异源的胞外或胞内多肽的基因获得。
用于在细菌宿主细胞中指导本发明的核酸构建体转录的合适启动子的实例是从下述获得的启动子:解淀粉芽孢杆菌(Bacillus amyloliquefaciens)α-淀粉酶基因(amyQ)、地衣芽孢杆菌(Bacillus licheniformis)α-淀粉酶基因(amyL)、地衣芽孢杆菌青霉素酶基因(penP)、嗜热脂肪芽孢杆菌(Bacillus stearothermophilus)产麦芽淀粉酶基因(amyM)、枯草芽孢杆菌(Bacillus subtilis)果聚糖蔗糖酶基因(sacB)、枯草芽孢杆菌xylA和xylB基因、苏云金芽孢杆菌(Bacillus thuringiensis)cryIIIA基因(Agaisse和Lereclus,1994,Molecular Microbiology13:97-107)、大肠杆菌(E.coli)lac操纵子、大肠杆菌trc启动子(Egon等,1988,Gene69:301-315)、天蓝链霉菌(Streptomyces coelicolor)琼脂糖酶基因(dagA)和原核β-内酰胺酶基因(Villa-Kamaroff等,1978,Proceedings of the National Academy of Sciences USA75:3727-3731),以及tac启动子(DeBoer等,1983,Proc.Natl.Acad.Sci.USA80:21-25)。另外的启动子在″Useful proteins from recombinant bacteria″于Gilbert等,1980,Scientific American,242:74-94中;和在Sambrook等,1989,见上文中描述。串联启动子的实例公开于WO 99/43835。
用于指导本发明的核酸构建体在丝状真菌宿主细胞中转录的合适启动子的实例是从下列酶的基因获得的启动子:构巢曲霉(Aspergillus nidulans)乙酰胺酶、黑曲霉(Aspergillus niger)中性α-淀粉酶、黑曲霉酸稳定性α-淀粉酶、黑曲霉或泡盛曲霉(Aspergillus awamori)葡糖淀粉酶(glaA)、米曲霉(Aspergillus oryzae)TAKA淀粉酶、米曲霉碱性蛋白酶、米曲霉丙糖磷酸异构酶、尖镰孢(Fusariumoxysporum)胰蛋白酶样蛋白酶(WO96/00787)、镶片镰孢(Fusarium venenatum)淀粉葡糖苷酶(WO 00/56900)、镶片镰孢Daria(WO 00/56900)、镶片镰孢Quinn(WO00/56900)、曼赫根毛霉(Rhizomucor miehei)脂肪酶、曼赫根毛霉天冬氨酸蛋白酶、里氏木霉(Trichoderma reesei)β-葡糖苷酶、里氏木霉纤维二糖水解酶I、里氏木霉纤维二糖水解酶II、里氏木霉内切葡聚糖酶I、里氏木霉内切葡聚糖酶II、里氏木霉内切葡聚糖酶III、里氏木霉内切葡聚糖酶V、里氏木霉木聚糖酶I、里氏木霉木聚糖酶II、里氏木霉木聚糖酶III、里氏木霉β-木糖苷酶、里氏木霉翻译延伸因子,以及NA2-tpi启动子(一种修饰的启动子,其来自在曲霉属中性α-淀粉酶基因,其中未翻译的前导序列由曲霉属丙糖磷酸异构酶的基因的未翻译的前导序列所替代;非限制性实例包括修饰的启动子,其来自黑曲霉中性α-淀粉酶的基因,其中未翻译的前导序列由构巢曲霉或米曲霉丙糖磷酸异构酶的基因的未翻译的前导序列所替代);和它们的突变的、截短的和杂合的启动子。其它启动子描述于美国专利号6,011,147。
在酵母宿主中,有用的启动子从如下的基因获得:酿酒酵母(Saccharomycescerevisiae)烯醇化酶(ENO-1)、酿酒酵母半乳糖激酶(GAL1)、酿酒酵母醇脱氢酶/甘油醛-3-磷酸脱氢酶(ADH1,ADH2/GAP)、酿酒酵母丙糖磷酸异构酶(TPI)、酿酒酵母金属硫蛋白(CUP1)和酿酒酵母3-磷酸甘油酸激酶。对于酵母宿主细胞其它有用的启动子由Romanos等,1992,Yeast8:423-488描述。
调控序列也可以是转录终止子,其由宿主细胞识别以终止转录。所述终止子与编码所述嵌合GH61多肽的多核苷酸的3’末端可操作地连接。在本发明中可使用在宿主细胞中有功能的任何终止子。
对于细菌宿主细胞优选的终止子从如下的基因获得:克劳氏芽孢杆菌碱性蛋白酶(aprH)、地衣芽孢杆菌α-淀粉酶(amyL)和大肠杆菌核糖体RNA(rrnB)。
对于丝状真菌宿主细胞优选的终止子从如下酶的基因获得:构巢曲霉乙酰胺酶、构巢曲霉邻氨基苯甲酸合酶、黑曲霉葡糖淀粉酶、黑曲霉α-葡糖苷酶、米曲霉TAKA淀粉酶、尖镰孢胰蛋白酶样蛋白酶、里氏木霉β-葡糖苷酶、里氏木霉纤维二糖水解酶I、里氏木霉纤维二糖水解酶II、里氏木霉内切葡聚糖酶I、里氏木霉内切葡聚糖酶II、里氏木霉内切葡聚糖酶III、里氏木霉内切葡聚糖酶V、里氏木霉木聚糖酶I、里氏木霉木聚糖酶II、里氏木霉木聚糖酶III、里氏木霉β-木糖苷酶和里氏木霉翻译延伸因子。
对于酵母宿主细胞优选的终止子从如下酶的基因获得:酿酒酵母烯醇化酶、酿酒酵母细胞色素C(CYC1)和酿酒酵母甘油醛-3-磷酸脱氢酶。对于酵母宿主细胞其它有用的终止子由Romanos等,1992,见上文描述。
调控序列还可以是启动子下游和基因编码序列上游的mRNA稳定化区,其增加所述基因的表达。
合适的mRNA稳定化区的实例从如下的基因获得:苏云金芽孢杆菌cryIIIA基因(WO94/25612)和枯草芽孢杆菌SP82基因(Hue等,1995,Journal ofBacteriology177:3465-3471)。
调控序列还可以是合适的前导序列,其为对于宿主细胞的翻译重要的mRNA非翻译区。前导序列可操作地连接于编码嵌合GH61多肽的多核苷酸的5’-末端。可使用在宿主细胞中有功能的任何前导序列。
对于丝状真菌宿主细胞优选的前导序列从如下酶的基因获得:米曲霉TAKA淀粉酶和构巢曲霉丙糖磷酸异构酶。
对于酵母宿主细胞合适的前导序列从如下酶的基因获得:酿酒酵母烯醇化酶(ENO-1)、酿酒酵母3-磷酸甘油酸激酶、酿酒酵母α因子和酿酒酵母醇脱氢酶/甘油醛-3-磷酸脱氢酶(ADH2/GAP)。
调控序列也可以是聚腺苷酸化序列,其是与多核苷酸的3’末端可操作地连接的序列,并且在转录时,宿主细胞将其识别为将聚腺苷残基添加至转录的mRNA的信号。可使用在宿主细胞中有功能的任何聚腺苷酸化序列。
对于丝状真菌宿主细胞优选的聚腺苷酸化序列从如下酶的基因获得:构巢曲霉邻氨基苯甲酸合酶、黑曲霉葡糖淀粉酶、黑曲霉α-葡糖苷酶、米曲霉TAKA淀粉酶和尖镰孢胰蛋白酶样蛋白酶。
对于酵母宿主细胞有用的聚腺苷酸化序列由Guo和Sherman,1995,Mol.Cellular Biol.15:5983-5990描述。
调控序列还可以是信号肽编码区,其编码与本发明的嵌合GH61多肽的N端相连的信号肽,并且指导所述多肽进入细胞分泌途径。多核苷酸的编码序列5’端可固有地包含信号肽编码序列,其与编码所述多肽的编码序列的区段一起天然地连接在翻译阅读框中。或者,编码序列5’端可含有对于所述编码序列外源的信号肽编码序列。外源信号肽编码序列在编码序列不天然地含有信号肽编码序列时可为必需的。或者,外源信号肽编码序列可以简单地取代天然信号肽编码序列以增强多肽的分泌。然而,可使用指导表达的多肽进入宿主细胞的分泌途径的任何信号肽编码序列。
对于细菌宿主细胞有效的信号肽编码序列是从如下酶的基因获得的信号肽编码序列:芽孢杆菌属NCIB11837产麦芽糖淀粉酶、地衣芽孢杆菌枯草杆菌蛋白酶(subtilisin)、地衣芽孢杆菌β-内酰胺酶、嗜热脂肪芽孢杆菌α-淀粉酶、嗜热脂肪芽孢杆菌中性蛋白酶(nprT,nprS,nprM)和枯草芽孢杆菌prsA。另外的信号肽由Simonen和Palva,1993,Microbiological Reviews57:109-137描述。
对于丝状真菌宿主细胞有效的信号肽编码序列是从如下酶的基因获得的信号肽编码序列:黑曲霉中性淀粉酶、黑曲霉葡糖淀粉酶、米曲霉TAKA淀粉酶、特异腐质霉纤维素酶、特异腐质霉内切葡聚糖酶V、疏棉状腐质霉脂肪酶和曼赫根毛霉天冬氨酸蛋白酶。
对于酵母宿主细胞有用的信号肽从酿酒酵母α因子和酿酒酵母转化酶的基因获得。其它有用的信号肽编码序列由Romanos等,1992,见上文描述。
调控序列还可以是前肽编码序列,其编码位于本发明的嵌合GH61多肽的N端的前肽。所得多肽称为酶原(proenzyme)或前多肽(propolypeptide)(或在某些情况下称为酶原(zymogen))。前多肽通常是无活性的,并且能够通过前肽的催化或自催化切割从前多肽转化为活性多肽。可以从枯草芽孢杆菌碱性蛋白酶(aprE)、枯草芽孢杆菌中性蛋白酶(nprT)、嗜热毁丝霉漆酶(WO95/33836)、曼赫根毛霉天冬氨酸蛋白酶和酿酒酵母α因子的基因获得前肽编码序列。
当信号肽和前肽序列二者均存在时,将前肽序列置于紧接着(next to)多肽N端,并且将信号肽序列置于紧接着前肽序列的N端。
同样理想的是添加调节序列,其相对于宿主细胞的生长来调节所述嵌合GH61多肽的表达。调节序列的实例是引起基因表达响应化学或物理刺激物,包括调节化合物的存在而开启或关闭的那些系统。原核系统中的调节序列包括lac、tac和trp操纵基因系统。在酵母中,可使用ADH2系统或GAL1系统。在丝状真菌中,可以使用黑曲霉葡糖淀粉酶启动子、米曲霉TAKAα-淀粉酶启动子和米曲霉葡糖淀粉酶启动子、里氏木霉纤维二糖水解酶I启动子和里氏木霉纤维二糖水解酶II启动子。调节序列的其它实例是那些允许基因扩增的序列。在真核系统中,这些调节序列包括在氨甲蝶呤(methotrexate)存在下扩增的二氢叶酸还原酶基因,和以重金属(with heavy metal)扩增的金属硫蛋白基因。在这些情况下,编码嵌合GH61多肽的多核苷酸将与调节序列可操作地连接。
表达载体
本发明还涉及重组表达载体,所述重组表达载体包含编码本发明的嵌合GH61多肽的多核苷酸、启动子和转录和翻译终止信号。多种核苷酸和调控序列可以结合在一起以产生重组表达载体,所述表达载体可以包括一个或多个方便的限制位点以允许在这些位点插入或取代编码多肽的多核苷酸。或者,可以通过在适当的用于表达的载体中插入包含所述多核苷酸的核酸构建体或多核苷酸来表达所述多核苷酸。在制备表达载体的过程中,将编码序列置于载体中,从而将该编码序列与适当的调控序列可操作地连接以供表达。
重组表达载体可以是任何载体(例如,质粒或病毒),其能够方便地进行重组DNA步骤,并且能够产生多核苷酸的表达。载体的选择将通常依赖于载体与将引入该载体的宿主细胞的相容性。载体可以是线状或闭合环状质粒。
载体可以是自主复制载体,即,作为染色体外实体(entity)存在的载体,其复制独立于染色体复制,例如,质粒、染色体外元件、微型染色体(minichromosome)或人工染色体。载体可以含有任何用于确保自复制的手段(means)。或者,载体可以是一种当被引入宿主细胞中时,整合到基因组中并且与整合了该载体的染色体一起复制的载体。此外,可以使用单独的载体或质粒或两个或更多个载体或质粒,其共同含有待引入宿主细胞基因组的完整DNA(total DNA),或可以使用转座子(transposon)。
所述载体优选地含有一个或多个选择性标记,其允许简单选择经转化、转染、转导等的细胞。选择性标记是基因,其产物提供杀生物剂或病毒抗性、对重金属的抗性、对营养缺陷型的原养性(prototrophy to auxotrophs)等。
细菌选择性标记的实例是地衣芽孢杆菌或枯草芽孢杆菌dal基因,或赋予抗生素抗性的标记,所述抗生素抗性例如氨苄青霉素、氯霉素、卡那霉素、新霉素、壮观霉素或四环素抗性。对于酵母宿主细胞合适的标记包括但不限于ADE2、HIS3、LEU2、LYS2、MET3、TRP1和URA3。用于丝状真菌宿主细胞的选择性标记包括但不限于adeA(磷酸核糖氨基咪唑琥珀羧酰胺合酶,phosphoribosylaminoimidazole-succinocarboxamide synthase)、adeB(磷酸核糖氨基咪唑合酶,phosphoribosyl-aminoimidazole synthase)、amdS(乙酰胺酶)、argB(鸟氨酸氨甲酰基转移酶)、bar(草铵膦(phosphinothricin)乙酰转移酶)、hph(潮霉素磷酸转移酶)、niaD(硝酸还原酶)(nitrate reductase)、pyrG(乳清酸核苷-5’-磷酸脱羧酶)(orotidine-5’-phosphate decarboxylase)、sC(硫酸腺苷酰转移酶)和trpC(邻氨基苯甲酸合酶(anthranilate synthase))以及它们的等同物。优选用在曲霉属细胞中的是构巢曲霉或米曲霉amdS和pyrG基因和吸水链霉菌(Streptomyces hygroscopicus)bar基因。优选用于木霉属细胞的是adeA、adeB、amdS、hph和pyrG基因。
选择性标记可为WO 2010/039889中所述的双重选择性标记系统。在一个方面,所述双重选择性标记是hph-tk双重选择性标记系统。
所述载体优选含有元件,其允许载体整合入宿主细胞基因组或载体在细胞中独立于基因组的自主复制。
为了整合入宿主细胞基因组,载体可依赖编码嵌合GH61多肽的多核苷酸的序列或用于通过同源或非同源重组整合入基因组的任何其它载体元件。或者,载体可以含有额外的多核苷酸,用于指导通过同源重组整合入宿主细胞基因组染色体中的精确位置。为了增加在精确位置整合的可能性,整合元件应含有足够数量的核酸,如100至10,000碱基对,400至10,000碱基对,和800至10,000碱基对,其与相应的目标序列具有高度序列同一性以增强同源重组的概率。整合元件可以是任何序列,其与宿主细胞基因组中的目标序列同源。此外,整合元件可以是非编码或编码的多核苷酸。另一方面,可以将载体通过非同源重组整合到宿主细胞的基因组中。
为了自主复制,载体可以进一步包含复制起点,其使载体能够在所述的宿主细胞中自主地复制。复制起点可以是介导自主复制的任何质粒复制子(replicator),其在细胞中发挥功能。术语“复制起点”或“质粒复制子”意指能够使质粒或载体体内复制的多核苷酸。
细菌复制起点的实例是允许在大肠杆菌中复制的质粒pBR322、pUC19、pACYC177和pACYC184的复制起点,和允许在芽孢杆菌属中复制的质粒pUB110、pE194、pTA1060和pAMβ1的复制起点。
用于酵母宿主细胞中的复制起点的实例是2微米复制起点,ARS1,ARS4,ARS1和CEN3的组合,和ARS4和CEN6的组合。
在丝状真菌细胞中有用的复制起点的实例是AMA1和ANS1(Gems等,1991,Gene98:61-67;Cullen等,1987,Nucleic Acids Res.15:9163-9175;WO00/24883)。分离AMA1基因和构建包含该基因的质粒或载体能够根据公开于WO 00/24883中的方法完成。
可以将多于一个拷贝的本发明的多核苷酸插入宿主细胞以增加本发明的嵌合GH61多肽的产生。多核苷酸拷贝数的增加可通过如下方法获得:将至少一个额外拷贝的序列整合入宿主细胞基因组,或将可扩增的选择性标记基因包括于多核苷酸,其中可通过在合适的选择剂(selectable agent)存在下培养细胞来选择含有选择性标记基因的扩增拷贝,且由此含有多核苷酸的额外拷贝的细胞。
用于连接上述元件以构建本发明的重组表达载体的方法是本领域技术人员熟知的(参见,例如,Sambrook等,1989,见上文)。
宿主细胞
本发明还涉及重组宿主细胞,其包含编码本发明的嵌合GH61多肽的多核苷酸可操作地连接于一个或多个指导所述多肽的产生的调控序列。将包含多核苷酸的构建体或载体引入宿主细胞,使所述构建体或载体如前所述作为染色体整合体或者作为自复制的染色体外载体维持。术语“宿主细胞”包括亲本细胞的任何后代,其由于复制过程中发生的突变而不同于亲本细胞。
宿主细胞可以是在本发明的嵌合GH61多肽的重组产生中有用的任何细胞,例如,原核或真核细胞。
原核宿主细胞可以是任何革兰氏阳性或革兰氏阴性细菌。革兰氏阳性细菌包括但不限于,芽孢杆菌属(Bacillus)、梭菌属(Clostridium)、肠球菌属(Enterococcus)、地芽孢杆菌属(Geobacillus)、乳杆菌属(Lactobacillus)、乳球菌属(Lactococcus)、海洋芽孢杆菌属(Oceanobacillus)、葡萄球菌属(Staphylococcus)、链球菌属(Streptococcus)和链霉菌属(Streptomyces)。革兰氏阴性细菌包括但不限于,弯曲杆菌属(Campylobacter)、大肠杆菌(E.coli)、黄杆菌属(Flavobacterium)、梭杆菌属(Fusobacterium)、螺杆菌属(Helicobacter)、泥杆菌属(Ilyobacter)、奈瑟氏菌属(Neisseria)、假单胞菌属(Pseudomonas)、沙门氏菌属(Salmonella)和脲原体属(Ureaplasma)。
细菌宿主细胞可以是任何芽孢杆菌属细胞,包括但不限于嗜碱芽孢杆菌(Bacillus alkalophilus)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)、短芽孢杆菌(Bacillus brevis)、环状芽孢杆菌(Bacillus circulans)、克劳氏芽孢杆菌(Bacillusclausii)、凝结芽孢杆菌(Bacillus coagulans)、坚强芽孢杆菌(Bacillus firmus)、灿烂芽孢杆菌(Bacillus lautus)、迟缓芽孢杆菌(Bacillus lentus)、地衣芽孢杆菌(Bacillus licheniformis)、巨大芽孢杆菌(Bacillus megaterium)、短小芽孢杆菌(Bacillus pumilus)、嗜热脂肪芽孢杆菌(Bacillus stearothermophilus)、枯草芽孢杆菌(Bacillus subtilis)和苏云金芽孢杆菌(Bacillus thuringiensis)细胞。
细菌宿主细胞还可以是任何链球菌属细胞,包括但不限于,似马链球菌(Streptococcus equisimilis)、酿脓链球菌(Streptococcus pyogenes)、乳房链球菌(Streptococcus uberis)和马链球菌兽瘟亚种(Streptococcus equi subsp.Zooepidemicus)细胞。
细菌宿主细胞还可以是任何链霉菌属细胞,包括但不限于,不产色链霉菌(Streptomyces achromogenes)、除虫链霉菌(Streptomyces avermitilis)、天蓝链霉菌(Streptomyces coelicolor)、灰色链霉菌(Streptomyces griseus)和浅青紫链霉菌(Streptomyces lividans)细胞。
可通过如下方法实现将DNA引入到芽孢杆菌属细胞:原生质体转化(参见,例如,Chang和Cohen,1979,Mol.Gen.Genet.168:111-115),感受态细胞转化(参见,例如,Young和Spizizen,1961,J.Bacteriol.81:823-829或Dubnau和Davidoff-Abelson,1971,J.Mol.Biol.56:209-221),电穿孔(参见,例如,Shigekawa和Dower,1988,Biotechniques6:742-751)或接合(参见,例如,Koehler和Thorne,1987,J.Bacteriol.169:5771-5278)。可通过如下方法实现将DNA引入到大肠杆菌细胞:原生质体转化(参见,例如,Hanahan,1983,J.Mol.Biol.166:557-580)或电穿孔(参见,例如,Dower等,1988,Nucleic Acids Res.16:6127-6145)。可通过如下方法实现将DNA引入到链霉菌属细胞:原生质体转化,电穿孔(参见,例如,Gong等,2004,Folia Microbiol.(Praha)49:399-405),接合(参见,例如,Mazodier等,1989,J.Bacteriol.171:3583-3585),或转导(参见,例如,Burke等,2001,Proc.Natl.Acad.Sci.USA98:6289-6294)。可通过如下方法实现将DNA引入到假单胞菌属细胞:电穿孔(参见,例如,Choi等,2006,J.Microbiol.Methods64:391-397)或接合(参见,例如,Pinedo和Smets,2005,Appl.Environ.Microbiol.71:51-57)。可通过如下方法实现将DNA引入到链球菌属细胞:天然感受态(natural competence)(参见,例如,Perry和Kuramitsu,1981,Infect.Immun.32:1295-1297),原生质体转化(参见,例如,Catt和Jollick,1991,Microbios.68:189-207),电穿孔(参见,例如,Buckley等,1999,Appl.Environ.Microbiol.65:3800-3804)或接合(参见,例如,Clewell,1981,Microbiol.Rev.45:409-436)。然而,可以使用本领域已知的将DNA引入宿主细胞的任何方法。
宿主细胞还可以是真核生物,如哺乳动物、昆虫、植物或真菌细胞。
宿主细胞可为真菌细胞。“真菌”用在本文包括以下门:子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、壶菌门(Chytridiomycota)和接合菌门(Zygomycota)以及卵菌门(Oomycota)和所有有丝分裂孢子真菌(mitosporicfungi)(如由Hawksworth等,于Ainsworth and Bisby’s Dictionary of The Fungi,第8版,1995,CAB International,University Press,Cambridge,UK中所定义)。
真菌宿主细胞可为酵母细胞。“酵母”用在本文包括产子囊酵母(ascosporogenous yeast)(内孢霉目(Endomycetales))、产担子酵母(basidiosporogenous yeast)和属于半知菌类(Fungi Imperfecti)(芽孢纲(Blastomycetes))的酵母。由于酵母的分类在未来可能改变,就本发明而言,将酵母定义为如Biology and Activities of Yeast(Skinner,Passmore,和Davenport编,Soc.App.Bacteriol.Symposium Series No.9,1980)中所述。
酵母宿主细胞可为假丝酵母属(Candida)、汉逊酵母属(Hansenula)、克鲁维酵母属(Kluyveromyces)、毕赤酵母属(Pichia)、酵母属(Saccharomyces)、裂殖酵母属(Schizosaccharomyces)或西洋蓍霉属(Yarrowia)细胞,如乳酸克鲁维酵母(Kluyveromyces lactis)、卡尔酵母(Saccharomyces carlsbergensis)、酿酒酵母(Saccharomyces cerevisiae)、糖化酵母(Saccharomyces diastaticus)、道格拉氏酵母(Saccharomyces douglasii)、克鲁弗酵母(Saccharomyces kluyveri)、诺地酵母(Saccharomyces norbensis)、卵形酵母(Saccharomyces oviformis)或解脂西洋蓍霉(Yarrowia lipolytica)细胞。
真菌宿主细胞可为丝状真菌细胞。“丝状真菌”包括真菌门(Eumycota)和卵菌门的亚门(如由Hawksworth等,1995,见上文,所定义)的所有丝状形式。丝状真菌通常的特征在于由壳多糖(chitin)、纤维素、葡聚糖、壳聚糖(chitosan)、甘露聚糖和其它复杂多糖组成的菌丝体壁。通过菌丝延伸进行营养生长,而碳分解代谢是专性需氧的。相反,酵母例如酿酒酵母的营养生长通过单细胞菌体的出芽生殖(budding)进行,而碳分解代谢可以是发酵的。
丝状真菌宿主细胞可为枝顶孢霉属(Acremonium)、曲霉属(Aspergillus)、短梗霉属(Aureobasidium)、烟管霉属(Bjerkandera)、拟蜡菌属(Ceriporiopsis)、金孢子菌属(Chrysosporium)、鬼伞属(Coprinus)、革盖菌属(Coriolus)、隐球菌属(Cryptococcus)、Filibasidium、镰孢属(Fusarium)、腐质霉属(Humicola)、梨孢菌属(Magnaporthe)、毛霉属(Mucor)、毁丝霉属(Myceliophthora)、新考玛脂霉属(Neocallimastix)、脉孢菌属(Neurospora)、拟青霉属(Paecilomyces)、青霉属(Penicillium)、平革菌属(Phanerochaete)、射脉菌属(Phlebia)、瘤胃壶菌属(Piromyces)、侧耳属(Pleurotus)、裂褶菌属(Schizophyllum)、踝节菌属(Talaromyces)、嗜热子囊菌属(Thermoascus)、梭孢壳属(Thielavia)、弯颈霉属(Tolypocladium)、栓菌属(Trametes)或木霉属(Trichoderma)细胞。
例如,丝状真菌宿主细胞可为泡盛曲霉(Aspergillus awamori)、烟曲霉(Aspergillus fumigatus)、臭曲霉(Aspergillus foetidus)、日本曲霉(Aspergillusjaponicus)、构巢曲霉(Aspergillus nidulans)、黑曲霉(Aspergillus niger)、米曲霉(Aspergillus oryzae)、黑刺烟管菌(Bjerkandera adusta)、干拟蜡菌(Ceriporiopsisaneirina)、Ceriporiopsis caregiea、Ceriporiopsis gilvescens、Ceriporiopsispannocinta、Ceriporiopsis rivulosa、Ceriporiopsis subrufa、虫拟蜡菌(Ceriporiopsissubvermispora)、Chrysosporium inops、嗜角质金孢子菌(Chrysosporiumkeratinophilum)、Chrysosporium lucknowense、Chrysosporium merdarium、毡金孢子菌(Chrysosporium pannicola)、Chrysosporium queenslandicum、热带金孢子菌(Chrysosporium tropicum)、Chrysosporium zonatum、灰盖鬼伞(Coprinuscinereus)、毛革盖菌(Coriolus hirsutus)、杆孢状镰孢(Fusarium bactridioides)、禾谷镰孢(Fusarium cerealis)、库威镰孢(Fusarium crookwellense)、大刀镰孢(Fusarium culmorum)、禾本科镰孢(Fusarium graminearum)、禾赤镰孢(Fusariumgraminum)、异孢镰孢(Fusarium heterosporum)、合欢木镰孢(Fusarium negundi)、尖镰孢(Fusarium oxysporum)、多枝镰孢(Fusarium reticulatum)、粉红镰孢(Fusarium roseum)、接骨木镰孢(Fusarium sambucinum)、肤色镰孢(Fusariumsarcochroum)、拟分枝孢镰孢(Fusarium sporotrichioides)、硫色镰孢(Fusariumsulphureum)、圆镰孢(Fusarium torulosum)、拟丝孢镰孢(Fusariumtrichothecioides)、镶片镰孢(Fusarium venenatum)、特异腐质霉(Humicolainsolens)、疏棉状腐质霉(Humicola lanuginosa)、米黑毛霉(Mucor miehei)、嗜热毁丝霉(Myceliophthora thermophila)、粗糙脉孢菌(Neurospora crassa)、产紫青霉(Penicillium purpurogenum)、黄孢平革菌(Phanerochaete chrysosporium)、辐射射脉菌(Phlebia radiata)、刺芹侧耳(Pleurotus eryngii)、土生梭孢霉(Thielaviaterrestris)、长绒毛栓菌(Trametes villosa)、变色栓菌(Trametes versicolor)、哈茨木霉(Trichoderma harzianum)、康宁木霉(Trichoderma koningii)、长枝木霉(Trichoderma longibrachiatum)、里氏木霉(Trichoderma reesei)或绿色木霉(Trichoderma viride)细胞。
可以将真菌细胞通过涉及原生质体形成、原生质体转化和细胞壁再生的方法以本身公知的方式转化。用于转化曲霉属和木霉属宿主细胞的合适方法在EP238023和Yelton等,1984,Proc.Natl.Acad.Sci.USA81:1470-1474以及Christensen等,1988,Bio/Technology6:1419-1422中描述。用于转化镰孢属菌种的合适方法由Malardier等,1989,Gene78:147-156和WO 96/00787描述。可以使用由如下文献描述的方法转化酵母:Becker和Guarente,于Abelson,J.N.和Simon,M.I.编,Guide to Yeast Genetics and Molecular Biology,Methods inEnzymology,Volume194,pp182-187,Academic Press,Inc.,New York;Ito等,1983,J.Bacteriol.153:163;和Hinnen等,1978,Proc.Natl.Acad.Sci.USA75:1920。
产生方法
本发明还涉及用于产生嵌合GH61多肽的方法,其包括:(a)在适于所述嵌合GH61多肽表达的条件下培养本发明的宿主细胞;和(b)回收所述嵌合GH61多肽。
使用本领域已知的方法在适合于产生所述嵌合GH61多肽的营养培养基中培养细胞。例如,可以通过在合适培养基中和允许表达和/或分离所述多肽的条件下进行的摇瓶培养,或实验室或工业发酵罐中的小规模或大规模发酵(包括连续、分批、补料分批或固态发酵)来培养细胞。使用本领域已知的方法在合适的营养培养基中进行培养,所述营养培养基包含碳源和氮源和无机盐。合适的培养基能够从商业供应商获得或可以根据公开的组成制备(例如,在美国典型培养物保藏中心的目录中)。如果多肽分泌到营养培养基中,该多肽能够从所述培养基中直接回收。如果多肽不分泌,则其能够从细胞裂解物(lysate)回收。
可以使用本领域已知的对于所述嵌合GH61多肽是特异性的方法来检测嵌合GH61多肽。这些检测方法可包括特异性抗体的使用、酶产物的形成或酶底物的消失。例如,酶测定法(enzyme assay)可用于测定嵌合GH61多肽的活性。
嵌合GH61多肽可以通过本领域已知的方法回收。例如,所述多肽可以通过常规方法从营养培养基中回收,所述常规方法包括但不限于收集、离心、过滤、提取、喷雾干燥、蒸发或沉淀。在一个方面,回收了整个发酵液。
嵌合GH61多肽可以使用多种本领域已知的方法纯化以获得基本上纯的嵌合GH61多肽,所述方法包括但不限于层析(例如,离子交换、亲和、疏水、层析聚焦和大小排阻)、电泳方法(例如,制备型(preparative)等电聚焦)、差示溶解度(例如,硫酸铵沉淀)、SDS-PAGE或提取(参见,例如,Protein Purification,J.C.Janson和Lars Ryden编,VCH Publishers,New York,1989)。
在另一个方面,不回收嵌合GH61多肽,而是将表达该多肽的本发明的宿主细胞用作多肽的来源。
组合物
本发明还涉及包含本发明的嵌合GH61多肽的组合物。优选地,所述组合物富含此种多肽。术语“富含”表明所述组合物的纤维素分解增强活性以例如至少1.1的富集因子增加。
所述组合物可包含本发明的嵌合GH61多肽作为主要酶组分,例如单组分组合物。或者,所述组合物可包含多种酶活性,如选自下组的一个或多个(例如几个)其它酶:纤维素酶、具有纤维素分解增强活性的多肽、半纤维素酶、酯酶、棒曲霉素(expansin)、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。
所述组合物可依照本领域中已知的方法制备,并可为液体或干组合物的形式。所述组合物可依照本领域中已知的方法稳定化。
所述组合物可为发酵液配制物或细胞组合物,如本文中所述。因此,本发明亦涉及发酵液配制物和细胞组合物,其包含本发明的嵌合GH61多肽。在一些实施方案中,所述组合物是含有机酸的细胞杀灭的全培养液,杀灭的细胞和/或细胞碎片,以及培养基。
术语“发酵液”用于本文中指由细胞发酵产生、不经历或仅经历最低限的回收和/或纯化的制备物。举例而言,当将微生物培养物生长至饱和,在限制碳的条件下温育以允许蛋白合成(例如由宿主细胞表达酶),并分泌入细胞培养基时,产生发酵液。所述发酵液可含有在发酵终止时得到的发酵材料的未分级或分级的内含物。通常而言,发酵液是未分级的,并包含用过的培养基和例如通过离心去除微生物细胞(例如丝状真菌细胞)之后存在的细胞碎片。在一些实施方案中,所述发酵液含有用过的细胞培养基,胞外酶,和能成活的和/或不能成活的(viable and/or nonviable)微生物细胞。
在一个实施方案中,所述发酵液配制物和细胞组合物包含第一有机酸组分和第二有机酸组分,所述第一有机酸组分包含至少一个1-5碳的有机酸和/或其盐,而所述第二有机酸组分包含至少一个6个或更多个碳的有机酸和/或其盐。在一个具体实施方案中,所述第一有机酸组分是乙酸、甲酸、丙酸、其盐,或前述两个或更多个的混合物,而所述第二有机酸组分是苯甲酸、环己烷羧酸、4-甲基缬草酸、苯乙酸、其盐,或前述两个或更多个的混合物。
在一个方面,所述组合物含有有机酸,并任选地进一步含有杀灭的细胞和/或细胞碎片。在一个实施方案中,从细胞杀灭的全培养液中移除所述杀灭的细胞和/或细胞碎片以提供不含这些组分的组合物。
所述发酵液配制物或细胞组合物可进一步包含防腐剂和/或抗微生物(例如抑菌)剂,包括但不限于山梨醇、氯化钠、山梨酸钾和其它本领域中已知的。
所述细胞杀灭的全培养液或组合物可进一步包含一种或多种(例如几种)酶,如乙酰木聚糖酯酶、α-阿拉伯呋喃糖苷酶、α-半乳糖苷酶、α-葡糖醛酸糖苷酶、淀粉酶、阿拉伯聚糖酶、阿拉伯呋喃糖苷酶、β-半乳糖苷酶、β-葡糖苷酶、纤维二糖水解酶、内切葡聚糖酶、内切-β-1,3(4)-葡聚糖酶、阿魏酸酯酶、半乳聚糖酶、葡糖淀粉酶、葡糖水解酶、杂合过氧化物酶(其具有木质素过氧化物酶和锰依存性过氧化物酶的组合性质)、漆酶、木质素过氧化物酶、锰依存性过氧化物酶、甘露聚糖酶、甘露聚糖乙酰酯酶、甘露糖苷酶、果胶酸裂合酶、果胶乙酰酯酶、果胶酶裂合酶、果胶甲酰酯酶、多聚半乳糖醛酸酶、蛋白酶、鼠李半乳糖醛酸聚糖裂合酶(rhamnogalacturonan lyase)、鼠李半乳糖醛酸聚糖乙酰酯酶(rhamnogalacturonan acetyl esterase)、鼠李半乳糖醛酸酶(rhamnogalacturonase)、木聚糖酶、木半乳糖醛酸糖苷酶(xylogalacturonosidase)、木半乳糖醛酸酶(xylogalacturonase)、木葡聚糖酶和木糖苷酶。
在一个实施方案中,所述细胞杀灭的全培养液或组合物包含纤维素分解酶,其包括但不限于(i)内切葡聚糖酶(EG)或1,4-D-葡聚糖-4-葡聚糖水解酶(EC3.2.1.4),(ii)外切葡聚糖酶,其包括1,4-D-葡聚糖葡聚糖水解酶(亦称作纤维糊精酶)(EC3.2.1.74)和1,4-D-葡聚糖纤维二糖水解酶(外切纤维二糖水解酶,CBH)(EC3.2.1.91),和(iii)β-葡糖苷酶(BG)或β-葡糖苷葡糖水解酶(EC3.2.1.21)。
所述细胞杀灭的全培养液或组合物可含有在发酵终止时得到的发酵材料的未分级内含物。通常而言,所述细胞杀灭的全培养液或组合物含有用过的培养基和在将微生物细胞(例如丝状真菌细胞)生长至饱和,在限制碳的条件下温育以允许蛋白合成(例如纤维素酶和/或葡糖苷酶的表达)之后存在的细胞碎片。在一些实施方案中,所述细胞杀灭的全培养液或组合物含有用过的细胞培养基,胞外酶,和杀灭的丝状真菌细胞。在一些实施方案中,在细胞杀灭的全培养液或组合物中存在的微生物细胞可使用本领域中已知的方法渗透和/或裂解。
如本文中所述的全培养液或细胞组合物通常为液体,但可含有不溶性组分,如杀灭的细胞、细胞碎片、培养基组分和/或不溶性酶。在一些实施方案中,可去除不溶性组分以提供澄清的液体组合物。
本发明的全培养液配制物和细胞组合物可通过WO 90/15861或WO2010/096673中描述的方法来产生。
下文中给出本发明的组合物的优选用途的实例。组合物的剂量和组合物使用的其它条件可给予本领域已知的方法来确定。
用途
本发明还涉及下述使用嵌合GH61多肽或其组合物的方法。
本发明还涉及降解纤维素材料的方法,其包括:在本发明的具有纤维素分解增强活性的嵌合GH61多肽的存在下,用酶组合物处理纤维素材料。在一个方面,所述方法还包括回收已降解或转化的纤维素材料。所述纤维素材料的降解或转化的可溶性产物可从不溶性纤维素材料使用任何本领域中已知的方法分离,如例如离心、过滤或重力沉降。
本发明还涉及产生发酵产物的方法,其包括:(a)在本发明的具有纤维素分解增强活性的GH61多肽的存在下,用酶组合物糖化纤维素材料;(b)用一种或多种(例如几种)发酵微生物发酵经糖化的纤维素材料以产生发酵产物;和(c)从发酵回收发酵产物。
本发明还涉及发酵纤维素材料的方法,其包括:用一种或多种(例如几种)发酵微生物发酵纤维素材料,其中所述纤维素材料是在本发明的具有纤维素分解增强活性的GH61多肽的存在下用酶组合物糖化的。在一个方面,纤维素材料的发酵产生发酵产物。在另一个方面,所述方法进一步包括从发酵回收发酵产物。
本发明的方法可以用于将纤维素材料糖化成可发酵糖,并且将可发酵糖转化成很多有用的发酵产物,例如燃料、饮用乙醇和/或平台化学品(platformchemical)(例如酸、醇、酮、气体等)。从纤维素材料产生期望的发酵产物通常涉及预处理、酶水解(糖化)和发酵。
根据本发明的纤维素材料的处理可以使用本领域的常规方法完成。此外,本发明的方法能使用经配置以依照发明操作的任何常规生物质加工设备进行。
水解(糖化)和发酵,分别或同时,包括但不限于,分离的水解和发酵(SHF)、同步糖化和发酵(SSF)、同步糖化和共发酵(SSCF)、混合的水解和发酵(HHF)、分离的水解和共发酵(SHCF)、混合的水解和共发酵(HHCF),和直接微生物转化(DMC),有时也称为合并的生物加工(consolidated bioprocessing,CBP)。SHF使用分离的处理步骤以首先将纤维素材料酶水解为可发酵糖,例如,葡萄糖,纤维二糖和戊糖单体,然后将可发酵糖发酵成为乙醇。在SSF中,纤维素材料的酶水解和糖变为乙醇的发酵在一个步骤中组合(Philippidis,G.P.,1996,Cellulose bioconversion technology,于Handbook on Bioethanol:Production andUtilization,Wyman,C.E编,Taylor&Francis,Washington,DC,179-212)。SSCF包括多种糖的共发酵(Sheehan,J.,和Himmel,M.,1999,Enzymes,energy and theenvironment:A strategic perspective on the U.S.Department of Energy’s researchand development activities for bioethanol,Biotechnol.Prog.15:817-827)。HHF在同步糖化和水解步骤之外,还涉及单独的水解步骤,所述步骤可以在同一个反应器中进行。HHF过程中的步骤可以在不同的温度,即,高温酶法糖化,然后在发酵菌株能够耐受的较低温度进行SSF。DMC在一个或多个(例如几个)步骤中组合了所有三个过程(酶产生、水解和发酵),其中使用相同的生物体产生用于将纤维素转化成可发酵糖并将可发酵糖转化成终产物的酶(Lynd,L.R.,Weimer,P.J.,van Zyl,W.H.,和Pretorius,I.S.,2002,Microbial celluloseutilization:Fundamentals and biotechnology,Microbiol.Mol.Biol.Reviews66:506-577)。在本文可以理解的是,本领域中已知的任何方法,包括预处理、酶水解(糖化)、发酵,或它们的组合,可用于实施本发明的方法。
常规设备包括补料批式搅拌反应器、批式搅拌反应器、具有超滤的连续流搅拌反应器和/或连续活塞流柱式反应器(Fernanda de Castilhos Corazza,Flávio Faria de Moraes,Gisella Maria Zanin和Ivo Neitzel,2003,Optimal controlin fed-batch reactor for the cellobiose hydrolysis,Acta Scientiarum.Technology25:33-38;Gusakov,A.V.,和Sinitsyn,A.P.,1985,Kinetics of the enzymatichydrolysis of cellulose:1.A mathematical model for a batch reactor process,Enz.Microb.Technol.7:346-352)、研磨反应器(Ryu,S.K.,和Lee,J.M.,1983,Bioconversion of waste cellulose by using an attrition bioreactor,Biotechnol.Bioeng.25:53-65),或者具有由电磁场引起的强烈搅拌的反应器(Gusakov,A.V.,Sinitsyn,A.P.,Davydkin,I.Y.,Davydkin,V.Y.,Protas,O.V.,1996,Enhancement of enzymatic cellulose hydrolysis using a novel type of bioreactorwith intensive stirring induced by electromagnetic field,Appl.Biochem.Biotechnol.56:141-153)。其它反应器类型包括:流化床、升流层(upflowblanket)、固定化和用于水解和/或发酵的挤出机型的反应器。
预处理。在本发明的方法的实施中,可以使用本领域已知的任何预处理过程破坏植物细胞壁的纤维素材料组分(Chandra等,2007,Substrate pretreatment:The key to effective enzymatic hydrolysis of lignocellulosics?Adv.Biochem.Engin./Biotechnol.108:67-93;Galbe和Zacchi,2007,Pretreatment of lignocellulosicmaterials for efficient bioethanol production,Adv.Biochem.Engin./Biotechnol.108:41-65;Hendriks和Zeeman,2009,Pretreatments to enhance the digestibility oflignocellulosic biomass,Bioresource Technol.100:10-18;Mosier等,2005,Featuresof promising technologies for pretreatment of lignocellulosic biomass,BioresourceTechnol.96:673-686;Taherzadeh和Karimi,2008,Pretreatment of lignocellulosicwastes to improve ethanol and biogas production:A review,Int.J.of Mol.Sci.9:1621-1651;Yang和Wyman,2008,Pretreatment:the key to unlocking low-costcellulosic ethanol,Biofuels Bioproducts and Biorefining-Biofpr.2:26-40)。
纤维素材料也可以在预处理之前使用本领域中已知的方法进行粒度减小、筛分、预浸泡、润湿、洗涤和/或调节/调理(conditioning)。
常规的预处理包括但不限于,蒸汽预处理(伴随或不伴随爆炸)、稀酸预处理、热水预处理、碱性预处理、石灰预处理、湿氧化、湿爆炸、氨纤维爆炸、有机溶剂预处理和生物预处理。其它预处理包括氨渗滤、超声、电穿孔、微波、超临界CO2、超临界H2O、臭氧、离子性液体和γ辐射预处理。
可以在水解和/或发酵之前预处理纤维素材料。预处理优选在水解前进行。或者,预处理可以与酶水解同时进行以释放可发酵糖,如葡萄糖、木糖和/或纤维二糖。在大多数情况下,预处理步骤本身使一些生物质转化成可发酵糖(甚至在不存在酶的情况下)。
蒸汽预处理。在蒸汽预处理中,加热纤维素材料以破坏植物细胞壁成分,包括木质素、半纤维素和纤维素,使酶可接触纤维素和其它级分,例如,半纤维素。将纤维素材料经过或通过反应容器,其中注入蒸汽以增加温度至需要的温度和压力,并且在其中保持期望的反应时间。蒸汽预处理优选在140-250℃,例如160-200℃,或170-190℃进行,其中最优的温度范围依赖于化学催化剂的添加。蒸汽预处理的停留时间优选1-60分钟,例如1-30分钟,1-20分钟,3-12分钟,或4-10分钟,其中最优的停留时间依赖于温度范围和化学催化剂的添加。蒸汽预处理允许相对较高的固体加载量,使纤维素材料在预处理过程中通常仅仅变得潮湿。蒸汽预处理经常与预处理后的物质的爆炸放料(explosive discharge)组合,这称为蒸汽爆炸,即,快速闪变至大气压和物质的湍流,以通过破碎增加可接触的表面积(Duff和Murray,1996,Bioresource Technology855:1-33;Galbe和Zacchi,2002,Appl.Microbiol.Biotechnol.59:618-628;美国专利申请No.20020164730)。在蒸汽预处理过程中,切割半纤维素乙酰基团,并且得到的酸自催化半纤维素部分水解成为单糖和寡糖。去除木质素仅至有限的程度。
化学预处理:术语“化学处理“指能促进纤维素、半纤维素和/或木质素分离和/或释放的任何化学处理。此种预处理可将晶体纤维素转化为无定形纤维素。合适的化学预处理工艺的实例包括例如稀酸预处理、石灰预处理、湿氧化、氨纤维/冷冻爆炸(AFEX)、氨渗滤(APR)、离子性液体和有机溶剂预处理。
经常在蒸汽预处理之前加入催化剂如H2SO4或SO2(通常0.3至5%w/w),其可减少时间,降低温度,增加回收率,并改进酶水解(Ballesteros等,2006,Appl.Biochem.Biotechnol.129-132:496-508;Varga等,2004,Appl.Biochem.Biotechnol.113-116:509-523;Sassner等.,2006,Enzyme Microb.Technol.39:756-762)。
在稀酸预处理中,将纤维素材料与稀酸(通常是H2SO4)和水混合以形成浆料,由蒸汽加热至期望的温度,并在一段停留时间后闪变至大气压。可以用很多反应器设计进行稀酸预处理,例如,活塞流反应器、逆流反应器或连续逆流收缩床反应器(Duff和Murray,1996,见上文;Schell等,2004,BioresourceTechnol.91:179-188;Lee等,1999,Adv.Biochem.Eng.Biotechnol.65:93-115)。
还可以使用碱性条件下的几种预处理方法。这些碱预处理包括,但不限于,氢氧化钠、石灰、湿氧化、氨渗滤(APR)和氨纤维/冷冻爆炸(AFEX)。
用氧化钙或氢氧化钙,在85-150℃的温度进行石灰预处理,停留时间从1小时到几天(Wyman等,2005,Bioresource Technol.96:1959-1966;Mosier等,2005,Bioresource Technol.96:673-686)。WO 2006/110891、WO 2006/110899、WO 2006/110900和WO 2006/110901公开了使用氨的预处理方法。
湿法氧化是热预处理,通常在180-200℃进行5-15分钟,加入氧化剂如过氧化氢或过压氧(Schmidt和Thomsen,1998,Bioresource Technol.64:139-151;Palonen等,2004,Appl.Biochem.Biotechnol.117:1-17;Varga等,2004,Biotechnol.Bioeng.88:567-574;Martin等,2006,J.Chem.Technol.Biotechnol.81:1669-1677)。预处理优选以1-40%干物质,例如2-30%干物质,或5-20%干物质进行,并且由于加入碱如碳酸钠,初始pH经常会增加。
湿法氧化预处理方法的修改方法,称为湿爆炸(湿氧化和蒸汽爆炸的组合),能够处理高达30%的干物质。在湿爆炸中,在预处理过程中,在一定的停留时间后引入氧化剂。然后通过闪变至大气压而结束预处理(WO 2006/032282)。
氨纤维爆炸(AFEX)涉及在温和温度如90-150℃和高压如17-20bar,用液体或气体氨将纤维素材料处理5-10分钟,其中干物质含量可以高达60%(Gollapalli等,2002,Appl.Biochem.Biotechnol.98:23-35;Chundawat等,2007,Biotechnol.Bioeng.96:219-231;Alizadeh等,2005,Appl.Biochem.Biotechnol.121:1133-1141;Teymouri等,2005,Bioresource Technol.96:2014-2018)。在AFEX预处理过程中,纤维素和半纤维素保持相对完整。木质素-糖复合物受切割。
有机溶剂预处理通过用含水乙醇(40-60%乙醇)在160-200℃提取30-60分钟而将纤维素材料去木质素化(Pan等,2005,Biotechnol.Bioeng.90:473-481;Pan等,2006,Biotechnol.Bioeng.94:851-861;Kurabi等,2005,Appl.Biochem.Biotechnol.121:219-230)。经常加入硫酸作为催化剂。在有机溶剂预处理中,去除大部分半纤维素和木质素。
合适的预处理方法的其他实例如Schell等,2003,Appl.Biochem andBiotechn.Vol.105-108:69-85,和Mosier等,2005,Bioresource Technology96:673-686,和美国专利公开申请2002/0164730所述。
在一个方面,化学预处理优选作为稀酸处理,并且更优选作为连续稀酸处理进行。酸通常是硫酸,但也可以使用其它酸,如乙酸、柠檬酸、硝酸、磷酸、酒石酸、琥珀酸、氯化氢或其混合物。弱酸处理在优选1-5,例如1-4,或1-2.5的pH范围内进行。在一个方面,酸浓度在优选0.01至10wt%酸,例如0.05至5wt%酸或0.1至2wt%酸的范围内。将酸与纤维素材料接触,并在优选140-200℃,例如165-190℃范围内的温度保持1至60分钟的时间。
在另一个方面,预处理发生在含水浆料中。在优选的方面,在预处理过程中纤维素材料以优选10-80wt%,例如20-70wt%或30-60wt%,如约40wt%的量存在。预处理的纤维素材料可以不洗涤或者使用本领域任何已知的方法洗涤,例如,用水洗涤。
机械预处理或物理预处理:术语“机械预处理”或“物理预处理”指任何促进颗粒大小减少的预处理。举例而言,此种预处理可涉及各种类型的磨制(grinding)或粉碎(milling)(例如,干磨、湿磨或振动球磨)。
纤维素材料可经物理(机械)和化学预处理。机械或物理预处理可与下述结合:汽蒸/蒸汽爆炸、水热解(hydrothermolysis)、稀酸或弱酸处理、高温、高压处理、辐射(例如微波辐射),或其组合。在一个方面,高压指优选约100至400psi,例如约150至约250psi的范围的压力。在另一个方面,高温指约100至300℃,例如约140至约200℃范围的温度。在一个优选的方面,机械或物理预处理在使用如上所定义的高温和高压的分批过程、使用蒸汽枪水解器系统,例如来自Sunds Defibrator AB,Sweden的Sunds Hydrolyzer中进行。所述物理和化学预处理可视需要顺序进行或同时进行。
因此,在一个优选的方面,对纤维素材料进行物理(机械)或化学预处理,或者它们的任何组合,以促进纤维素、半纤维素和/或木质素的分离和/或释放。
生物预处理:术语“生物预处理”指可以促进纤维素、半纤维素和/或木质素从纤维素材料分离和/或释放的任何生物预处理。生物预处理技术可以包括应用溶解木质素的微生物和/或酶(参见,例如,Hsu,T.-A.,1996,Pretreatmentof biomass,于Handbook on Bioethanol:Production and Utilization,Wyman,C.E编,Taylor&Francis,Washington,DC,179-212;Ghosh和Singh,1993,Physicochemical and biological treatments for enzymatic/microbial conversion oflignocellulosic biomass,Adv.Appl.Microbiol.39:295-333;McMillan,J.D.,1994,Pretreating lignocellulosic biomass:a review,于Enzymatic Conversion ofBiomass for Fuels Production,Himmel,M.E.,Baker,J.O.,和Overend,R.P.,编,ACS Symposium Series566,American Chemical Society,Washington,DC,第15章;Gong,C.S.,Cao,N.J.,Du,J.,和Tsao,G.T.,1999,Ethanol production fromrenewable resources,于Advances in Biochemical Engineering/Biotechnology,Scheper,T.,编,Springer-Verlag Berlin Heidelberg,Germany,65:207-241;Olsson和Hahn-Hagerdal,1996,Fermentation of lignocellulosic hydrolysates for ethanolproduction,Enz.Microb.Tech.18:312-331;和Vallander和Eriksson,1990,Production of ethanol from lignocellulosic materials:State of the art,Adv.Biochem.Eng./Biotechnol.42:63-95)。
糖化。在水解(也称作糖化)步骤中,将(例如经预处理的)纤维素材料水解以将纤维素和半纤维素分解成可发酵糖,如葡萄糖、纤维二糖、木糖、木酮糖、阿拉伯糖、甘露糖、半乳糖和/或可溶的寡糖。水解由本文中所述的酶组合物以酶法在本发明的嵌合GH61多肽的存在下进行。组合物的酶可以同时或顺序加入。
酶水解优选在易于由本领域技术人员确定的条件下,在合适的含水环境中进行。在一个方面,水解在适于酶的活性,即对于酶最佳的条件下进行。水解可以以补料批式或连续的过程进行,其中将纤维素材料逐渐补入,例如,含酶的水解溶液中。
糖化通常在搅拌釜反应器或发酵罐中,在受控的pH、温度和混合条件下进行。合适的处理时间、温度和pH条件可以由本领域技术人员容易地确定。例如,糖化可以持续长达200小时,但是通常优选进行约12至约120小时,例如约16至约72小时,或约24至约48小时。温度优选约25℃至约70℃,例如约30℃至约65℃,约40℃至约60℃,或约50℃至55℃的范围。pH优选约3至约8,例如约3.5至约7,约4至约6,或约pH5.0至约pH5.5的范围。干燥固体含量优选约5至约50wt%,例如约10至约40wt%,或20至约30wt%。
酶组合物可包含任何可用于降解纤维素材料的蛋白。
在一个方面,所述酶组合物包含或进一步包含一种或多种(例如几种)选自下组的蛋白:纤维素酶、具有纤维素分解增强活性的多肽,半纤维素酶、酯酶、棒曲霉素、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。在另一个方面,所述纤维素酶优选为一种或多种(例如几种)选自下组的酶:内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。在另一个方面,所述半纤维素酶优选为一种或多种(例如几种)选自下组的酶:乙酰甘露聚糖酯酶、乙酰木聚糖酯酶、阿拉伯聚糖酶、阿拉伯呋喃糖苷酶、香豆酸酯酶、阿魏酸酯酶、半乳糖苷酶、葡糖醛酸糖苷酶、葡糖醛酸酯酶、甘露聚糖酶、甘露糖苷酶、木聚糖酶和木糖苷酶。
在另一个方面,所述酶组合物包含一种或多种(例如几种)纤维素分解酶。在另一个方面,所述酶组合物包含或进一步包含一种或多种(例如几种)半纤维素分解酶。在另一个方面,所述酶组合物包含一种或多种(例如几种)纤维素分解酶和一种或多种(例如几种)半纤维素分解酶。在另一个方面,所述酶组合物包含一种或多种(例如几种)选自下组的酶:纤维素分解酶和半纤维素分解酶。在另一个方面,所述酶组合物包含内切葡聚糖酶。在另一个方面,所述酶组合物包含纤维二糖水解酶。在另一个方面,所述酶组合物包含β-葡糖苷酶。在另一个方面,所述酶组合物包含具有纤维素分解增强活性的多肽。在另一个方面,所述酶组合物包含内切葡聚糖酶和具有纤维素分解增强活性的多肽。在另一个方面,所述酶组合物包含纤维二糖水解酶和具有纤维素分解增强活性的多肽。在另一个方面,所述酶组合物包含β-葡糖苷酶和具有纤维素分解增强活性的多肽。在另一个方面,所述酶组合物包含内切葡聚糖酶和纤维二糖水解酶。在另一个方面,所述酶组合物包含内切葡聚糖酶和β-葡糖苷酶。在另一个方面,所述酶组合物包含纤维二糖水解酶和β-葡糖苷酶。在另一个方面,所述酶组合物包含内切葡聚糖酶、纤维二糖水解酶和具有纤维素分解增强活性的多肽。在另一个方面,所述酶组合物包含内切葡聚糖酶、β-葡糖苷酶和具有纤维素分解增强活性的多肽。在另一个方面,所述酶组合物包含纤维二糖水解酶、β-葡糖苷酶和具有纤维素分解增强活性的多肽。在另一个方面,所述酶组合物包含内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。在另一个方面,所述酶组合物包含内切葡聚糖酶、纤维二糖水解酶、β-葡糖苷酶和具有纤维素分解增强活性的多肽。
在另一个方面,所述酶组合物包含乙酰甘露聚糖酯酶。在另一个方面,所述酶组合物包含乙酰木聚糖酯酶。在另一个方面,所述酶组合物包含阿拉伯聚糖酶(例如α-L-阿拉伯聚糖酶)。在另一个方面,所述酶组合物包含阿拉伯呋喃糖苷酶(例如α-L-阿拉伯呋喃糖苷酶)。在另一个方面,所述酶组合物包含香豆酸酯酶。在另一个方面,所述酶组合物包含阿魏酸酯酶。在另一个方面,所述酶组合物包含半乳糖苷酶(例如α-半乳糖苷酶和或β-半乳糖苷酶)。在另一个方面,所述酶组合物包含葡糖醛酸糖苷酶(例如α-D-葡糖醛酸糖苷酶)。在另一个方面,所述酶组合物包含葡糖醛酸酯酶。在另一个方面,所述酶组合物包含甘露聚糖酶。在另一个方面,所述酶组合物包含甘露糖苷酶(例如β-甘露糖苷酶)。在另一个方面,所述酶组合物包含木聚糖酶。在一个优选的方面,所述木聚糖酶是家族10木聚糖酶。在另一个方面,所述酶组合物包含木糖苷酶(例如β-木糖苷酶)。
在另一个方面,所述酶组合物包含酯酶。在另一个方面,所述酶组合物包含棒曲霉素。在另一个方面,所述酶组合物包含漆酶。在另一个方面,所述酶组合物包含木质素分解酶。在另一个优选的方面,所述木质素分解酶是锰过氧化物酶。在另一个优选的方面,所述木质素分解酶是木质素过氧化物酶。在另一个优选的方面,所述木质素分解酶是产生H2O2的酶。在另一个方面,所述酶组合物包含果胶酶。在另一个方面,所述酶组合物包含过氧化物酶。在另一个方面,所述酶组合物包含蛋白酶。在另一个方面,所述酶组合物包含膨胀素。
在本发明的方法中,酶可在糖化,糖化和发酵,或发酵之前或之中添加。
所述酶组合物的一种或多种(例如几种)组分可为野生型蛋白、重组蛋白或野生型蛋白和重组蛋白的组合。举例而言,一种或多种(例如几种)组分可为细胞的天然蛋白,其用作宿主细胞以重组表达酶组合物的一种或多种(例如几种)其他组分。酶组合物的一种或多种(例如几种)组分可作为单组分产生,然后将其组合以形成酶组合物。所述酶组合物可为多组分和单组分蛋白制备物的组合。
用于本发明方法中的酶可为任何适用于如例如发酵液配制物或细胞组合物,含或不含细胞碎片的细胞裂解液,半纯化或纯化的酶制备物,或宿主细胞,作为酶的来源。所述酶组合物可为干粉或颗粒,无粉尘的颗粒,液体,稳定化液体或稳定化受保护的酶。液体酶制备物可根据确立的工艺,例如通过添加稳定剂如糖、糖醇或其他多元醇,和/或乳酸或其他有机酸来稳定化。
酶和嵌合GH61多肽的最适量取决于几个因素,其包括但不限于,组分纤维素分解和/或半纤维素分解酶的混合物、纤维素材料、纤维素材料的浓度、纤维素材料的预处理、温度、时间、pH和包括发酵生物体(例如,同步糖化和发酵的酵母)。
在一个方面,纤维素分解酶或半纤维素分解酶对于纤维素材料的有效量是约0.5至约50mg,例如约0.5至约40mg,约0.5至约25mg,约0.75至约20mg,约0.75至约15mg,约0.5至约10mg,或约2.5至约10mg每g纤维素材料。
在另一个方面,具有纤维素分解增强活性的嵌合GH61多肽对于纤维素材料的有效量是约0.01至约50.0mg,例如约0.01至约40mg,约0.01至约30mg,约0.01至约20mg,约0.01至约10mg,约0.01至约5mg,约0.025至约1.5mg,约0.05至约1.25mg,约0.075至约1.25mg,约0.1至约1.25mg,约0.15至约1.25mg,或约0.25至约1.0mg每g纤维素材料。
在另一个方面,具有纤维素分解增强活性的嵌合GH61多肽对于纤维素分解酶或半纤维素分解酶的有效量是约0.005至约1.0g,例如约0.01至约1.0g,约0.15至约0.75g,约0.15至约0.5g,约0.1至约0.5g,约0.1至约0.5g,或约0.05至约0.2g每g纤维素分解酶或半纤维素分解酶。
具有纤维素分解酶活性或半纤维素分解酶活性的多肽,以及任何可用于纤维素材料的降解的蛋白/多肽,例如具有纤维素分解增强活性的GH61多肽(在本文中统称为具有酶活性的多肽)酶可源自或获得自任何合适的来源,包括细菌、真菌、酵母、植物或哺乳动物来源。术语“获得的”在本文中还意指该酶可在宿主生物中使用本文中所述的方法重组产生,其中经重组产生的酶对于宿主生物是天然的或异源的,或具有修饰的氨基酸序列,例如,具有一个或多个(例如几个)缺失、插入和/或取代的氨基酸,即重组产生的酶,其为天然氨基酸序列的片段和/或突变体或通过本领域已知的氨基酸改组方法产生的酶。天然酶的含义中涵盖的是天然变体,而外来酶的含义中涵盖的是重组(如通过定位诱变或重排)获得的变体。
具有酶活性的多肽可以是细菌多肽。例如,所述多肽可以是革兰氏阳性细菌多肽如芽孢杆菌属(Bacillus)、链球菌属(Streptococcus)、链霉菌属(Streptomyces)、葡萄球菌属(Staphylococcus)、肠球菌属(Enterococcus)、乳杆菌属(Lactobacillus)、乳球菌属(Lactococcus)、梭菌属(Clostridium)、地芽孢杆菌属(Geobacillus)、热解纤维素菌属(Caldicellulosiruptor)、热酸菌属(Acidothermus)、Thermobifidia或海洋芽孢杆菌属(Oceanobacillus)多肽,所述多肽具有酶活性;或革兰氏阴性细菌多肽,如大肠杆菌、假单胞菌属(Pseudomonas)、沙门氏菌属(Salmonella)、弯曲杆菌属(Campylobacter)、螺杆菌属(Helicobacter)、黄杆菌属(Flavobacterium)、梭杆菌属(Fusobacterium)、泥杆菌属(Ilyobacter)、奈瑟氏菌属(Neisseria)或脲原体属(Ureaplasma)多肽,所述多肽具有酶活性。
在一个方面,所述多肽是具有酶活性的嗜碱芽孢杆菌、解淀粉芽孢杆菌、短芽孢杆菌、环状芽孢杆菌、克劳氏芽孢杆菌、凝结芽孢杆菌、坚强芽孢杆菌、灿烂芽孢杆菌、迟缓芽孢杆菌、地衣芽孢杆菌、巨大芽孢杆菌、短小芽孢杆菌、嗜热脂肪芽孢杆菌、枯草芽孢杆菌或苏云金芽孢杆菌多肽。
在另一个优选的方面,所述多肽是具有酶活性的似马链球菌、酿脓链球菌、乳房链球菌或马链球菌兽瘟亚种多肽。
在另一个优选的方面,所述多肽是具有酶活性的不产色链霉菌、除虫链霉菌、天蓝链霉菌、灰色链霉菌或浅青紫链霉菌多肽。
具有酶活性的多肽也可以是真菌多肽,并且更优选酵母多肽如假丝酵母属、克鲁维酵母属、毕赤酵母属、酵母属、裂殖酵母属或西洋蓍霉属多肽,其具有酶活性;或更优选丝状真菌多肽如枝顶孢霉属、伞菌属、链格孢属、曲霉属、短梗霉属、Botryospaeria、拟蜡菌属、Chaetomidium、金孢子菌属、Claviceps、Cochliobolus、鬼伞属、Coptotermes、棒囊壳属、隐丛赤壳菌属、隐球菌属、色二孢属、黑耳属、Filibasidium、镰孢属、赤霉属、全鞭毛虫属、腐质霉属、耙齿菌属、蘑菇属、Leptospaeria、梨孢菌属、Melanocarpus、多孔菌属、毛霉属、毁丝霉属、新考玛脂霉属、脉孢菌属、拟青霉属、青霉属、平革菌属、瘤胃壶菌属、Poitrasia、假黑盘菌属、Pseudotrichonympha、根毛霉属、裂褶菌属、柱顶孢属、踝节菌属、嗜热子囊菌属、梭孢壳属、弯颈霉属、木霉属、长毛盘菌属、轮枝孢属、包脚菇属或炭角菌属多肽,其具有酶活性。
在一个方面,所述多肽是具有酶活性的卡尔酵母、酿酒酵母、糖化酵母、道格拉氏酵母、克鲁弗酵母、诺地酵母或卵形酵母多肽。
在另一个方面,所述多肽是具有酶活性的解纤维枝顶孢霉、棘孢曲霉、
泡盛曲霉、烟曲霉、臭曲霉、日本曲霉、构巢曲霉、黑曲霉、米曲霉、嗜角质金孢子菌、Chrysosporium lucknowense、热带金孢子菌、Chrysosporiummerdarium、Chrysosporium inops、毡金孢子菌、Chrysosporium queenslandicum、Chrysosporium zonatum、杆孢状镰孢、禾谷镰孢、库威镰孢、大刀镰孢、禾本科镰孢、禾赤镰孢、异孢镰孢、合欢木镰孢、尖镰孢、多枝镰孢、粉红镰孢、接骨木镰孢、肤色镰孢、拟分枝孢镰孢、硫色镰孢、圆镰孢、拟丝孢镰孢、镶片镰孢、灰腐质霉、特异腐质霉、疏棉状腐质霉、白耙齿菌、米黑毛霉、嗜热毁丝霉、粗糙脉孢菌、绳状青霉、产紫青霉、黄孢平革菌、Thielaviaachromatica、Thielavia albomyces、Thielavia albopilosa、澳洲梭孢壳、Thielaviafimeti、小孢梭孢壳、卵孢梭孢壳、Thielavia peruviana、瘤孢梭孢壳、毛梭孢壳、Thielavia subthermophila、土生梭孢霉、哈茨木霉、康宁木霉、长枝木霉、里氏木霉、绿色木霉或褐孢长毛盘菌(Trichophaea saccata)多肽。
还可以使用具有酶活性的多肽经化学修饰或蛋白质工程改造的突变体。
酶组合物的一种或多种(例如几种)组分可以是重组组分,亦即,通过克隆编码所述单独组分的DNA序列并随后用该DNA序列转化细胞并在宿主中表达(参见,例如,WO91/17243和WO91/17244)产生。所述宿主优选为异源宿主(酶对宿主是外源的),但该宿主在一定条件下也可为同源宿主(酶对宿主是天然的)。单组分纤维素分解蛋白还可通过从发酵液中提纯这样的蛋白质来制备。
在一个方面,所述一种或多种(例如几种)纤维素分解酶包含商业性纤维素分解酶制备物。适用于本发明的商业的纤维素分解酶制备物的实例包括,例如,CELLIC
Figure BDA00003531984600621
Ctec(Novozymes A/S)、CELLIC
Figure BDA00003531984600622
CTec2(Novozymes A/S)、CELLUCLASTTM(Novozymes A/S)、NOVOZYMTM188(Novozymes A/S)、CELLUZYMETM(Novozymes A/S)、CEREFLOTM(Novozymes A/S)和ULTRAFLOTM(Novozymes A/S),ACCELERASETM(Genencor Int.)、LAMINEXTM(Genencor Int.)、SPEZYMETMCP(Genencor Int.),FILTRASE
Figure BDA00003531984600623
NL(DSM)、METHAPLUS
Figure BDA00003531984600624
S/L100(DSM),ROHAMENTTM7069W(
Figure BDA00003531984600628
GmbH),和FIBREZYME
Figure BDA00003531984600625
LDI(Dyadic International,Inc.)、FIBREZYMELBR(Dyadic International,Inc.)或VISCOSTAR150L(Dyadic International,Inc.)。所述纤维素酶以固体的约0.001至约5.0wt%,例如固体的0.025至约4.0wt%,或固体的约0.005至约2.0wt%的有效量添加。
可以用于本发明的方法的细菌内切葡聚糖酶的实例包括但不仅限于,解纤维热酸菌(Acidothermus cellulolyticus)内切葡聚糖酶(WO 91/05039;WO93/15186;美国专利5,275,944;WO 96/02551;美国专利5,536,655,WO00/70031,WO 05/093050);Thermobifida fusca内切葡聚糖酶III(WO05/093050);和Thermobifida fusca内切葡聚糖酶V(WO 05/093050)。
可以用于本发明的真菌内切葡聚糖酶的实例包括但不仅限于,里氏木霉内切葡聚糖酶I(Penttila等,1986,Gene45:253-263,里氏木霉Cel7B内切葡聚糖酶I;GENBANKTM登录号M15665;SEQ ID NO:2);里氏木霉内切葡聚糖酶II(Saloheimo等,1988,Gene63:11-22,里氏木霉Cel5A内切葡聚糖酶II;GENBANKTM登录号M19373;SEQ ID NO:4);里氏木霉内切葡聚糖酶III(Okada等,1988,Appl.Environ.Microbiol.64:555-563;GENBANKTM登录号AB003694;SEQ ID NO:6);里氏木霉内切葡聚糖酶V(Saloheimo等,1994,MolecularMicrobiology13:219-228;GENBANKTM登录号Z33381;SEQ ID NO:8);棘孢曲霉内切葡聚糖酶(Ooi等,1990,Nucleic Acids Research18:5884);川地曲霉(Aspergillus kawachii)内切葡聚糖酶(Sakamoto等,1995,Current Genetics27:435-439);胡萝卜软腐欧文氏菌(Erwinia carotovara)内切葡聚糖酶(Saarilahti等,1990,Gene90:9-14);尖镰孢内切葡聚糖酶(GENBANKTM登录号L29381);灰腐质霉thermoidea变种内切葡聚糖酶(GENBANKTM登录号AB003107);Melanocarpus albomyces内切葡聚糖酶(GENBANKTM登录号MAL515703);粗糙脉孢菌内切葡聚糖酶(GENBANKTM登录号XM_324477);特异腐质霉内切葡聚糖酶V(SEQ ID NO:10);嗜热毁丝霉CBS117.65内切葡聚糖酶(SEQ ID NO:12);担子菌纲(basidiomycete)CBS495.95内切葡聚糖酶(SEQ ID NO:14);担子菌纲CBS494.95内切葡聚糖酶(SEQ ID NO:16);土生梭孢霉NRRL8126CEL6B内切葡聚糖酶(SEQ ID NO:18);土生梭孢霉NRRL8126CEL6C内切葡聚糖酶(SEQ IDNO:20);土生梭孢霉NRRL8126CEL7C内切葡聚糖酶(SEQ ID NO:22);土生梭孢霉NRRL8126CEL7E内切葡聚糖酶(SEQ ID NO:24);土生梭孢霉NRRL8126CEL7F内切葡聚糖酶(SEQ ID NO:26);Cladorrhinum foecundissimum ATCC62373CEL7A内切葡聚糖酶(SEQ ID NO:28);以及里氏木霉菌株No.VTT-D-80133内切葡聚糖酶(SEQ ID NO:30;GENBANKTM登录号M15665)。上述的SEQ ID NO:2,SEQ ID NO:4,SEQ ID NO:6,SEQ ID NO:8,SEQ ID NO:10,SEQ ID NO:12,SEQ ID NO:14,SEQ ID NO:16,SEQ ID NO:18,SEQ ID NO:20,SEQ IDNO:22,SEQ ID NO:24,SEQ ID NO:26,SEQ ID NO:28和SEQ ID NO:30的内切葡聚糖酶分别由SEQ ID NO:1,SEQ ID NO:3,SEQ ID NO:5,SEQ ID NO:7,SEQ ID NO:9,SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:15,SEQ ID NO:17,SEQ ID NO:19,SEQ ID NO:21,SEQ ID NO:23,SEQ ID NO:25,SEQ IDNO:27,和SEQ ID NO:29的成熟多肽编码序列编码。
可用于本发明的纤维二糖水解酶的实例包括但不仅限于,里氏木霉纤维二糖水解酶I(SEQ ID NO:32);里氏木霉纤维二糖水解酶II(SEQ ID NO:34);特异腐质霉纤维二糖水解酶I(SEQ ID NO:36);嗜热毁丝霉纤维二糖水解酶II(SEQ ID NO:38和SEQ ID NO:40);土生梭孢霉纤维二糖水解酶II(CEL6A)(SEQ ID NO:42);嗜热毛壳菌(Chaetomium thermophilum)纤维二糖水解酶I(SEQID NO:44);和嗜热毛壳菌纤维二糖水解酶II(SEQ ID NO:46),烟曲霉纤维二糖水解酶I(SEQ ID NO:48),和烟曲霉纤维二糖水解酶II(SEQ ID NO:50)。上述的SEQ ID NO:32,SEQ ID NO:34,SEQ ID NO:36,SEQ ID NO:38,SEQ IDNO:40,SEQ ID NO:42,SEQ ID NO:44,SEQ ID NO:46,SEQ ID NO:48,和SEQ ID NO:50的纤维二糖水解酶分别由SEQ ID NO:31,SEQ ID NO:33,SEQID NO:35,SEQ ID NO:37,SEQ ID NO:39,SEQ ID NO:41,SEQ ID NO:43,SEQ ID NO:45,SEQ ID NO:47,和SEQ ID NO:49的成熟多肽编码序列编码。
可用于本发明的β-葡糖苷酶的实例包括但不仅限于米曲霉β-葡糖苷酶(SEQ ID NO:52);烟曲霉β-葡糖苷酶(SEQ ID NO:54);巴西青霉IBT20888β-葡糖苷酶(SEQ ID NO:56);黑曲霉β-葡糖苷酶(SEQ ID NO:58);和棘孢曲霉β-葡糖苷酶(SEQ ID NO:60)。上述的SEQ ID NO:52,SEQ ID NO:54,SEQ IDNO:56,SEQ ID NO:58,和SEQ ID NO:60的β-葡糖苷酶分别由SEQ ID NO:51,SEQ ID NO:53,SEQ ID NO:55,SEQ ID NO:57,和SEQ ID NO:59的成熟多肽编码序列编码。
其它可用于本发明的β-葡糖苷酶的实例包括SEQ ID NO:62的米曲霉β-葡糖苷酶变体融合蛋白或SEQ ID NO:64的米曲霉β-葡糖苷酶融合蛋白。SEQID NO:62和SEQ ID NO:64的β-葡糖苷酶融合蛋白分别由SEQ ID NO:61和SEQ ID NO:63编码。
其它可用的内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶公开于使用根据Henrissat B.,1991,A classification of glycosyl hydrolases based on amino-acidsequence similarities,Biochem.J.280:309-316和Henrissat B.和Bairoch A.,1996,Updating the sequence-based classification of glycosyl hydrolases,Biochem.J.316:695-696的分类的许多糖基水解酶家族中。
其它可用于本发明的纤维素分解酶描述于WO 98/13465、WO 98/015619、WO 98/015633、WO 99/06574、WO 99/10481、WO 99/025847、WO 99/031255、WO 2002/101078、WO 2003/027306、WO 2003/052054、WO 2003/052055、WO 2003/052056、WO 2003/052057、WO 2003/052118、WO 2004/016760、WO 2004/043980、WO 2004/048592、WO 2005/001065、WO 2005/028636、WO 2005/093050、WO 2005/093073、WO 2006/074005、WO 2006/117432、WO 2007/071818、WO 2007/071820、WO 2008/008070、WO 2008/008793、美国专利No.5,457,046、美国专利No.5,648,263以及美国专利No.5,686,593。
在本发明的方法中,可将任何具有纤维素分解增强活性的GH61多肽用作酶组合物的组分。
可用于本发明的工艺的具有纤维素分解增强活性的GH61多肽的实例包括但不限于:来自土生梭孢霉(WO 2005/074647,WO 2008/148131,和WO2011/035027),桔橙嗜热子囊菌(WO 2005/074656和WO 2010/065830),里氏木霉(WO 2007/089290),嗜热毁丝霉(WO 2009/085935,WO 2009/085859,WO 2009/085864,WO 2009/085868),烟曲霉(WO 2010/138754)的GH61多肽,来自嗜松青霉(WO 2011/005867),桔橙嗜热子囊菌属菌种(WO 2011/039319),青霉属菌种(WO 2011/041397),和Thermoascus crustaceous(WO 2011/041504)的GH61多肽。
在一个方面,所述具有纤维素分解增强活性的GH61多肽包含下述基序:
[ILMV]-P-X(4,5)-G-X-Y-[ILMV]-X-R-X-[EQ]-X(4)-[HNQ](SEQ ID NO:171或SEQ ID NO:172)和[FW]-[TF]-K-[AIV],
其中X为任意氨基酸,X(4,5)为在4或5个连续位置的任意氨基酸,而X(4)是在4个连续位置的任意氨基酸。
包含上述所示的基序的分离的多肽可进一步包含:
H-X(1,2)-G-P-X(3)-[YW]-[AILMV](SEQ ID NO:173或SEQ ID NO:174),
[EQ]-X-Y-X(2)-C-X-[EHQN]-[FILV]-X-[ILV](SEQ ID NO:175),或
H-X(1,2)-G-P-X(3)-[YW]-[AILMV](SEQ ID NO:176或SEQ ID NO:177)和[EQ]-X-Y-X(2)-C-X-[EHQN]-[FILV]-X-[ILV](SEQ ID NO:178),
其中X为任意氨基酸,X(1,2)为在1个位置或2个连续位置的任意氨基酸,X(3)为3个连续位置的任意氨基酸,而X(2)为2个连续位置的任意氨基酸。在上述基序中,采用公认的IUPAC单字母氨基酸缩写。
在一个优选的实施方案中,所述具有纤维素分解增强活性的分离的GH61多肽进一步包含H-X(1,2)-G-P-X(3)-[YW]-[AILMV](SEQ ID NO:179或SEQ ID NO:180)。在另一个优选的方面,具有纤维素分解增强活性的分离的GH61多肽进一步包含[EQ]-X-Y-X(2)-C-X-[EHQN]-[FILV]-X-[ILV](SEQ ID NO:181)。在另一个优选的方面,具有纤维素分解增强活性的分离的GH61多肽进一步包含H-X(1,2)-G-P-X(3)-[YW]-[AILMV](SEQ ID NO:182或SEQ ID NO:183)和[EQ]-X-Y-X(2)-C-X-[EHQN]-[FILV]-X-[ILV](SEQ ID NO:184)。
在第二个方面,所述具有纤维素分解增强活性的分离的多肽包含下述基序:
[ILMV]-P-X(4,5)-G-X-Y-[ILMV]-X-R-X-[EQ]-X(3)-A-[HNQ](SEQ ID NO:185或SEQ ID NO:186),
其中X为任意氨基酸,X(4,5)为在4或5个连续位置的任意氨基酸,而X(3)为3个连续位置的任意氨基酸。在上述基序中,采用公认的IUPAC单字母氨基酸缩写。
在第三个方面,具有纤维素分解增强活性的多肽包含氨基酸序列,所述氨基酸序列与SEQ ID NO:66,SEQ ID NO:68,SEQ ID NO:70,SEQ ID NO:72,SEQ ID NO:74,SEQ ID NO:76,SEQ ID NO:78,SEQ ID NO:80,SEQID NO:82,SEQ ID NO:84,SEQ ID NO:86,SEQ ID NO:88,SEQ ID NO:90,SEQ ID NO:92,SEQ ID NO:94,SEQ ID NO:96,SEQ ID NO:98,SEQ ID NO:100,SEQ ID NO:102,SEQ ID NO:104,SEQ ID NO:106,SEQ ID NO:108,SEQ ID NO:110,SEQ ID NO:112,SEQ ID NO:114,SEQ ID NO:116,SEQID NO:118,SEQ ID NO:120,SEQ ID NO:122,SEQ ID NO:124,SEQ ID NO:126,SEQ ID NO:128,SEQ ID NO:144,SEQ ID NO:146,SEQ ID NO:148,SEQ ID NO:150,SEQ ID NO:152,SEQ ID NO:154,SEQ ID NO:156,SEQID NO:158,SEQ ID NO:160,SEQ ID NO:162,SEQ ID NO:164,SEQ ID NO:166,SEQ ID NO:168,或SEQ ID NO:170的成熟多肽具有至少60%,例如至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,或至少95%,至少96%,至少97%,至少98%,至少99%,或至少100%的序列同一性。
在第四个方面,具有纤维素分解增强活性的多肽由多核苷酸编码,所述多核苷酸在至少非常低严格条件下,优选在至少低严格条件下,更优选在至少中等严格条件下,更优选在至少中等-高严格条件下,甚至更优选在至少高严格条件下,和最优选在至少非常高严格条件下与以下杂交:(i)SEQ ID NO:65,SEQ ID NO:67,SEQ ID NO:69,SEQ ID NO:71,SEQ ID NO:73,SEQID NO:75,SEQ ID NO:77,SEQ ID NO:79,SEQ ID NO:81,SEQ ID NO:83,SEQ ID NO:85,SEQ ID NO:87,SEQ ID NO:89,SEQ ID NO:91,SEQ ID NO:93,SEQ ID NO:95,SEQ ID NO:97,SEQ ID NO:99,SEQ ID NO:101,SEQID NO:103,SEQ ID NO:105,SEQ ID NO:107,SEQ ID NO:109,SEQ ID NO:111,SEQ ID NO:113,SEQ ID NO:115,SEQ ID NO:117,SEQ ID NO:119,SEQ ID NO:121,SEQ ID NO:123,SEQ ID NO:125,SEQ ID NO:127,SEQID NO:143,SEQ ID NO:145,SEQ ID NO:147,SEQ ID NO:149,SEQ ID NO:151,SEQ ID NO:153,SEQ ID NO:155,SEQ ID NO:157,SEQ ID NO:159,SEQ ID NO:161,SEQ ID NO:163,SEQ ID NO:165,SEQ ID NO:167,或SEQ ID NO:169的成熟多肽编码序列;(ii)SEQ ID NO:65,SEQ ID NO:67,SEQ ID NO:69,SEQ ID NO:77,SEQ ID NO:81,SEQ ID NO:83,SEQ ID NO:85,SEQ ID NO:87,SEQ ID NO:89,SEQ ID NO:91,SEQ ID NO:93,SEQID NO:95,SEQ ID NO:97,SEQ ID NO:99,SEQ ID NO:101,SEQ ID NO:103,SEQ ID NO:105,SEQ ID NO:107,SEQ ID NO:109,SEQ ID NO:111,SEQ ID NO:113,SEQ ID NO:115,SEQ ID NO:117,SEQ ID NO:119,SEQID NO:121,SEQ ID NO:123,SEQ ID NO:125,或SEQ ID NO:127,SEQ IDNO:143,SEQ ID NO:145,SEQ ID NO:147,SEQ ID NO:149,SEQ ID NO:151,SEQ ID NO:153,SEQ ID NO:155,SEQ ID NO:157,SEQ ID NO:159,SEQ ID NO:167,或SEQ ID NO:169的成熟多肽编码序列的cDNA序列,或包含SEQ ID NO:71,SEQ ID NO:73,SEQ ID NO:75,SEQ ID NO:79,SEQID NO:161,SEQ ID NO:163,或SEQ ID NO:165的成熟多肽编码序列的基因组DNA序列,(iii)(i)或(ii)的亚序列,或(iv)(i),(ii),或(iii)的全长互补链(J.Sambrook,E.F.Fritsch,和T.Maniatus,1989,见上文)。SEQ ID NO:65,SEQID NO:67,SEQ ID NO:69,SEQ ID NO:71,SEQ ID NO:73,SEQ ID NO:75,SEQ ID NO:77,SEQ ID NO:79,SEQ ID NO:81,SEQ ID NO:83,SEQ ID NO:85,SEQ ID NO:87,SEQ ID NO:89,SEQ ID NO:91,SEQ ID NO:93,SEQID NO:95,SEQ ID NO:97,SEQ ID NO:99,SEQ ID NO:101,SEQ ID NO:103,SEQ ID NO:105,SEQ ID NO:107,SEQ ID NO:109,SEQ ID NO:111,SEQ ID NO:113,SEQ ID NO:115,SEQ ID NO:117,SEQ ID NO:119,SEQID NO:121,SEQ ID NO:123,SEQ ID NO:125,SEQ ID NO:127,SEQ ID NO:143,SEQ ID NO:145,SEQ ID NO:147,SEQ ID NO:149,SEQ ID NO:151,SEQ ID NO:153,SEQ ID NO:155,SEQ ID NO:157,SEQ ID NO:159,SEQID NO:161,SEQ ID NO:163,SEQ ID NO:165,SEQ ID NO:167,或SEQ IDNO:169的成熟多肽编码序列的亚序列包含至少100个连续的核苷酸或优选至少200个连续的核苷酸。而且,所述亚序列可编码具有纤维素分解增强活性的多肽片段。
在第五个方面,所述具有纤维素分解增强活性的多肽由多核苷酸编码,所述多核苷酸包含或组成为核苷酸序列,所述核苷酸序列与SEQ ID NO:65,SEQ ID NO:67,SEQ ID NO:69,SEQ ID NO:71,SEQ ID NO:73,SEQ ID NO:75,SEQ ID NO:77,SEQ ID NO:79,SEQ ID NO:81,SEQ ID NO:83,SEQID NO:85,SEQ ID NO:87,SEQ ID NO:89,SEQ ID NO:91,SEQ ID NO:93,SEQ ID NO:95,SEQ ID NO:97,SEQ ID NO:99,SEQ ID NO:101,SEQ IDNO:103,SEQ ID NO:105,SEQ ID NO:107,SEQ ID NO:109,SEQ ID NO:111,SEQ ID NO:113,SEQ ID NO:115,SEQ ID NO:117,SEQ ID NO:119,SEQ ID NO:121,SEQ ID NO:123,SEQ ID NO:125,SEQ ID NO:127,SEQID NO:143,SEQ ID NO:145,SEQ ID NO:147,SEQ ID NO:149,SEQ ID NO:151,SEQ ID NO:153,SEQ ID NO:155,SEQ ID NO:157,SEQ ID NO:159,SEQ ID NO:161,SEQ ID NO:163,SEQ ID NO:165,SEQ ID NO:167,或SEQ ID NO:169的成熟多肽编码序列或SEQ ID NO:65,SEQ ID NO:67,SEQID NO:69,SEQ ID NO:77,SEQ ID NO:81,SEQ ID NO:83,SEQ ID NO:85,SEQ ID NO:87,SEQ ID NO:89,SEQ ID NO:91,SEQ ID NO:93,SEQ ID NO:95,SEQ ID NO:97,SEQ ID NO:99,SEQ ID NO:101,SEQ ID NO:103,SEQ ID NO:105,SEQ ID NO:107,SEQ ID NO:109,SEQ ID NO:111,SEQID NO:113,SEQ ID NO:115,SEQ ID NO:117,SEQ ID NO:119,SEQ ID NO:121,SEQ ID NO:123,SEQ ID NO:125,or SEQ ID NO:127,SEQ ID NO:143,SEQ ID NO:145,SEQ ID NO:147,SEQ ID NO:149,SEQ ID NO:151,SEQID NO:153,SEQ ID NO:155,SEQ ID NO:157,SEQ ID NO:159,SEQ ID NO:167,或SEQ ID NO:169的成熟多肽编码序列的cDNA序列,或包含SEQ IDNO:71,SEQ ID NO:73,SEQ ID NO:75,SEQ ID NO:79,SEQ ID NO:161,SEQ ID NO:163,或SEQ ID NO:165的成熟多肽编码序列的基因组DNA序列具有优选至少60%,更优选至少65%,更优选至少70%,更优选至少75%,更优选至少80%,更优选至少85%,甚至更优选至少90%,最优选至少91%,至少92%,至少93%,至少94%,或至少95%,和甚至最优选至少96%,至少97%,至少98%,至少99%,或至少100%的序列同一性。
在第六个方面,具有纤维素分解增强活性的多肽是SEQ ID NO:66,SEQID NO:68,SEQ ID NO:70,SEQ ID NO:72,SEQ ID NO:74,SEQ ID NO:76,SEQ ID NO:78,SEQ ID NO:80,SEQ ID NO:82,SEQ ID NO:84,SEQ ID NO:86,SEQ ID NO:88,SEQ ID NO:90,SEQ ID NO:92,SEQ ID NO:94,SEQID NO:96,SEQ ID NO:98,SEQ ID NO:100,SEQ ID NO:102,SEQ ID NO:104,SEQ ID NO:106,SEQ ID NO:108,SEQ ID NO:110,SEQ ID NO:112,SEQ ID NO:114,SEQ ID NO:116,SEQ ID NO:118,SEQ ID NO:120,SEQID NO:122,SEQ ID NO:124,SEQ ID NO:126,SEQ ID NO:128,SEQ ID NO:144,SEQ ID NO:146,SEQ ID NO:148,SEQ ID NO:150,SEQ ID NO:152,SEQ ID NO:154,SEQ ID NO:156,SEQ ID NO:158,SEQ ID NO:160,SEQID NO:162,SEQ ID NO:164,SEQ ID NO:166,SEQ ID NO:168,或SEQ IDNO:170,或其同源序列包含一个或多个(或几个)氨基酸的取代、缺失和/或插入的人工变体。
优选地,氨基酸改变为性质上较不重要的(of a minor nature),即保守的氨基酸取代或插入,其不显著影响蛋白质的折叠和/或活性;通常为1至大约30个氨基酸的小缺失;小的氨基或羧基末端延伸,例如氨基末端甲硫氨酸残基;多至大约20-25个残基的小接头肽;或通过改变净电荷或其它功能来促进纯化的小延伸,如多组氨酸序列(poly histidine tract)、抗原表位(antigenic epitope)或结合域(binding domain)。
保守取代的实例是在以下组之内:碱性氨基酸组(精氨酸、赖氨酸和组氨酸)、酸性氨基酸组(谷氨酸和天冬氨酸)、极性氨基酸组(谷氨酰胺和天冬酰胺)、疏水氨基酸组(亮氨酸、异亮氨酸和缬氨酸)、芳族氨基酸组(苯丙氨酸、色氨酸和酪氨酸)和小氨基酸组(甘氨酸、丙氨酸、丝氨酸、苏氨酸和甲硫氨酸)。通常不改变比活性(specific activity)的氨基酸取代是本领域已知的,并且由例如H.Neurath和R.L.Hill,1979,于The Proteins,Academic Press,New York中描述。最普遍发生的交换是Ala/Ser、Val/Ile、Asp/Glu、Thr/Ser、Ala/Gly、Ala/Thr、Ser/Asn、Ala/Val、Ser/Gly、Tyr/Phe、Ala/Pro、Lys/Arg、Asp/Asn、Leu/Ile、Leu/Val、Ala/Glu和Asp/Gly。
或者,氨基酸改变具有这样的性质以使多肽的物理化学性质改变。例如,氨基酸改变可改善多肽的热稳定性,改变底物特异性,改变最适pH等。
能够根据本领域已知的方法,例如定位诱变或丙氨酸分区诱变法(Cunningham和Wells,1989,Science244:1081-1085)来鉴定亲本多肽中的必需氨基酸。在后一技术中,将单一丙氨酸突变引入到分子中的每个残基,并且就纤维素分解增强活性测试所得突变分子以鉴定对于所述分子的活性关键的氨基酸残基。同样参见Hilton等,1996,J.Biol.Chem.271:4699-4708。酶的活性部位或其它的生物相互作用也能够通过结构的物理分析而测定,如通过以下这些技术:如核磁共振、晶体学、电子衍射或光亲和标记,连同推定的接触位点氨基酸的突变来确定。参见例如de Vos等,1992,Science255:306-312;Smith等,1992,J.Mol.Biol.224:899-904;Wlodaver等,1992,FEBS Lett.309:59-64。必需氨基酸的身份也能够从与相关多肽的同一性分析来推断。
可使用已知的诱变、重组和/或改组方法,然后进行相关的筛选过程,如由Reidhaar-Olson和Sauer,1988,Science241:53-57;Bowie和Sauer,1989,Proc.Natl.Acad.Sci.USA86:2152-2156;WO 95/17413;或者WO 95/22625所公开的那些,进行一个或多个氨基酸取代、缺失和/或插入并加以测试。其他可使用的方法包括易错PCR、噬菌体展示(例如Lowman等,1991,Biochemistry30:10832-10837;美国专利号5,223,409;WO 92/06204)和区域定向诱变(region-directed mutagenesis)(Derbyshire等,1986,Gene46:145;Ner等,1988,DNA7:127)。
诱变/改组方法可与高通量、自动筛选方法组合以检测由宿主细胞表达的经克隆、诱变的多肽的活性(Ness等,1999,Nature Biotechnology17:893-896)。编码活性多肽的经诱变的DNA分子可自宿主细胞回收并使用本领域标准方法迅速测序。这些方法允许快速确定多肽中单个氨基酸残基的重要性。
SEQ ID NO:66,SEQ ID NO:68,SEQ ID NO:70,SEQ ID NO:72,SEQID NO:74,SEQ ID NO:76,SEQ ID NO:78,SEQ ID NO:80,SEQ ID NO:82,SEQ ID NO:84,SEQ ID NO:86,SEQ ID NO:88,SEQ ID NO:90,SEQ ID NO:92,SEQ ID NO:94,SEQ ID NO:96,SEQ ID NO:98,SEQ ID NO:100,SEQID NO:102,SEQ ID NO:104,SEQ ID NO:106,SEQ ID NO:108,SEQ ID NO:110,SEQ ID NO:112,SEQ ID NO:114,SEQ ID NO:116,SEQ ID NO:118,SEQ ID NO:120,SEQ ID NO:122,SEQ ID NO:124,SEQ ID NO:126,SEQID NO:128,SEQ ID NO:144,SEQ ID NO:146,SEQ ID NO:148,SEQ ID NO:150,SEQ ID NO:152,SEQ ID NO:154,SEQ ID NO:156,SEQ ID NO:158,SEQ ID NO:160,SEQ ID NO:162,SEQ ID NO:164,SEQ ID NO:166,SEQID NO:168,或SEQ ID NO:170的成熟多肽的氨基酸取代、缺失和/或插入的总数不超过10,例如1、2、3、4、5、6、7、8或9。
在一个方面,具有纤维素分解增强活性的GH61多肽和嵌合GH61多肽根据WO 2008/151043在可溶性活化金属阳离子例如硫酸锰的存在下使用。
在另一个方面,具有纤维素分解增强活性的GH61多肽和嵌合GH61多肽在二氧化合物、二环化合物、杂环化合物、含氮化合物、醌化合物、含硫化合物或从经预处理的纤维素材料(如经预处理的玉米秸秆(PCS))获得的液剂的存在下使用。
所述二氧化合物可包括任何含有两个或更多氧原子的合适化合物。在一些方面,所述二氧化合物含有如本文中所述的取代的芳基模块(moiety)。所述二氧化合物可包括一个或多个(几个)羟基和/或羟基衍生物,但亦包括缺乏羟基和羟基衍生物的取代的芳基模块。二氧化合物的非限定性实例包括邻苯二酚或儿茶酚;咖啡酸;3,4-二羟基苯甲酸;4-叔丁基-5-甲氧基-1,2-苯二酚;连苯三酚;没食子酸;甲基-3,4,5-三羟基苯甲酸;2,3,4-三羟基二苯甲酮;2,6-二甲氧基苯酚;芥子酸;3,5-二羟基苯甲酸;4-氯-1,2-苯二酚;4-硝基-1,2-苯二酚;鞣酸;没食子酸乙酯;羟乙酸甲酯;二羟基延胡索酸;2-丁炔-1,4-二醇;克酮酸;1,3-丙二醇;酒石酸;2,4-戊二醇;3-乙氧基-1,2-丙二醇;2,4,4’-三羟基二苯甲酮;顺-2-丁烯-1,4-二醇;3,4-二羟基-3-环丁烯-1,2-二酮;二羟基丙酮;乙酰丙烯醛(acrolein acetal);甲基-4-羟基苯甲酸;4-羟基苯甲酸;和甲基-3,5-二甲氧基-4-羟基苯甲酸;或它们的盐或溶剂合物(solvate)。
所述二环化合物可包括任何如本文中所述的合适的取代稠环系统。所述化合物可包含一个或多个(例如几个)另外的环,且除非另行说明,不限于具体的环数。在一个方面,所述二环化合物是类黄酮。在另一个方面,所述二环化合物是任选取代的异类黄酮(isoflavonoid)。在另一个方面,所述二环化合物是任选取代的花色离子(flavylium ion),如任选取代的花色素或任选取代的花色苷,或其衍生物。二环化合物的非限定性实例包括表儿茶素(epicatechin);槲皮素(quercetin);杨梅黄酮(myricetin);黄杉素(taxifolin);山奈酚(kaempferol);桑素(morin);金合欢素(acacetin);柚皮素(naringenin);异鼠李黄素(isorhamnetin);芹菜苷配基(apigenin);花青素(cyanidin);花色素苷(cyanin);kuromanin;花青素鼠李葡糖苷(keracyanin);或它们的盐或溶剂合物。
所述杂环化合物可为任何合适的化合物,如本文中所述的任选取代的包含杂原子的芳环或非芳环。在一个方面,所述杂环是包含任选取代的杂环烷基模块或任选取代的杂芳基模块的化合物。在另一个方面,所述任选取代的杂环烷基模块或任选取代的杂芳基模块是任选取代的五元杂环烷基或任选取代的五元杂芳基模块。在另一个方面,任选取代的杂环烷基或任选取代的杂芳基模块是选自如下的任选取代的模块:吡唑基、呋喃基、咪唑基、异噁唑基、噁二唑基、噁唑基、吡咯基、吡啶基、嘧啶基、哒嗪基、噻唑基、三唑基、噻吩基(thienyl)、二氢噻吩-吡唑基(dihydrothieno-pyrazolyl)、硫茚基、咔唑基、苯并咪唑基、苯并噻吩基(benzothienyl)、苯并呋喃基、吲哚基、喹啉基、苯并三唑基、苯并噻唑基、苯并噁唑基(benzooxazolyl)、苯并咪唑基、异喹啉基、异吲哚基、吖啶基、苯并异噁唑基(benzoisazolyl)、二甲基乙内酰脲、吡嗪基、四氢呋喃基、吡咯啉基、吡咯烷基、吗啉基、吲哚基、二氮杂环庚三烯基(diazepinyl)、氮杂环庚三烯基(azepinyl)、硫杂环庚三烯基(thiepinyl)、哌啶基和氧杂环庚三烯基(oxepinyl)。在另一个方面,所述任选取代的杂环烷基模块或任选取代的杂芳基模块是任选取代的呋喃基。杂环化合物的非限定性实例包括(1,2-二羟乙基)-3,4-二氢呋喃-2(5H)-酮;4-羟基-5-甲基-3-呋喃酮;5-羟基-2(5H)-呋喃酮;[1,2-二羟乙基]呋喃-2,3,4(5H)-三酮;α-羟基-γ-丁内酯;核糖酸γ-内酯;己醛糖酸γ-内酯(aldohexuronicaldohexuronic acid γ-lactone);葡糖酸δ-内酯;4-羟基香豆素;二氢苯并呋喃;5-(羟甲基)糠醛;糠偶姻(furoin);2(5H)-呋喃酮;5,6-二氢-2H-吡喃-2-酮;和5,6-二氢-4-羟基-6-甲基-2H-吡喃-2-酮;或它们的盐或溶剂合物。
所述含氮化合物可为任何具有一个或多个氮原子的合适化合物。在一个方面,所述含氮化合物包含胺、亚胺、羟胺或氧化亚氮(nitroxide)模块。含氮化合物的非限定性实例包括丙酮肟;紫尿酸;吡啶-2-醛肟;2-氨基苯酚;1,2-苯二胺;2,2,6,6-四甲基-1-哌啶基氧(piperidinyloxy);5,6,7,8-四氢生物蝶呤;6,7-二甲基-5,6,7,8-四氢蝶呤;和马来酰胺酸;或它们的盐或溶剂合物。
所述醌化合物可为任何本文中所述的包含醌模块的合适的化合物。醌化合物的非限定性实例包括1,4-苯醌;1,4-萘醌;2-羟基-1,4-萘醌;2,3-二甲氧基-5-甲基-1,4-苯醌或辅酶Q0;2,3,5,6-四甲基-1,4-苯醌或四甲基对苯醌;1,4-二羟基蒽醌;3-羟基-1-甲基-5,6-二氢吲哚二酮或肾上腺色素;4-叔丁基-5-甲氧基-1,2-苯醌;吡咯并喹啉醌(pyrroloquinoline quinone);或它们的盐或溶剂合物。
所述含硫化合物可为任何包含一个或多个硫原子的合适的化合物。在一个方面,所述含硫化合物包含选自亚硫酰,硫醚,亚磺酰,磺酰,磺酰胺(sulfamide),磺酰胺(sulfonamide),磺酸和磺酸酯的模块。含硫化合物的非限定性实例包括乙硫醇;2-丙硫醇;2-丙烯-1-硫醇;2-巯基乙磺酸;苯硫醇;苯-1,2-二硫醇;半胱氨酸;甲硫氨酸;谷胱甘肽;胱氨酸;或它们的盐或溶剂合物。
在一个方面此种如上所述的化合物对纤维素材料的有效量,作为对纤维素的糖单元的摩尔比例为约10-6至约10,例如约10-6至约7.5,约10-6至约5,约10-6至约2.5,约10-6至约1,约10-5至约1,约10-5至约10-1,约10-4至约10-1,约10-3至约10-1,或约10-3至约10-2。在另一个方面,此种如上所述的化合物的有效量为约0.1μM至约1M,例如约0.5μM至约0.75M,约0.75μM至约0.5M,约1μM至约0.25M,约1μM至约0.1M,约5μM至约50mM,约10μM至约25mM,约50μM至约25mM,约10μM至约10mM,约5μM至约5mM,或约0.1mM至约1mM。
术语“液剂(liquor)”意指在本文中所述的条件下,通过处理浆料中的木素纤维素和/或半纤维素材料,或其单糖例如木糖、阿拉伯糖、甘露糖等,所产生的溶液相,即水相、有机相或其组合,及其可溶性内含物。用于GH61多肽的纤维素分解增强的液剂可通过,任选在催化剂例如酸的存在下,任选在有机溶剂的存在下,且任选与所述材料的物理破坏相组合来藉由施加热和/或压力来处理木素纤维素材料或半纤维素材料(或原料),然后将溶液从剩余固体分离来产生。此类条件确定在通过纤维素酶制备物水解纤维素底物过程中,通过液剂和GH61多肽的组合可获得的纤维素分解增强的程度。所述液剂可使用本领域中的标准方法如过滤、沉积或离心从经处理的材料分离。
在一个方面,所述液剂对纤维素的有效量为约10-6至约10g每g纤维素,例如约10-6至约7.5g,约10-6至约5,约10-6至约2.5g,约10-6至约1g,约10-5至约1g,约10-5至约10-1g,约10-4至约10-1g,约10-3至约10-1g,或约10-3至约10-2g每g纤维素。
在一个方面,所述一种或多种(例如几种)半纤维素分解酶包含商业性半纤维素分解酶制备物。适用于本发明的商业性半纤维素分解酶制备物的实例包括,例如SHEARZYMETM(Novozymes A/S)、CELLIC
Figure BDA00003531984600741
HTec(NovozymesA/S)、CELLIC
Figure BDA00003531984600742
Htec2(Novozymes A/S)、VISCOZYME
Figure BDA00003531984600743
(Novozymes A/S)、ULTRAFLO
Figure BDA00003531984600744
(Novozymes A/S)、PULPZYME
Figure BDA00003531984600745
HC(Novozymes A/S)、MULTIFECT
Figure BDA00003531984600746
Xylanase(Genencor)、ACCELLERASE
Figure BDA00003531984600747
XY(Genencor)、ACCELLERASE
Figure BDA00003531984600748
XC(Genencor)、ECOPULP
Figure BDA00003531984600749
TX-200A(AB Enzymes)、HSP6000Xylanase(DSM)、DEPOLTM333P(Biocatalysts Limit,Wales,UK)、DEPOLTM740L(Biocatalysts Limit,Wales,UK)和DEPOLTM762P(BiocatalystsLimit,Wales,UK)。
可用于本发明方法的木聚糖酶的实例包括但不限于来自棘孢曲霉木聚糖酶(GeneSeqP:AAR63790;WO 94/21785)、烟曲霉木聚糖酶(WO 2006/078256;xyl3SEQ ID NO:129[DNA序列]和SEQ ID NO:130[推导的氨基酸序列])、和土生梭孢霉NRRL8126木聚糖酶(WO2009/079210)。
可用于本发明方法的β-木糖苷酶的实例包括但不限于里氏木霉β-木糖苷酶(UniProtKB/TrEMBL登录号Q92458;SEQ ID NO:131[DNA序列]和SEQID NO:132[推导的氨基酸序列])、埃默森踝节菌(Talaromyces emersonii)β-木糖苷酶(SwissProt登录号Q8X212)和粗糙脉孢菌β-木糖苷酶(SwissProt登录号Q7SOW4)。
可用于本发明方法的乙酰木聚糖酯酶的实例包括但不限于来自棘孢曲霉(WO 2010/108918)、球毛壳菌(Chaetomium globosum)(Uniprot登录号Q2GWX4)、细丽毛壳菌(Chaetomium gracile)(GeneSeqP登录号AAB82124)、特异腐质霉(Humicola insolens)DSM1800(WO 2009/073709)、红褐肉座菌(Hypocrea jecorina)(WO 2005/001036)、嗜热毁丝霉(Wo 2010/014880)、粗糙脉孢菌(UniProt登录号q7s259)、颖枯壳针孢(Phaeosphaeria nodorum)(Uniprot登录号Q0UHJ1)和土生梭孢霉NRRL8126(WO 2009/042846)的乙酰木聚糖酯酶。
可用于本发明方法的阿魏酸酯酶的实例包括但不限于来自特异腐质霉DSM1800(WO 2009/076122)、费希新萨托菌(Neosartorya fischer)(UniProt登录号A1D9T4)、粗糙脉孢菌(UniProt登录号Q9HGR3)、橘灰青霉(WO 2009/127729)和土生梭孢霉(WO 2010/053838和WO 2010/065448)的阿魏酸酯酶。
可用于本发明方法的阿拉伯呋喃糖苷酶的实例包括但不限于来自黑曲霉(Aspergillus niger)(GeneSeqP登录号AAR94170)、特异腐质霉(Humicolainsolens)DSM1800(WO 2006/114094和WO 2009/073383)和巨多孔菌(M.giganteus)(WO2006/114094)的阿拉伯呋喃糖苷酶。
可用于本发明方法的α-葡糖醛酸糖苷酶的实例包括但不限于来自棒曲霉(Aspergillus clavatus)(UniProt登录号alcc12)、烟曲霉(SwissProt登录号Q4WW45)、黑曲霉(Uniprot登录号Q96WX9)、土曲霉(Aspergillus terreus)(SwissProt登录号Q0CJP9)、特异腐质霉(WO 2010/014706)、橘灰青霉(WO2009/068565)、埃默森踝节菌(UniProt登录号Q8X211)和里氏木霉α-葡糖醛酸糖苷酶(Uniprot登录号Q99024)的α-葡糖醛酸糖苷酶。
用于本发明方法的具有酶活性的多肽可通过在含有合适碳源和氮源和无机盐的营养培养基上,使用本领域已知方法(参见,例如Bennett,J.W.和LaSure,L.(编),More Gene Manipulations in Fungi,Academic Press,CA,1991)发酵上述指出的微生物菌株来产生。合适的培养基可从供应商获得,或可根据已公开组合物制备(例如美国典型培养物保藏中心的目录)。适于生长和酶产生的温度范围和其他条件在本领域是已知的(参见,例如Bailey,J.E.和Ollis,D.F.,Biochemical Engineering Fundamentals,McGraw-Hill Book Company,NY,1986)。
所述发酵可以是任何其结果为酶或蛋白表达或分离的培养细胞的方法。因此,发酵可以理解为包括在合适的培养基中并在允许所述酶得以表达或分离的条件下进行的摇瓶培养,或在实验室或工业发酵罐中的小-或大规模发酵(包括连续、分批、补料分批或固态发酵)。通过上述方法产生的所得的酶可从发酵培养基回收并通过常规方法纯化。
发酵。可通过一种或多种(例如几种)能将糖直接或间接发酵成所需发酵产物的发酵微生物发酵自经水解的纤维素材料获得的可发酵糖。“发酵”或“发酵方法”指任何发酵方法或包含发酵步骤的任何方法。发酵方法还包括用于消费品醇工业(例如,啤酒和葡萄酒)、乳品业(例如,发酵乳产品)、皮革业和烟草业的发酵方法。发酵条件依赖于期望的发酵产物和发酵生物体,并且能由本领域的技术人员容易地确定。
在发酵步骤中,作为预处理和酶水解步骤的结果从纤维素材料释放的糖,通过发酵生物体(如酵母)发酵成为产物,例如,乙醇。如上所述,水解(糖化)和发酵可以是单独或同时的。
在实施本发明的发酵步骤中可以使用任何合适的经水解的纤维素材料。通常根据所需发酵产品(即,要从发酵获得的物质)和使用的方法来选择所述材料,如本领域中所公知的。
术语“发酵培养基”在本文中可理解为指加入发酵微生物之前的培养基,如,由糖化过程产生的培养基,以及同步的糖化和发酵方法(SSF)中使用的培养基。
“发酵微生物”指适用于理想的发酵方法产生发酵产物的任何微生物,包括细菌和真菌生物体。发酵生物体可以是己糖和/或戊糖发酵生物体,或它们的组合。己糖和戊糖发酵生物体均在本领域公知。合适的发酵微生物能将糖(如葡萄糖、木糖、木酮糖、阿拉伯糖、麦芽糖、甘露糖、半乳糖和/或寡糖)直接或间接地发酵(即,转化)成所需的发酵产品。可产生乙醇的细菌和真菌发酵生物体的实例如Lin等,2006,Appl.Microbiol.Biotechnol.69:627-642所述。
能发酵己糖的发酵微生物的实例包括细菌和真菌生物体,如酵母。优选的酵母包括假丝酵母属、克鲁维酵母属和酵母属,例如Candida sonorensis、马克斯克鲁维酵母和酿酒酵母的菌株。
以其天然状态能发酵戊糖的发酵生物体的实例包括细菌和真菌生物体,如一些酵母。优选的木糖发酵酵母包括假丝酵母属,优选休哈塔假丝酵母(Candida sheatae)或Candida sonorensis;和毕赤酵母属,优选树干毕赤酵母(Pichia stipitis)的菌株,如树干毕赤酵母CBS5773的菌株。优选的戊糖发酵酵母包括管囊酵母属(Pachysolen),优选嗜鞣管囊酵母(Pachysolen tannophilus)的菌株。不能够发酵戊糖如木糖和阿拉伯糖的生物通过本领域已知方法可经遗传修饰而发酵戊糖。
能有效地将己糖和戊糖发酵成乙醇的细菌的实例包括,例如,凝结芽孢杆菌、丙酮丁醇梭菌(Clostridium acetobutylicum)、热纤维梭菌(Clostridiumthermocellum)、Clostridium phytofermentans、地芽孢杆菌属菌种、解糖热厌氧杆菌(Thermoanaerobacter saccharolyticum)和运动发酵单胞菌(Philippidis,1996,见上文)。
其它发酵生物包括芽孢杆菌属,如凝结芽孢杆菌;假丝酵母属,如Candidasonorensis、C.methanosorbosa、迪丹斯假丝酵母(Candida diddensii)、近平滑假丝酵母(Candida parapsilosis)、C.naedodendra、C.blankii、C.entomophilia、芸薹假丝酵母(C.brassicae)、假热带假丝酵母(Candida pseudotropicalis)、博伊丁假丝酵母(Candida boidinii)、产朊假丝酵母(Candida utilis)和休哈塔假丝酵母(C.scehatae);梭菌属,如丙酮丁醇梭菌、热纤维梭菌和C.phytofermentans;大肠杆菌,特别是经遗传修饰促进乙醇产率(yield)的大肠杆菌菌株;地芽孢杆菌属菌种;汉逊酵母属,如异常汉逊酵母(Hansenula anomala);克雷伯氏菌属(Klebsiella),如产酸克雷伯氏菌(Klebsiella oxytoca);克鲁维酵母属,如马克斯克鲁维酵母、乳酸克鲁维酵母(K.latic)、K.thermotolerans和脆壁克鲁维酵母;裂殖酵母属,如粟酒裂殖酵母(S.pombe);热厌氧杆菌属(Thermoanaerobacter),如解糖热厌氧杆菌,和发酵单胞菌属,如运动发酵单胞菌的菌株。
在一个优选的方面,酵母是酒香酵母属(Bretannomyces)。在一个更优选的方面,酵母是克劳森酒香酵母(Bretannomyces clausenii)。在另一个更优选的方面,酵母是假丝酵母。在另一个更优选的方面,酵母是Candida sonorensis。在另一个更优选的方面,酵母是博伊丁假丝酵母。在另一个更优选的方面,酵母是Candida blankii。在另一个更优选的方面,酵母是芸薹假丝酵母。在另一个更优选的方面,酵母是迪丹斯假丝酵母。在另一个更优选的方面,酵母是Candida entomophiliia。在另一个更优选的方面,酵母是假热带假丝酵母。在另一个更优选的方面,酵母是休哈塔假丝酵母。在另一个更优选的方面,酵母是产朊假丝酵母。在另一个优选的方面,酵母是棒孢酵母属(Clavispora)。在另一个更优选的方面,酵母是葡萄牙棒孢酵母(Clavispora lusitaniae)。在另一个更优选的方面,酵母是仙人掌棒孢酵母(Clavispora opuntiae)。在另一个优选的方面,酵母是克鲁维酵母。在另一个更优选的方面,酵母是脆壁克鲁维酵母。在另一个更优选的方面,酵母是马克斯克鲁维酵母。在另一个更优选的方面,酵母是Kluyveromyces thermotolerans。在另一个优选的方面,酵母是管囊酵母属。在另一个更优选的方面,酵母是嗜鞣管囊酵母。在另一个优选的方面,酵母是毕赤酵母。在另一个更优选的方面,酵母是树干毕赤酵母。在另一个优选的方面,酵母是酵母属菌种。在另一个优选的方面,酵母是酿酒酵母。在另一个更优选的方面,酵母是糖化酵母(Saccharomyces distaticus)。在另一个更优选的方面,酵母是葡萄汁酵母(Saccharomyces uvarum)。
在一个优选的方面,细菌是芽孢杆菌属。在一个更优选的方面,细菌是凝结芽孢杆菌。在另一个更优选的方面,细菌是梭菌属。在另一个更优选的方面,细菌是丙酮丁醇梭菌。在另一个更优选的方面,细菌是Clostridiumphytofermentans在另一个更优选的方面,细菌是热纤维梭菌。在另一个更优选的方面,细菌是地芽孢杆菌属菌种。在另一个更优选的方面,细菌是热厌氧杆菌属。在另一个更优选的方面,细菌是解糖热厌氧杆菌。在另一个更优选的方面,细菌是发酵单胞菌属。在另一个更优选的方面,细菌是运动发酵单胞菌。
商业上可得到的适合乙醇产生的酵母包括,例如BIOFERMTM AFT和XR(NABC-North American Bioproducts Corporation,GA,USA),ETHANOLREDTM酵母(Red Star/Lesaffre,USA)、FALITM(Fleischmann’s Yeast,Burns PhilpFood Inc.,USA),FERMIOLTM(DSM Specialties),GERT STRANDTM(GertStrand AB,Sweden)以及SUPERSTARTTM和THERMOSACCTM新鲜酵母(Ethanol Technology,WI,USA)。
在一个优选的方面,发酵微生物已经经过遗传修饰,以提供发酵戊糖的能力,如利用木糖、利用阿拉伯糖和共同利用木糖和阿拉伯糖的微生物。
通过将异源基因克隆入多种发酵微生物已经构建了能将己糖和戊糖转化成乙醇(共发酵)的生物体(Chen和Ho,1993,Cloning and improving theexpression of Pichia stipitis xylose reductase gene in Saccharomyces cerevisiae,Appl.Biochem.Biotechnol.39-40:135-147;Ho等,1998,Genetically engineeredSaccharomyces yeast capable of effectively cofermenting glucose and xylose,Appl.Environ.Microbiol.64:1852-1859;Kotter和Ciriacy,1993,Xylose fermentation bySaccharomyces cerevisiae,Appl.Microbiol.Biotechnol.38:776-783;Walfridsson等,1995,Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing theTKL1and TAL1genes encoding the pentose phosphate pathway enzymestransketolase and transaldolase,Appl.Environ.Microbiol.61:4184-4190;Kuyper等,2004,Minimal metabolic engineering of Saccharomyces cerevisiae for efficientanaerobic xylose fermentation:a proof of principle,FEMS Yeast Research4:655-664;Beall等,1991,Parametric studies of ethanol production from xylose andother sugars by recombinant Escherichia coli,Biotech.Bioeng.38:296-303;Ingram等,1998,Metabolic engineering of bacteria for ethanol production,Biotechnol.Bioeng.58:204-214;Zhang等,1995,Metabolic engineering of apentose metabolism pathway in ethanologenic Zymomonas mobilis,Science267:240-243;Deanda等,1996,Development of an arabinose-fermenting Zymomonasmobilis strain by metabolic pathway engineering,Appl.Environ.Microbiol.62:4465-4470;WO2003/062430,Xylose Isomerase)。
在一个优选的方面,经过遗传修饰的发酵微生物是Candida sonorensis。在另一个优选的方面,经过遗传修饰的发酵微生物是大肠杆菌。在另一个优选的方面,经过遗传修饰的发酵微生物是产酸克雷伯氏菌(Klebsiella oxytoca)。在另一个优选的方面,所述经遗传修饰的发酵微生物是马克斯克鲁维酵母。在另一个优选的方面,所述经遗传修饰的发酵微生物是酿酒酵母。在另一个优选的方面,经过遗传修饰的发酵微生物是运动发酵单胞菌。
本领域中公知的是,上述生物体还能用于产生其它物质,如本文所述。
通常向降解的纤维素材料或水解物加入发酵微生物,并进行约8至约96小时,例如约24至约60小时发酵。温度通常为约26℃至约60℃,例如约32℃或50℃,并且在约pH3至约pH8,例如约pH4-5、6或7。
在一个方面,对降解的纤维素材料施用酵母和/或另一种微生物,并进行约12至约96小时,如通常为24-60小时发酵。在另一个方面,温度优选为约20℃至约60℃,例如约25℃至约50℃,并且约32℃至约50℃,约32℃至约50℃,并且pH通常为约pH3至约pH7,例如约pH4至约pH7。然而,一些发酵生物体例如细菌,具有更高的最适发酵温度。酵母或另一种微生物优选以约105-1012,优选约107-1010,特别是约2x108活细胞计数每ml发酵液的量施用。关于使用酵母进行发酵的进一步指导可以在例如“The AlcoholTextbook”(K.Jacques,T.P.Lyons和D.R.Kelsall编,Nottingham UniversityPress,United Kingdom1999)中找到,其通过提述并入本文。
发酵刺激剂可以与本文所述的任何工艺组合使用,以进一步改进发酵方法,而且特定地,改进发酵微生物的性能,如,速率增加和乙醇得率。“发酵刺激剂”指用于发酵微生物(特别是酵母)生长的刺激剂。优选的用于生长的发酵刺激剂包括维生素和矿物质。维生素的实例包括多种维生素、生物素、泛酸(盐)、烟酸、内消旋肌醇(meso-inositol)、硫胺素、吡哆醇(pyridoxine)、对氨基苯甲酸、叶酸、核黄素和维生素A、B、C、D和E。参见,例如,Alfenore等,Improving ethanol production and viability of Saccharomyces cerevisiae by avitamin feeding strategy during fed-batch process,Springer-Verlag(2002),其通过提述并入本文。矿物质的实例包括能够提供营养物的矿物质和矿物质盐,所述营养物包括P、K、Mg、S、Ca、Fe、Zn、Mn和Cu。
发酵产物:发酵产物可以是源自发酵的任何物质。发酵产物可以是,不限于,醇(例如,阿拉伯醇、正丁醇、异丁醇、乙醇、甘油、甲醇、乙二醇、1,3-丙二醇(丙二醇)、丁二醇、丙三醇、山梨醇和木糖醇);烷烃(例如戊烷、己烷、庚烷、辛烷、壬烷、癸烷、十一烷和十二烷);环烷烃(例如环戊烷、环己烷、环庚烷、和环辛烷);烯烃(例如戊烯、己烯、庚烯和辛烯);氨基酸(例如,天冬氨酸、谷氨酸、甘氨酸、赖氨酸、丝氨酸和苏氨酸);气体(例如,甲烷、氢气(H2)、二氧化碳(CO2)和一氧化碳(CO));异戊二烯;酮(例如,丙酮);有机酸(例如,乙酸、醋酮酸、己二酸、抗坏血酸、柠檬酸、2,5-二酮-D-葡糖酸、甲酸、反丁烯二酸、葡糖二酸、葡糖酸、葡糖醛酸、戊二酸、3-羟基丙酸、衣康酸、乳酸、苹果酸、丙二酸、草酸、草酰乙酸、丙酸、琥珀酸和木糖酸);和聚酮化合物。发酵产物还可以是作为高价值产品的蛋白质。
在一个优选的方面,发酵产物是醇。可理解的是,术语“醇”包括包含一个或多个羟基基团的物质。在更优选的方面,所述醇是正丁醇。在另一个更优选的方面,所述醇是异丁醇。在另一个更优选的方面,所述醇是乙醇。在另一个更优选的方面,所述醇是甲醇。在另一个更优选的方面,所述醇是阿拉伯醇。在另一个更优选的方面,所述醇是丁二醇。在另一个更优选的方面,所述醇是乙二醇。在另一个更优选的方面,所述醇是甘油(glycerin)。在另一个更优选的方面,所述醇是甘油(glycerol)。在另一个更优选的方面,所述醇是1,3-丙二醇。在另一个更优选的方面,所述醇是山梨醇。在另一个更优选的方面,所述醇是木糖醇。参见,例如,Gong,C.S.,Cao,N.J.,Du,J.,和Tsao,G.T.,1999,Ethanol production from renewable resources,于Advancesin Biochemical Engineering/Biotechnology,Scheper,T.编,Springer-Verlag BerlinHeidelberg,Germany,65:207-241;Silveira,M.M.,和Jonas,R.,2002,Thebiotechnological production of sorbitol,Appl.Microbiol.Biotechnol.59:400-408;Nigam,P.,和Singh,D.,1995,Processes for fermentative production of xylitol–a sugar substitute,Process Biochemistry30(2):117-124;Ezeji,T.C.,Qureshi,N.和Blaschek,H.P.,2003,Production of acetone,butanol and ethanol byClostridium beijerinckii BA101and in situ recovery by gas stripping,WorldJournal of Microbiology and Biotechnology19(6):595-603。
在另一个优选的方面,所述发酵产物是烷烃。所述烷烃是未支化或支化的烷烃。在另一个更优选的方面,所述烷烃是戊烷。在另一个更优选的方面,所述烷烃是己烷。在另一个更优选的方面,所述烷烃是庚烷。在另一个更优选的方面,所述烷烃是辛烷。在另一个更优选的方面,所述烷烃是壬烷。在另一个更优选的方面,所述烷烃是癸烷。在另一个更优选的方面,所述烷烃是十一烷。在另一个更优选的方面,所述烷烃是十二烷。
在另一个优选的方面,所述发酵产物是环烷烃。在另一个更优选的方面,所述环烷烃是环戊烷。在另一个更优选的方面,所述环烷烃是环己烷。在另一个更优选的方面,所述环烷烃是环庚烷。在另一个更优选的方面,所述环烷烃是环辛烷。
在另一个优选的方面,所述发酵产物是烯烃。所述烯烃可为未支化或支化的烯烃。在另一个更优选的方面,所述烯烃是戊烯。在另一个更优选的方面,所述烯烃是己烯。在另一个更优选的方面,所述烯烃是庚烯。在另一个更优选的方面,所述烯烃是辛烯。
在另一个优选的方面,所述发酵产物是氨基酸。在另一个更优选的方面,所述有机酸是天冬氨酸。在另一个更优选的方面,所述氨基酸是谷氨酸。在另一个更优选的方面,所述氨基酸是甘氨酸。在另一个更优选的方面,所述氨基酸是赖氨酸。在另一个更优选的方面,所述氨基酸是丝氨酸。在另一个更优选的方面,所述氨基酸是苏氨酸。参见,例如,Richard,A.,和Margaritis,A.,2004,Empirical modeling of batch fermentation kinetics for poly(glutamicacid)production and other microbial biopolymers,Biotechnology andBioengineering87(4):501-515。
在另一个优选的方面,所述物质是气体。在另一个更优选的方面,所述气体是甲烷。在另一个更优选的方面,所述气体是H2。在另一个更优选的方面,所述气体是CO2。在另一个更优选的方面,所述气体是CO。参见,例如,Kataoka,N.,A.Miya,和K.Kiriyama,1997,Studies on hydrogen production bycontinuous culture system of hydrogen-producing anaerobic bacteria,WaterScience and Technology36(6-7):41-47;和Gunaseelan V.N.于Biomass andBioenergy,Vol.13(1-2),pp.83-114,1997,Anaerobic digestion of biomass formethane production:A review。
在另一个优选的方面,所述发酵产物是异戊二烯。
在另一个优选的方面,所述发酵产物似乎酮。应理解的是,术语“酮”涵盖了含有一个或多个酮模块的酮。在另一个更优选的方面,所述酮是丙酮。参见,例如Qureshi和Blaschek,2003,见上文。
在另一个优选的方面,所述发酵产物是有机酸。在另一个更优选的方面,所述有机酸是乙酸。在另一个更优选的方面,所述有机酸是醋酮酸。在另一个更优选的方面,所述有机酸是己二酸。在另一个更优选的方面,所述有机酸是抗坏血酸。在另一个更优选的方面,所述有机酸是柠檬酸。在另一个更优选的方面,所述有机酸是2,5-二酮-D-葡糖酸。在另一个更优选的方面,所述有机酸是甲酸。在另一个更优选的方面,所述有机酸是反丁烯二酸。在另一个更优选的方面,所述有机酸是葡糖二酸。在另一个更优选的方面,所述有机酸是葡糖酸。在另一个更优选的方面,所述有机酸是葡糖醛酸。在另一个更优选的方面,所述有机酸是戊二酸。在另一个优选的方面,所述有机酸是3-羟基丙酸。在另一个更优选的方面,所述有机酸是衣康酸。在另一个更优选的方面,所述有机酸是乳酸。在另一个更优选的方面,所述有机酸是苹果酸。在另一个更优选的方面,所述有机酸是丙二酸。在另一个更优选的方面,所述有机酸是草酸。在另一个更优选的方面,所述有机酸是丙酸。在另一个更优选的方面,所述有机酸是琥珀酸。在另一个更优选的方面,所述有机酸是木糖酸。参见,例如,Chen,R.,和Lee,Y.Y.,1997,Membrane-mediated extractive fermentation for lactic acidproduction from cellulosic biomass,Appl.Biochem.Biotechnol.63-65:435-448。
在另一个优选的方面,所述物质是聚酮化合物(polyketide)。
回收可以使用本领域已知的任何方法,任选地从发酵培养基回收发酵产物,所述方法包括,但不限于,层析、电泳方法、差示溶解度、蒸馏或提取。例如,通过常规蒸馏方法从发酵的纤维素材料分离并纯化醇。可以获得纯度高达约96vol%的乙醇,其能用作,例如,燃料乙醇、饮用乙醇,即,中性饮料酒,或工业乙醇。
去污剂组合物
本发明亦涉及包含本发明的嵌合GH61多肽和表面活性剂的去污剂组合物。所述具有纤维素分解增强活性的嵌合GH61多肽可添加至去污剂组合物并因此成为其组分。
本发明的去污剂组合物可配制为例如手洗或机洗洗衣去污剂组合物,包括适用于预处理有污迹的织物的洗衣添加组合物,和漂洗添加的织物软化剂剂组合物,或配制为用于一般家用硬表面清洁操作的去污剂组合物,或配制为供手洗或机洗的洗碗/碟操作。在一个方面,本发明亦涉及用于清洗或洗涤硬表面或待洗衣物的方法,所述方法包括将所述硬表面或待洗衣物与本发明的去污剂组合物相接触。
在一个具体方面,本发明提供了包含本发明的嵌合GH61多肽的去污剂添加剂。所述去污剂添加剂以及所述去污剂组合物可包含一种或多种(例如几种)选自下组的酶:淀粉酶、阿拉伯糖酶、角质酶、糖酶、纤维素酶、半乳聚糖酶、漆酶、脂肪酶、甘露聚糖酶、氧化酶、果胶酶、过氧化物酶、蛋白酶和木聚糖酶。
一般而言所选酶的性质应与选定的去污剂相容(即,最优pH,与其他酶和非酶成分的相容性等),且该酶应以有效量存在。
纤维素酶:合适的纤维素酶包括细菌或真菌来源的那些。包括化学修饰的或蛋白质工程的突变体。合适的纤维素酶包括来自芽孢杆菌属、假单胞菌属、腐质霉属、镰孢属、梭孢壳属、枝顶孢霉属的纤维素酶,例如,从公开于US 4,435,307、US 5,648,263、US 5,691,178、US 5,776,757和WO 89/09259的特异腐质霉、嗜热毁丝霉和尖镰孢产生的真菌纤维素酶。
特别合适的纤维素酶为具有颜色保护益处的碱性或中性纤维素酶。此类纤维素酶的实例为描述于EP 0 495 257、EP 0 531 372、WO 96/11262、WO96/29397、WO 98/08940的纤维素酶。其他实例为纤维素酶变体如描述于WO94/07998、EP 0 531 315、US 5,457,046、US 5,686,593、US 5,763,254、WO95/24471、WO 98/12307和PCT/DK98/00299的那些。
商业上可获得的纤维素酶包括CELLUZYMETM和CAREZYMETM(Novozymes A/S)、CLAZINASETM和PURADAX HATM(Genencor InternationalInc.)、和KAC-500(B)TM(Kao Corporation)。
蛋白酶:所述蛋白酶包括动物、植物或微生物来源的那些。优选微生物来源的。包括化学修饰的或蛋白质工程的突变体。所述蛋白酶可为丝氨酸蛋白酶或金属蛋白酶,优选为碱性微生物蛋白酶或胰蛋白酶样蛋白酶。碱性蛋白酶的实例为枯草杆菌蛋白酶,特别是那些来源于芽孢杆菌属的,例如枯草杆菌蛋白酶Novo、枯草杆菌蛋白酶Carlsberg、枯草杆菌蛋白酶309、枯草杆菌蛋白酶147和枯草杆菌蛋白酶168(描述于WO 89/06279)。胰蛋白酶样蛋白酶的实例为胰蛋白酶(例如,猪或牛来源的),和描述于WO 89/06270和WO94/25583的镰孢属蛋白酶。
可用的蛋白酶的实例为描述于WO 92/19729、WO 98/20115、WO 98/20116和WO 98/34946的变体,特别是在一个或多个下述位置具有取代的变体:27、36、57、76、87、97、101、104、120、123、167、170、194、206、218、222、224、235和274。
优选的商业上可获得的蛋白酶包括ALCALASETM,SAVINASETM,PRIMASETM,DURALASETM,ESPERASETM,和KANNASETM(Novozymes A/S),MAXATASETM,MAXACALTM,MAXAPEMTM,PROPERASETM,PURAFECTTM,PURAFECT OXPTM,FN2TM,和FN3TM(Genencor International Inc.)。
脂肪酶:合适的脂肪酶包括细菌或真菌来源的那些。包括化学修饰或蛋白质工程的突变体。可用的脂肪酶的实例包括来自腐质霉属(同义词嗜热霉属(Thermomyces)),例如来自如描述于EP 258 068和EP 305 216的疏棉状腐质霉(细毛嗜热霉(T.Lanuginosus))或来自如描述于WO 96/13580的特异腐质霉的脂肪酶,假单胞菌属脂肪酶,例如来自产碱假单胞菌(P.alcaligenes)或类产碱假单胞菌(P.pseudoalcaligenes)(EP 218 272),洋葱假单胞菌(P.cepacia)(EP 331 376),施氏假单胞菌(P.stutzeri)(GB1,372,034),萤光假单胞菌(P.fluorescens),假单胞菌属菌种菌株SD 705(WO 95/06720和WO 96/27002),威斯康星假单胞菌(P.wisconsinensis)(WO 96/12012),芽孢杆菌属脂肪酶,例如来自枯草芽孢杆菌(Dartois等,1993,Biochemica et Biophysica Acta,1131,253-360),嗜热脂肪芽孢杆菌(JP 64/744992)或短小芽孢杆菌(B.pumilus)(WO 91/16422)的脂肪酶。
其他实例为那些描述于WO 92/05249、WO 94/01541、EP 407 225、EP 260105、WO 95/35381、WO 96/00292、WO 95/30744、WO 94/25578、WO 95/14783、WO 95/22615、WO 97/04079和WO 97/07202的脂肪酶变体。
优选的商业上可获得的脂肪酶包括LIPOLASETM和LIPOLASE ULTRATM(Novozymes A/S)。
淀粉酶:合适的淀粉酶(α和/或β)包括细菌或真菌来源的那些。包括化学修饰或蛋白质工程的突变体。淀粉酶包括,例如从芽孢杆菌属获得的α-淀粉酶,例如,从GB1,296,839更具体描述的地衣芽孢杆菌的特别菌株获得。
可用的淀粉酶的实例为描述于WO 94/02597、WO 94/18314、WO 96/23873和WO 97/43424的变体,特别是在一个或多个下述位置具有取代的变体:15、23、105、106、124、128、133、154、156、181、188、190、197、202、208、209、243、264、304、305、391、408和444。
商业上可获得的淀粉酶为DURAMYLTM,TERMAMYLTM,FUNGAMYLTM和BANTM(Novozymes A/S),RAPIDASETM和PURASTARTM(from Genencor International Inc.)。
过氧化物酶/氧化酶:合适的过氧化物酶/氧化酶包括植物、细菌或真菌来源的那些。包括化学修饰或蛋白质工程的突变体。有用的过氧化物酶的实例包括来自鬼伞属(Coprinus),例如灰盖鬼伞(C.cinerius)及其变体的过氧化物酶,如描述于WO 93/24618、WO 95/10602和WO 98/15257的那些。
商业上可获得的过氧化物酶包括GUARDZYMETM(Novozymes A/S)。
所述去污剂酶可通过添加含有一种或多种(例如几种)酶的单独的附加剂,或通过添加包含所有这些酶的组合的添加剂而包含于去污剂组合物中。本发明的去污剂添加剂,即单独的添加剂或组合的添加剂,可例如配制为颗粒、液体、浆料等等。优选的去污剂添加剂剂型为颗粒,特别是无尘颗粒,液体,特别是稳定化的液体,或浆料。
无尘颗粒可例如如US 4,106,991和4,661,452中所公开而产生,并可任选地通过本领域已知方法涂覆。蜡状涂覆材料的实例为具有1000至20000的平均摩尔重量的聚环氧乙烷产物(聚乙二醇,PEG);具有16至50个环氧乙烷单元的乙氧化壬基酚(ethoxylated nonylphenol);乙氧化脂族醇,其中所述醇含有12至20个碳原子,且其中有15至80个环氧乙烷单元;脂肪酸;和脂肪酸的甘油一酯、甘油二酯和甘油三酯。适用于通过流动床技术施用的形成薄膜的涂覆材料的实例在GB 1483591中给出。液体酶制备物可例如通过根据已确立的方法添加多元醇如丙二醇,糖或糖醇,乳酸或硼酸而稳定化。受保护的酶可根据EP 238,216中公开的方法制备。
本发明的去污剂组合物可为任何便利的形式,例如条、片、粉末、颗粒、糊或液体。液体去污剂可为水性的,通常含有高至70%的水和0-30%的有机溶剂,或可为非水性的。
所述去污剂组合物包含一种或多种(例如几种)表面活性剂,其可为非离子型包括半极性型和/或阴离子型和/或阳离子型和/或两性离子型。所述表面活性剂通常以按重量计0.1%至60%的水平存在。
当其中包含阴离子型表面活性剂时,所述去污剂通常含有约1%至约40%的阴离子型表面活性剂,如直链烷基苯磺酸盐,α-烯基磺酸盐,烷基硫酸盐(脂肪醇硫酸盐),醇乙氧基硫酸盐,仲烷磺酸盐,α-磺基脂肪酸甲基酯,烷基或烯基琥珀酸或皂类。
当其中包含非离子型表面活性剂时,所述去污剂通常含有约0.2%至约40%的非离子型表面活性剂如醇乙氧化物,壬基苯酚乙氧化物,烷基聚糖苷,烷基二甲基胺氧化物,乙氧化脂肪酸单乙醇胺,脂肪酸单乙醇胺,多羟基烷基脂肪酸酰胺,或葡糖胺N-酰基N-烷基衍生物(“葡糖酰胺”)。
所述去污剂可含有0-65%去污剂助洗剂或络合剂如沸石、二磷酸盐、三磷酸盐、膦酸盐、碳酸盐、柠檬酸盐、氨三乙酸、乙二胺四乙酸、二乙二胺三氨基五乙酸、烷基或烯基琥珀酸、可溶性硅酸盐或层状硅酸盐(layeredsilicate)(例如来自Hoechst的SKS-6)。
所述去污剂可包含一种或多种(例如几种)聚合物。实例为羧甲基纤维素,聚乙烯基吡咯烷酮,聚乙二醇,聚乙烯醇,聚乙烯基吡啶-N-氧化物,聚乙烯基咪唑,聚羧酸酯如聚丙烯酸酯,延胡索酸/丙烯酸共聚物和甲基丙烯酸月桂酯/丙烯酸共聚物。
去污剂可含有漂白系统,其可包含H2O2源如过硼酸或过碳酸,其可与形成过酸的漂白增强剂如四乙酰基乙二胺(tetraacetylethylenediamine)或壬酰氧基苯磺酸(酯/盐)(nonanoyloxybenzenesulfonate)组合。或者,所述漂白系统可包含例如酰胺,酰亚胺或砜类型的过氧酸。
可以使用常规稳定剂使本发明的洗涤剂组合物中的酶稳定化,所述稳定剂例如,多元醇如丙二醇或甘油,糖或糖醇,乳酸,硼酸或硼酸衍生物,例如,芳族硼酸酯,或苯基硼酸(phenyl boronic acid)衍生物例如4-甲酰苯基硼酸,并且所述组合物可按例如WO92/19709和WO92/19708中所述配制。
所述去污剂还可含有其他常规的去污剂成分如例如织物调理剂(fabricconditioner)包括黏土、增泡剂(foam boosters)、抑泡剂(suds suppressors)、抗腐蚀剂(anti-corrosion agents)、悬污剂(soil-suspending agents)、抗污物再沉积剂(anti-soil redeposition agents)、染料(dyes)、杀细菌剂(bactericides)、光学增亮剂(optical brighteners)、助水溶剂(hydrotropes)、晦暗抑制剂(tarnish inhibitors)或香料(perfumes)。
在去污剂组合物中,任何酶可以以对应于0.01-100mg酶蛋白每升洗液,优选0.05-5mg酶蛋白每升洗液,特别是0.1-1mg酶蛋白每升洗液的量添加。
在去污剂组合物中,本发明具有纤维素分解增强活性的嵌合GH61多肽可以以对应于0.001-100mg蛋白,优选0.005-50mg蛋白,更优选0.01-25mg蛋白,甚至更优选0.05-10mg蛋白,最优选0.05-5mg蛋白,且甚至更优选0.01-1mg蛋白每升洗液的量添加。
本发明具有纤维素分解增强活性的嵌合GH61多肽亦可并入WO97/07202(通过提述并入本文)中公开的去污剂配制物。
植物
本发明还涉及植物,例如,转基因植物、植物部分或植物细胞,其包含本发明的多核苷酸,从而以可回收的量表达和产生所述嵌合GH61多肽。嵌合GH61多肽可从植物或植物部分回收。或者,可以按原样(as such)将含有该嵌合GH61多肽的植物或植物部分用于改进食品或饲料的质量,例如,改进营养价值、适口性(palatability)和流变性质(rheological properties),或用于破坏抗营养因子。
本发明还涉及分离的植物,例如,转基因植物、植物部分或植物细胞,其包含本发明的多核苷酸,从而以可回收的量表达和产生所述嵌合GH61多肽。嵌合GH61多肽可从植物或植物部分回收。或者,可以按原样(as such)将含有该嵌合GH61多肽的植物或植物部分用于改进食品或饲料的质量,例如,改进营养价值、适口性(palatability)和流变性质(rheological properties),或用于破坏抗营养因子。
转基因植物可以是双子叶的(双子叶植物)或单子叶的(单子叶植物)。单子叶植物的实例是草(grasses),如草地早熟禾(meadow grass)(蓝草(blue grass),早熟禾属(Poa));饲用牧草(forage grass)如羊茅属(Festuca)、黑麦草属(Lolium);寒地型牧草(temperate grass),如Agrostis(翦股颖属);和谷类,例如,小麦、燕麦、黑麦、大麦、稻(rice)、高粱和玉蜀黍(maize)(玉米)。
双子叶植物的实例是烟草(tobacco),豆类(legumes),如羽扇豆(lupins),马铃薯,糖甜菜(sugar beet),豌豆,豆(bean)和大豆(soybean)和十字花科的(cruciferous)植物(十字花科(family Brassicaceae)),如花椰菜(cauliflower),油菜籽(rape seed)和紧密相关的模型生物体拟南芥(Arabidopsis thaliana)。
植物部分的实例是茎(stem)、愈伤组织(callus)、叶(leaf)、根(root)、果实(fruit)、种子(seed)和块茎(tuber),以及包含这些部分的独立组织,例如,表皮(epidermis)、叶肉(mesophyll)、薄壁组织(parenchyme)、维管组织(vasculartissue)、分生组织(meristem)。具体的植物细胞区室(compartments),如叶绿体(chloroplast)、质外体(apoplast)、线粒体(mitochondria)、液泡(vacuole)、过氧化物酶体(peroxisome)和细胞质(cytoplasm)也被认为是植物部分。此外,任何植物细胞,无论什么组织来源,都被认为是植物部分。同样地,植物部分,如分离以促进本发明的应用的具体组织和细胞也被认为是植物部分,例如胚(embryo)、胚乳(endosperm)、糊粉(aleurone)和种皮(seed coat)。
同样包含于本发明范围内的还有这些植物、植物部分和植物细胞的后代。
表达嵌合GH61多肽的转基因植物或植物细胞可以依照本领域已知方法构建。简而言之,通过如下方法构建所述植物或植物细胞:将编码嵌合GH61多肽的一个或多个表达构建体并入植物宿主基因组或叶绿体基因组,并且将所得的修饰植物或植物细胞繁殖为转基因植物或植物细胞。
表达构建体便利地是包含编码嵌合GH61多肽的多核苷酸的核酸构建体,所述多核苷酸与在选择的植物或植物部分中表达该多核苷酸所需的适当的调节序列可操作地连接。此外,表达构建体可以包含对于鉴定植物细胞有用的选择性标记,在所述宿主细胞中整合了表达构建体和将该构建体引入到所述植物中所必需的DNA序列(后者依赖于使用的DNA引入方法)。
调节序列的选择,例如启动子和终止子序列和任选地信号或转运序列的选择,举例来说,基于期望何时、何处以及如何表达嵌合GH61多肽而确定。例如,编码多肽的基因的表达可以是组成型的或诱导型的,或可以是发育、阶段或组织特异性的,并且基因产物可以靶向特定的组织或植物部分例如种子或叶。调节序列由例如Tague等,1988,Plant Physiology86:506所述。
对于组成性表达,可使用35S-CaMV、玉米泛素1或稻肌动蛋白1启动子(Franck等,1980,Cell21:285-294,Christensen等,1992,Plant Mo.Biol.18:675-689;Zhang等,1991,Plant Cell3:1155-1165)。器官特异性启动子可以是例如来自贮藏库组织(storage sink tissue)例如种子、马铃薯块茎和果实的启动子(Edwards和Coruzzi,1990,Ann.Rev.Genet.24:275-303),或来自代谢库组织(metabolic sink tissue)例如分生组织的启动子(Ito等,1994,Plant Mol.Biol.24:863-878),种子特异性启动子诸如来自稻的谷蛋白(glutelin)、醇溶蛋白(prolamin)、球蛋白(globulin)或白蛋白(albumin)启动子(Wu等,1998,Plant CellPhysiol.39:885-889),来自豆球蛋白(legumin)B4和蚕豆(Vicia faba)的未知的种子蛋白基因的蚕豆启动子(Conrad等,1998,J.Plant Physiol.152:708-711)、来自种子油体蛋白(oil body protein)的启动子(Chen等,1998,Plant Cell Physiol.39:935-941),来自欧洲油菜(Brassica napus)的贮藏蛋白napA启动子,或本技术领域公知的任何其他种子特异性的启动子,例如,在WO 91/14772中所描述的。此外,启动子可为叶特异性的启动子,如来自稻或番茄的rbcs启动子(Kyozuka等,1993,Plant Physiol.102:991-1000),小球藻病毒(chlorella virus)腺嘌呤甲基转移酶(adenine methyltransferase)基因启动子(Mitra和Higgins,1994,Plant Mol.Biol.26:85-93),来自稻的aldP基因启动子(Kagaya等,1995,Mol.Gen.Genet.248:668-674),或伤口诱导的启动子,如马铃薯pin2启动子(Xu等,1993,Plant Mol.Biol.22:573-588)。同样地,所述启动子通过非生物的处理诱导,所述非生物的处理诸如温度、干旱或盐度变化,或通过外源施加的激活所述启动子的物质诱导,例如乙醇、雌激素(oestrogens)、植物激素(planthormones)如乙烯、脱落酸(abscisic acid)和赤霉酸(gibberellic acid),和重金属。
启动子增强子元件也可以用于实现嵌合GH61多肽在植物中的较高表达。例如,启动子增强子元件可以是内含子,其置于启动子和编码嵌合GH61多肽的多核苷酸之间。例如Xu等,1993,见上,公开了使用稻肌动蛋白1基因的第一内含子以增强表达。
选择性标记基因和表达构建体的任何其它部分可以选自本领域内可用的那些。
将核酸构建体根据本领域已知的常规技术并入植物基因组,所述常规技术包括土壤杆菌属(Agrobacterium)介导的转化、病毒介导的转化、显微注射(microinjection)、粒子轰击、生物射弹转化和电穿孔(Gasser等,1990,Science244:1293;Potrykus,1990,Bio/Technology8:535;Shimamoto等,1989,Nature338:274)。
根癌土壤杆菌(Agrobacterium tumefaciens)介导的基因转移(gene transfer),是产生转基因双子叶植物和转化单子叶植物(为了参考,见Hooykas和Schilperoort,1992,Plant Mol.Biol.19:15-38)的方法,虽然对于这些植物可使用其他的转化方法。产生转基因单子叶植物的方法是用粒子(用转化DNA涂覆的微观的金或钨粒子)轰击胚愈伤组织(embryonic calli)或发育中的胚(developing embryos)(Christou,1992,Plant J.2:275-281;Shimamoto,1994,Curr.Opin.Biotechnol.5:158-162;Vasil等,1992,Bio/Technology10:667-674)。转化单子叶植物的可供选择的方法是基于原生质体转化,如由Omirulleh等,1993,Plant Mol.Biol.21:415-428所描述的。其它转化方法包括描述于美国专利号6,395,966和7,151,204中的那些(两者均通过提述以其整体并入本文)。
转化之后,根据本领域熟知的方法选择具有并入的表达构建体的转化体并且再生成为完整植物。通常设计转化方法用于通过如下方法在再生期间或在后续世代中选择性消除选择基因:例如,使用带有两个独立的T-DNA构建体的共转化或通过特异性重组酶位点特异性地切除选择基因。
除了直接用根据本发明的构建体直接转化具体植物基因型之外,还可通过将具有构建体的植物与缺乏该构建体的第二植物杂交来制备转基因植物。举例而言,可将编码嵌合GH61多肽的构建体通过杂交而引入特定植物品种,而根本无需直接转化该给定品种的植物。因此,本发明不仅涵盖从依照本发明经转化的细胞直接再生的植物,还包括此类植物的后代(progeny)。如用于本文,后代可指依照本发明制备的亲本植物任何世代的后裔(offspring)。此种后代可包含依据本发明制备的DNA构建体。杂交导致转基因通过将起始种系与供体植物种系交叉授粉而引入植物种系。此类步骤的非限制性实例描述于美国专利7,151,204号。
植物通过回交转化方法生成。举例而言,该植物包括称作回交转化的基因型、种系、近交体(inbred)或杂交体(hybrid)的植物。
可使用遗传标记以协助本发明的一种或多种转基因从一个遗传背景基因渗入(introgression)至另一个。标记协助的选择提供了相对于常规育种的优势,在于其可用于避免由表型变异导致的错误。进一步,遗传标记可在特定杂交的个体后代中提供有关良种种质相对程度的数据。举例而言,当本不(otherwise)具有非农艺学所需的遗传背景但具有所需性状的植物与良种亲本杂交时,可使用遗传标记来选择不仅具有目标性状,还具有相对较大比例所需种质的后代。以此方式,使一种或多种性状基因渗入特定遗传背景所需的世代数得到最小化。
本发明亦涉及产生本发明的嵌合GH61多肽的方法,其包括:(a)在有助于产生所述嵌合GH61多肽的条件下培养转基因植物或植物细胞,所述植物或植物细胞包含编码嵌合GH61多肽的多核苷酸;和(b)回收所述嵌合GH61多肽。
通过以下实施例进一步对本发明进行描述,但不应将其理解为对本发明范围的限制。
实施例
培养基和溶液
PDA平板包含39g的马铃薯右旋糖琼脂和去离子水加至1升。
MDU2BP培养基包含45g的麦芽糖,1g的MgSO4·7H2O,1g的NaCl,2g的K2HSO4,12g的KH2PO4,2g的尿素,500μl的AMG痕量金属溶液,和去离子水加至1升(pH5.0)。
AMG痕量金属溶液包含14.3g的ZnSO4·7H2O,2.5g的CuSO4·5H2O,0.5g的NiCl2·6H2O,13.8g的FeSO4·H2O,8.5g的MnSO4·7H2O,3g的柠檬酸,和去离子水加至1升。
M410培养基包含50g的麦芽糖,50g的葡萄糖,2g的MgSO4·7H2O,2g的KH2PO4,4g的无水柠檬酸粉末,8g的酵母提取物,2g的尿素,0.5g的AMG痕量金属溶液,0.5g的CaCl2,和去离子水加至1升(pH6.0)。
YPG培养基包含10g的酵母提取物,10g的Bacto蛋白胨,20g的葡萄糖,和去离子水加至1升。
YPM培养基包含去离子水中的1%酵母提取物,2%蛋白胨,和2%麦芽糖。
LB平板包含10g的Bacto-胰蛋白胨。5g的酵母提取物,10g的氯化钠,15g的Bacto-琼脂,和去离子水加至1升。
COVE平板包含342.3g的蔗糖,25g的Noble琼脂,20ml的COVE盐溶液,10mM乙酰胺,15或20mM CsCl,和去离子水加至1升。在蒸汽灭菌之前,将溶液调整至pH7.0。
COVE2平板包含30g的蔗糖,20ml的COVE盐溶液,20ml的1M乙酰胺,25g的Agar Noble,和去离子水加至1升。
COVE盐溶液包含26g的KCl,26g的MgSO4·7H2O,76g的KH2PO4,0ml的COVE痕量金属溶液,和去离子水加至1升。
COVE痕量金属溶液包含0.04g的NaB4O7·10H2O,0.4g的CuSO4·5H2O,1.2g的FeSO4·7H2O,0.7g的MnSO4·H2O,0.8g的Na2MoO2·2H2O,10g的ZnSO4·7H2O,和去离子水加至1升。
淀粉酶诱导培养基包含20g的纤维素,10g的玉米浆固体(corn steep solids),1.45g的(NH4)2SO4,2.08g的KH2PO4,0.28g的CaCl2,0.42g的MgSO4·7H2O,0.42ml的木霉属痕量金属溶液,1-2滴的消泡剂,和去离子水加至1升。
木霉属痕量金属溶液包含216g的FeCl3·6H2O,58g的ZnSO4·7H2O,27g的MnSO4·H2O,10g的CuSO4·5H2O,2.4g的H3BO3,336g的柠檬酸,和去离子水加至1升。
PEG缓冲液包含500g的聚乙二醇4000(PEG4000),10mM CaCl2,10mMTris-HCl pH7.5,和去离子水加至1升;经过滤灭菌。
STC包含去离子水中的1M山梨醇,10mM CaCl2,和10mM Tris-HCl,pH7.5;经过滤灭菌。
实施例1:具有纤维素分解增强活性的烟曲霉GH61B多肽的制备
具有纤维素分解增强活性的烟曲霉多肽(SEQ ID NO:93[DNA 序列]和SEQ ID NO:94[推导的氨基酸序列])如下所述制备。
对烟曲霉部分基因组序列(The Institute for Genomic Research,Rockville,MD,USA)的tblastn检索(Altschul等,1997,Nucleic Acids Res.25:3389-3402)使用几种已知的GH61多肽,包括桔橙嗜热子囊菌的GH61A多肽(GeneSeqP登录号AEC05922)作为查询序列(query)来进行。基于在氨基酸水平与查询序列的高水平的类似性,数个基因鉴定为推定的家族GH61同源物。选择一个大约850bp,与桔橙嗜热子囊菌GH61A多肽氨基酸序列具有高于70%序列同一性基因组区进行进一步研究。
烟曲霉NN051616如美国专利号7,244,605中所述生长并收获。将冻结的菌丝体用研钵和杵磨碎为精细粉末,并使用DNEASY
Figure BDA00003531984600924
 Plant Maxi Kit(QIAGEN Inc.,Valencia,CA,USA)根据生产商的指示分离基因组DNA。
设计了下示的两个合成的寡核苷酸引物以从基因组DNA PCR扩增烟曲霉家族GH61B多肽基因。使用IN-FUSION
Figure BDA00003531984600925
 Cloning Kit(BD Biosciences,PaloAlto,CA,USA)将片段直接克隆入表达载体pAlLo2(WO 2004/099228),而无需进行限制性消化和连接。
正向引物:
5’-ACTGGATTTACCATGACTTTGTCCAAGATCACTTCCA-3′(SEQ ID NO:133)
反向引物:
5’-TCACCTCTAGTTAATTAAGCGTTGAACAGTGCAGGACCAG-3’(SEQ ID NO:134)
粗体字母代表编码序列。剩余序列同源于pAlLo2的插入位点。
使用五十皮摩尔的每种上述引物用于PCR反应中,所述反应包含204ng的烟曲霉基因组DNA,1X Pfx Amplification Buffer(Invitrogen,Carlsbad,CA,USA),各1.5μl的10mM dATP,dTTP,dGTP,和dCTP混合物,2.5单位的PLATINUM
Figure BDA00003531984600921
Pfx DNA聚合酶(Invitrogen Corp.,Carlsbad,CA,USA),和1μl的50mM MgSO4,最终体积为50μl。扩增使用EPPENDORF
Figure BDA00003531984600922
MASTERCYCLER
Figure BDA00003531984600923
5333epgradient S(Eppendorf Scientific,Inc.,Westbury,NY,USA)进行,其程序如下:1个循环,在94℃进行3分钟;和30个循环,每个在94℃进行30秒,56℃进行30秒,和72℃进行1分钟。然后将加热块维持在72℃15分钟,接着进行4℃浸泡循环。
将反应产物通过使用40mM Tris碱-20mM乙酸钠-1mM EDTA二钠盐(TAE)的1.0%琼脂糖凝胶电泳进行分离,其中将大约850bp产物条带从凝胶切出,并使用MINELUTE
Figure BDA00003531984600931
Gel Extraction Kit(QIAGEN Inc.,Valencia,CA,USA)根据生产商的指示进行纯化。
然后将片段使用IN-FUSION
Figure BDA00003531984600932
Cloning Kit克隆入pAlLo2。将载体用NcoI和Pac I消化,并将片段通过如上所述的凝胶电泳和QIAQUICK
Figure BDA00003531984600933
GelPurification Kit(QIAGEN Inc.,Valencia,CA,USA)纯化。将基因片段和消化的片段合并在一起进行反应,得到表达质粒pAG43,其中家族GH61B多肽基因的转录处于NA2-tpi启动子的调控之下。NA2-tpi启动子是来自黑曲霉中性α-淀粉酶基因的修饰的启动子,其中其未翻译的前导序列被来自构巢曲霉丙糖磷酸异构酶基因的未翻译的前导序列替代。重组反应(20μl)包含1XIN-FUSION
Figure BDA00003531984600934
 Buffer(BD Biosciences,Palo Alto,CA,USA),1X BSA(BDBiosciences,Palo Alto,CA,USA),1μl的IN-FUSION
Figure BDA00003531984600935
酶(稀释1:10)(BDBiosciences,Palo Alto,CA,USA),166ng的用Nco I和Pac I消化的pAlLo2,和110ng的烟曲霉GH61B多肽纯化的PCR产物。将反应物在37℃温育15分钟,接着在50℃温育15分钟。将反应物用40μl的10mM Tris-0.1M EDTA缓冲液稀释,并将2.5μl的稀释反应物用于转化大肠杆菌XL10SOLOPACK
Figure BDA00003531984600936
Gold感受态细胞(Stratagene,La Jolla,CA,USA)。含有pAG43(GH61B蛋白基因)的大肠杆菌转化体通过限制性酶消化进行鉴定,并使用BIOROBOT
Figure BDA00003531984600937
9600(QIAGEN Inc.,Valencia,CA,USA)制备质粒DNA。
862bp PCR片段的DNA测序用Applied Biosystems Model377XLAutomated DNA Sequencer(Applied Biosystems,Carlsbad,CA,USA)使用染料终止子化学(Giesecke等,1992,Journal of Virology Methods38:47-60)和引物步移策略进行。使用下述载体特异性引物进行测序:
pAllo25Seq:5′-TGTCCCTTGTCGATGCG3′(SEQ ID NO:135)
pAllo23Seq:5′-CACATGACTTGGCTTCC3′(SEQ ID NO:136)
审视核苷酸序列数据的品质,并将所有序列以PHRED/PHRAP软件(University of Washington,Seattle,WA,USA)的协助彼此进行比较。
基于编码的蛋白对桔橙嗜热子囊菌GH61A多肽(GeneSeqP登录号AEC05922)的类似性构建对于烟曲霉序列的基因模型。烟曲霉GH61B多肽的核苷酸序列和推导的氨基酸序列分别示于SEQ ID NO:93和SEQ ID NO:94。基因组片段编码250个氨基酸的多肽,其由两个53和56bp的内含子打断。基因和成熟编码序列的的%G+C含量分别为53.9%和57%。使用SignalP软件程序(Nielsen等,1997,Protein Engineering10:1-6),预测了21个残基的信号肽。预测的成熟蛋白含有229个氨基酸,其具有23.39kDa的预测分子量。
根据Christensen等,1988,Bio/Technology6:1419-1422的方法制备的米曲霉JaL355原生质体用6μg的pAG43转化。将二十六个转化体分离至单个PDA平板。
将24个转化体的汇合的PDA平板各用5ml的0.01%TWEEN
Figure BDA00003531984600941
20洗涤,并各自收集孢子。将八μl的各孢子储备分别添加至1ml的YPG,YPM,和M410培养基24孔板中并在34℃温育。在3日温育之后,将来自四个转化体的7.5μl的上清使用CRITERION
Figure BDA00003531984600942
无染色,8-16%梯度SDS-PAGE凝胶(Bio-Rad Laboratories,Inc.,Hercules,CA,USA)根据生产商的指示进行分析。基于该凝胶,选择M410培养基作为最佳的培养基。在温育之后五日,将来自每个M410培养的7.5μl的上清使用CRITERION
Figure BDA00003531984600943
无染色,8-16%梯度SDS-PAGE凝胶进行分析。培养的SDS-PAGE概貌显示数个转化体具有在大约25kDa的新的主要条带。
将一个转化体(在PDA平板上生长)的汇合平板用5ml的0.01%TWEEN
Figure BDA00003531984600944
20洗涤,并接种入四个含有100ml的M410培养基的500ml Erlenmeyer烧瓶以生成培养液以供表征酶。在第5日收获这些烧瓶(300ml),使用0.22μm EXPRESSTMPlus Membrane(Millipore,Bedford,MA,USA)过滤,并在4℃储藏。
将含有重组产生的具有纤维素分解增强活性的烟曲霉GH61B多肽的过滤的烧瓶培养液首先通过配置有10kDa聚醚砜膜(Pall Filtron,Northborough,MA,USA)的切线流浓缩器(Pall Filtron,Northborough,MA,USA)进行浓缩,缓冲液交换入20mM Tris-HCl pH8.0,然后使用HILOADTM26/60SUPERDEXTM75凝胶过滤柱(GE Healthcare,Piscataway,NJ,USA)以750ml的150mM NaCl,20mM Tris-HCl pH8.0中的等张梯度进行纯化。基于SDS-PAGE收集并汇集级分。使用Microplate BCATM Protein Assay Kit(ThermoFisher Scientific Inc.,Rockford,IL,USA)确定蛋白浓度,其中使用牛血清白蛋白作为蛋白标样。
实施例2:具有纤维素分解增强活性的烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合多肽的构建
构建具有纤维素分解增强活性的烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合多肽并表达于米曲霉JaL250中。所述嵌合GH61B多肽组合了烟曲霉GH61B多肽和桔橙嗜热子囊菌GH61A多肽的三个不同片段。第一GH61片段含有SEQ ID NO:78的桔橙嗜热子囊菌GH61A多肽的氨基酸1至84(氨基酸1至21是信号肽),第二GH61片段含有SEQ ID NO:94的烟曲霉GH61B多肽的氨基酸85至207,而第三GH61片段含有SEQ ID NO:78的桔橙嗜热子囊菌GH61A多肽的氨基酸208至249。将编码第一和第三片段的多核苷酸从质粒pDZA2(WO 2005/074656)PCR扩增,所述质粒为包含编码野生型桔橙嗜热子囊菌GH61A多肽的米曲霉表达载体,而编码第二片段的多核苷酸从质粒pAG43PCR扩增,所述质粒为含有实施例1中所述的编码野生型烟曲霉GH61B多肽的多核苷酸的米曲霉表达载体。质粒pCW026(WO 2005/030926)是包含编码野生型里氏木霉CEL7A纤维二糖水解酶的多核苷酸的米曲霉表达载体。然后将对于第一、第二和第三GH61多肽片段的PCR扩增区段根据Zhu等,2007,BioTechniques43:354-359的方法和IN-FUSIONTM AdvantagePCR Cloning Kit(Clontech Laboratories,Inc.,Mountain View,CA,USA)以下示的引物同时亚克隆入质粒pCW026(用Pac I和Pst I缺口化)。设计引物以从编码桔橙嗜热子囊菌GH61A多肽的质粒pDZA2中的多核苷酸的5’端扩增对于第一多肽片段的多核苷酸。
正向引物(5AF):
5′-AACCACAAATCACAGTCGTCCCCGGTATTG-3′(SEQ ID NO:137)
反向引物(5AR):
5′-GGTTGCGGTCAACTTTCCAGGCTTGGCGCCCCTATGGCA-3′(SEQ ID NO:138)
设计引物5AF以在质粒pDZA2上的独特Pst I限制性酶位点上游超过30bp处引发,并设计引物5AR以包含对应于桔橙嗜热子囊菌GH61A多肽的氨基酸77-84的24bp区,以及对应于烟曲霉GH61B多肽的氨基酸85-89的15bp区。
设计下示的引物以从编码烟曲霉GH61B多肽的质粒pAG43中的多核苷酸扩增第二GH61多肽片段的多核苷酸。
正向引物(5BF):
5′-GGCGCCAAGCCTGGAAAGTTGACCGCAACCGTTGCAGCC-3′(SEQ ID NO:139)
反向引物(5BR):
5′-AGGGTTATCAGAACCGCCACCGGTGATTTGGATGTTGAA-3′(SEQ ID NO:140)
设计引物5BF以包含编码桔橙嗜热子囊菌GH61A多肽的氨基酸79-84的15bp区,以及编码烟曲霉GH61B多肽的氨基酸85-92的24bp区。设计引物5BF以包含编码烟曲霉GH61B多肽的氨基酸200-207的24bp区以及编码桔橙嗜热子囊菌GH61A多肽的氨基酸208-212的15bp区。
设计下示的引物以从编码桔橙嗜热子囊菌GH61A多肽的质粒pDZA2中的多核苷酸扩增第三GH61多肽片段的多核苷酸。
正向引物(5CF):
5′-CAAATCACCGGTGGCGGTTCTGATAACCCTGCTGGAACT-3′(SEQ ID NO:141)
反向引物(5CR):
5′-CAGGTGTCAGTCACCTCTAGTTAATTAATTAACCAGTATACAGAGGAGGACCAGGGATGAT-3′(SEQ ID NO:142)
设计引物5CF以包含编码烟曲霉GH61B多肽的氨基酸203-207的15bp区以及对应于桔橙嗜热子囊菌GH61A多肽的氨基酸208-215的24bp区。设计引物5CR以包含对应于桔橙嗜热子囊菌GH61A多肽的氨基酸239-249的33bp区以及含有Pac I限制性酶位点和来自质粒pCW026的AMG终止子的5’端的23bp区。
嵌合区段 寡聚物对 DNA模板 预测的PCR大小(bp)
第一片段 068393+068400 pDZA2 555
第二片段 068401+068406 pAG43 455
第三片段 068407+068399 pDZA2 181
将总共50皮摩尔的每种上述引物用于扩增反应,所述反应包含50ng的pDZA2或pAG43,1X AMPLITAQ GOLD
Figure BDA00003531984600961
Buffer II(Applied Biosystems,Foster City,CA,USA),1μl的dATP,dTTP,dGTP,和dCTP各10mM的混合物,5单位的AMPLITAQ GOLD
Figure BDA00003531984600962
DNA聚合酶(Applied Biosystems,FosterCity,CA,USA),和3μl的25mM MgSO4,最终体积为50μl。扩增反应在EPPENDORF
Figure BDA00003531984600963
MASTERCYCLER
Figure BDA00003531984600964
5333(Eppendorf EG,Hamburg,Germany)中inxing,其程序为:1个循环,在95℃进行9分钟;和30个循环,每个在95℃进行30秒,55℃进行30秒,和72℃进行30秒。在30个循环之后,将反应在72℃加热5分钟。加热块然后进入10℃浸泡循环。
反应产物通过使用TAE缓冲液的1.0%琼脂糖凝胶电泳来分离,其中将对于第一GH61多肽片段555bp PCR产物条带,对于第二GH61多肽片段的455bpPCR产物条带,和对于第三GH61多肽片段的181bp PCR产物条带从凝胶切出,并使用QIAQUICK
Figure BDA00003531984600971
Gel Extraction Kit(QIAGEN Inc.,Valencia,CA,USA)提取。
将质粒pCW026通过用Pac I和Pst I消化来间隔化。消化通过将消化物的等分试样藉由TAE缓冲液中的0.8%琼脂糖凝胶电泳进行级分来验证,其中获得了5569bp(缺口化的(gapped))和1751bp(TAKA启动子和里氏木霉CEL7A纤维二糖水解酶基因的3’端)的预期片段。将5569bp(缺口化的)片段从凝胶切出,并使用QIAQUICK
Figure BDA00003531984600972
Gel Extraction Kit纯化。
多片段PCR克隆根据Zhu等,2007,见上文的方法进行。将对于第一GH61多肽片段的555bp PCR产物的同源末端,对于第二GH61多肽片段的455bpPCR产物的同源末端,对于第三GH61多肽片段的181bp PCR产物的同源末端,和用Pac I和Pst I消化的质粒pCW026,使用IN-FUSIONTMAdvantage PCRCloning Kit连接在一起。将总共25ng的555bp PCR产物,25ng的455bp PCR产物,25ng的181bp PCR产物,和200ng的质粒pCW026(用Pac I和Pst I消化)用于反应,所述反应包含2μl的5X IN-FUSIONTM反应缓冲液(ClontechLaboratories,Inc.,Mountain View,CA,USA)和1μl的IN-FUSIONTM酶(ClontechLaboratories,Inc.,Mountain View,CA,USA),终体积为10μl。将反应在37℃温育15分钟,接着在50℃温育15分钟,然后置于冰上。将反应体积用10mMTris-0.1mM EDTA pH8(TE)缓冲液增加至50μl,并使用3μl的反应物根据生产商的指示转化大肠杆菌XL10-GOLD
Figure BDA00003531984600973
Ultracompetent Cells(Stratagene,La Jolla,CA,USA)。在补充100μg每ml的氨苄青霉素的LB平板上选择转化体。来自几个所得的大肠杆菌转化体的质粒DNA使用BIOROBOT
Figure BDA00003531984600974
9600制备。
鉴定了命名为pTH226的一个质粒,其包含编码桔橙嗜热子囊菌GH61A的氨基酸1-84的多核苷酸(SEQ ID NO:143),来自烟曲霉GH61B的氨基酸85-207,和桔橙嗜热子囊菌GH61A多肽(SEQ ID NO:144)的氨基酸208-249,其全长多核苷酸序列使用3130xl Genetic Analyzer(Applied Biosystems,FosterCity,CA,USA)确定。
实施例3:烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合肽的表达
将根据Christensen等,1988,见上文的方法制备的米曲霉JaL250(WO99/61651)原生质体用5μg的pTH226(以及作为对照的pAllo2)转化。该转化产生约20-25个转化体。将转化体在PDA平板上孢子纯化,然后在包含1ml YPG培养基或YPM培养基的24孔培养板上生长,并在34℃静态温育5日。在第5日收获培养液样品,并通过使用8-16%Tris-甘氨酸凝胶(Bio-Rad Laboratories,Inc.,Hercules,CA,USA)的SDS-PAGE进行分析。一旦来自每个经孢子纯化的转化体的培养物汇合,并形成了孢子,就通过将5ml的过滤灭菌的0.01%TWEEN
Figure BDA00003531984600981
80(用玻璃过滤的水)施于每个PDA平板的中央并使用灭菌涂布器将孢子刮入溶液来制备孢子储液。将来自因在25kDa的预测分子量具有较深条带而通过SDS-PAGE鉴定为最高生产(highest producing)转化体的孢子储液用于接种含有300ml的MDU2BP培养基的2升摇瓶。将摇瓶在34℃在220rpm搅拌下温育5日。在温育之后,将培养液使用0.22μm聚醚砜(Millipore,Bedford,MA,USA)灭菌过滤以供纯化。将从对烧瓶培养液的SDS-PAGE分析在25kDa具有最深条带而鉴定出的米曲霉菌株命名为米曲霉TH176。
实施例4:烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合多肽的纯化
将米曲霉TH176经过滤的培养液首先通过配置有10kDa聚醚砜膜(PallFiltron,Northborough,MA,USA)的切线流浓缩器(Pall Filtron,Northborough,MA,USA)浓缩,缓冲液交换入20mM Tris-HCl pH8.0,然后使用5ml QSEPHAROSEFast Flow柱(GE Healthcare,Piscataway,NJ,USA)以20mMTris-HCl pH8.0中的0-600mM NaCl线性梯度进行纯化。将级分收集并基于SDS-PAGE汇集。蛋白浓度使用Microplate BCATMProtein Assay Kit确定,其中牛血清白蛋白用作蛋白标样。
实施例5:烟曲霉β-葡糖苷酶的制备
烟曲霉β-葡糖苷酶(SEQ ID NO:53[DNA序列]和SEQ ID NO:54[推导的氨基酸序列])根据美国专利号7,244,605制备。蛋白浓度使用MicroplateBCATM Protein Assay Kit确定,其中牛血清白蛋白用作蛋白标样。
实施例6:磷酸溶胀的纤维素的制备
使用由Zhang等,2006,Biomacromolecules7:644-648描述的规程从AVICEL
Figure BDA00003531984600983
PH101(FMC,Philadelphia,PA,USA)制备磷酸溶胀的纤维素(PASC)。
实施例7:磷酸溶胀的纤维素(PASC)的水解测定
将如实施例6中所述制备的PASC的1.0%浆料通过振荡充分重悬,并迅速转移至100ml烧杯,并用磁性搅拌棒迅速搅拌。将1.0%PASC浆料的五百μl等分试样使用具有宽开口的尖的1000μl微移液管(尖末端从基部约2mm处切去)移液入2.0ml96深孔板(Axygen,Union City,CA,USA)的孔中。然后将一百μl的10mM MnSO4-500mM乙酸钠pH5和100μl的去离子水添加至每个孔。将二百μl的去离子水或1.0%连苯三酚(w/w)(Sigma Chemical Co.,Inc.,St.Louis,Mo,USA)溶液添加至每个孔中。制备酶混合物,然后将其以100μl的体积同时添加至所有孔中,使每个反应总体积为1ml。然后使用ALPS300TM平板密封器(Abgene,Epsom,United Kingdom)密封平板,充分混合,并在50℃、65℃或65℃温育大约3日。所有实验一式三份进行。
对于水解反应的初步分析使用配置有AMINEXTM HPX-87H柱(Bio-RadLaboratories,Inc.,Hercules,CA,USA)的具有CHEMSTATION
Figure BDA00003531984600991
软件(AgilentTechnologies,Inc.,Santa Clara,CA,USA)的AGILENT
Figure BDA00003531984600992
1100HPLC(AgilentTechnologies,Inc.,Santa Clara,CA,USA)来进行。在大约4日之后,将深孔板从培养箱移除,并冷却过夜至4℃。然后将平板通过倒置混合均匀,并在SORVALL
Figure BDA00003531984600993
RT7离心机(Thermo Fisher Scientific,Aslthan,MA,USA)中以52xg短暂地离心10秒。然后将样品通过移液混合,并将来自每个孔的200μl转移至MULTISCREEN
Figure BDA00003531984600994
HV(Millipore,Bedford,MA,USA)离心过滤板装置。将离心过滤板装置在SORVALL
Figure BDA00003531984600995
RT7离心机中以2000rpm离心20分钟。将滤过物转移至96孔自动取样器平板,并用5mM H2SO41:1稀释,用硅密封垫密封,并插入HPLC注入器模块(设为4℃)以供将20μl注入连接于4.6x250mm AMINEX
Figure BDA00003531984600996
HPX-87H柱的CATION HTM保护柱上,接着用5mM H2SO4中的0.05%w/w苯甲酸洗脱。糖通过折射率检测来检测,其中通过与纯化的糖标样相比的积分来定量。
所有HPLC数据处理使用MICROSOFT EXCELTM软件(Microsoft,Richland,WA,USA)进行。将测量的葡萄糖浓度就合适的稀释系数进行调整。仅测量葡萄糖,因为β-葡糖苷酶以高水平存在于所有除对照外的样品中。百分比相对转化使用下述方程计算:
%转化=[样品葡萄糖浓度]/[限制消化中的葡萄糖浓度]x100
为了计算%转化,基于100mg的里氏木霉纤维素酶每克纤维素(CELLUCLAST PLUSTM,Novozymes A/S,Bagsvaerd,Denmark)的纤维素酶对照来设定100%转化点,并将所有值除以该数值并乘以100。将一式三份数据点取平均值,并计算标准偏差。
实施例8:烟曲霉GH61B变体和桔橙嗜热子囊菌GH61A嵌合多肽的添加对烟曲霉β-葡糖苷酶下转化磷酸溶胀的纤维素的作用
对烟曲霉GH61B变体和桔橙嗜热子囊菌GH61A嵌合多肽(下文中称为“烟曲霉GH61B嵌合多肽”)评估其在连苯三酚存在下增强烟曲霉CEL3Aβ-葡糖苷酶水解磷酸溶胀的纤维素的能力。磷酸溶胀的纤维素水解测定如实施例7中所述进行。
烟曲霉CEL3Aβ-葡糖苷酶(5mg蛋白每g纤维素);烟曲霉GH61B野生型多肽(20mg蛋白每g纤维素)和烟曲霉CEL3Aβ-葡糖苷酶(5mg蛋白每g纤维素)的组合;烟曲霉GH61B嵌合多肽(20mg蛋白每g纤维素)和烟曲霉CEL3Aβ-葡糖苷酶(5mg蛋白每g纤维素)的组合;连苯三酚(0.2%w/w)和烟曲霉CEL3Aβ-葡糖苷酶(5mg蛋白每g纤维素)的组合;连苯三酚(0.2%w/w),烟曲霉GH61B野生型多肽(20mg蛋白每g纤维素)和烟曲霉CEL3Aβ-葡糖苷酶(5mg蛋白每g纤维素)的组合;以及连苯三酚(0.2%w/w),烟曲霉GH61B嵌合多肽(20mg蛋白每g纤维素)和烟曲霉CEL3Aβ-葡糖苷酶(5mg蛋白每g纤维素)的组合对磷酸溶胀的纤维素(0.5%w/w)的转化如实施例7中所述来确定。在50℃、55℃和65℃温育72小时之后,如实施例7中所述收集并分析数据。结果示于图1。
烟曲霉CEL3Aβ-葡糖苷酶(5mg蛋白每g纤维素)导致磷酸溶胀的纤维素的转化在50℃为2.2±0.1%。烟曲霉GH61B野生型多肽(20mg蛋白每g纤维素)和烟曲霉CEL3Aβ-葡糖苷酶(5mg蛋白每g纤维素)的组合导致磷酸溶胀的纤维素的转化在50℃为2.6±0.1%。烟曲霉GH61B嵌合多肽(20mg蛋白每g纤维素)和烟曲霉CEL3Aβ-葡糖苷酶(5mg蛋白每g纤维素)的组合导致磷酸溶胀的纤维素的转化在50℃为2.2±0.1%。连苯三酚(0.2%w/w)和烟曲霉CEL3Aβ-葡糖苷酶(5mg蛋白每g纤维素)的组合导致磷酸溶胀的纤维素的转化在50℃、60℃和65℃分别为2.3±0.1%,1.6±0.5%,和1.4±1.1%。将烟曲霉GH61B野生型多肽(20mg蛋白每g纤维素)添加至连苯三酚(0.2%w/w)和烟曲霉CEL3Aβ-葡糖苷酶(5mg蛋白每g纤维素)的组合导致磷酸溶胀的纤维素的转化在50℃、60℃和65℃分别为27.2±0.4%,17.7±1.2%,和17.8±0.9%。
将烟曲霉GH61B嵌合多肽(20mg蛋白每g纤维素)添加至连苯三酚(0.2%w/w)和烟曲霉CEL3Aβ-葡糖苷酶(5mg蛋白每g纤维素)的组合导致磷酸溶胀的纤维素的转化在50℃、60℃和65℃分别为33.3±1.7%,24.0±0.3%,和25.1±0.9%。
实施例9:通过差示扫描量热法确定烟曲霉野生型GH61B多肽以及烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合多肽的Td(变性温度)
烟曲霉野生型GH61B多肽和烟曲霉GH61B嵌合多肽的热稳定性通过差示扫描量热法(DSC)使用具有自动取样器的VP-Capillary Differential ScanningCalorimeter(MicroCal Inc.,GE Health Care,Piscataway,NJ,USA)来确定。热变性温度Td(℃)取为在恒定程序的加热速率下加热添加100ppm TRITONX100的50mM乙酸钠pH5.0中的酶溶液之后获得的热分析图(Cp对T)中变性峰(主要吸热峰)的顶部。在将样品加载入量热器之前,将大约0.4ml的样品和参照溶液储藏于10℃。将样品和参照(参照:不含酶的缓冲液)溶液自动加载入DSC并在20℃热预平衡20分钟,然后从20℃至90℃以200K/hr的扫描速率进行DSC。变性温度以大约+/-1℃的精确度确定。结果示于图2A和2B。
根据差示扫描量热法,烟曲霉野生型GH61B多肽在pH5具有大约68℃的Td(图2A),而烟曲霉GH61B嵌合多肽在pH5具有大约73℃的Td(图2B)。
实施例10:制备具有纤维素分解增强活性的烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合多肽以供表达于里氏木霉
构建质粒pTH253以包含里氏木霉纤维二糖水解酶I基因启动子和终止子以及烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合GH61编码序列。设计下示的两个合成寡核苷酸引物以从质粒pTH226PCR扩增具有纤维素分解增强活性的烟曲霉GH61B和桔橙嗜热子囊菌GH61A多肽并导入侧翼区以供插入表达载体pMJ09(WO 2005/056772)。粗体字母代表编码序列,且其余序列同源于pMJ09的插入位点。
正向引物0610240:
5’-TCAACCGCGGACTGCGCACCATGTCCTTTTCCAAGATAATTGCT-3’(SEQ ID NO:145)
反向引物0610241:
5’-TCGCCACGGAGCTTATTAACCAGTATACAGAGGAGGACC-3’(SEQ ID NO:146)
将总共50皮摩尔的上述各引物用于扩增反应,所述反应含有100ng的pTH226,1X PHUSION
Figure BDA00003531984601021
Buffer(New England Biolabs,Ipswich,MA,USA),5μl的dATP、dTTP、dGTP和dCTP各10mM的混合物,1单位的PHUSIONTaq DNA聚合酶(New England Biolabs,Ipswich,MA,USA),最终体积为50μl。扩增反应在EPPENDORFMASTERCYCLER
Figure BDA00003531984601024
5333中进行,其程序为:1个循环,在98℃进行30秒;和30个循环,每个在98℃进行10秒,55℃进行30秒,和72℃进行1分钟。在30个循环之后,将反应在72℃加热7分钟。然后加热块进入10℃浸泡循环。
反应产物通过使用TAE缓冲液的1.0%琼脂糖凝胶电泳来分离,其中将890bp产物条带从凝胶切出并使用QIAQUICK
Figure BDA00003531984601025
Gel Extraction Kit根据生产商的指示纯化。
然后将890bp片段使用IN-FUSION
Figure BDA00003531984601026
Cloning Kit克隆入pMJ09。将载体用Nco I和Pac I消化并通过如上所述的琼脂糖凝胶电泳纯化。将基因片段和消化的载体在重组反应中连接在一起,得到表达质粒pTH253,其中烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合多肽编码序列的转录处于里氏木霉cbh1基因启动子的调控之下。重组反应(20μl)包含1X IN-FUSION
Figure BDA00003531984601027
Buffer(BD Biosciences,Palo Alto,CA,USA),1X BSA(BD Biosciences,Palo Alto,CA,USA),1μl的IN-FUSION
Figure BDA00003531984601028
酶(1:10稀释)(BD Biosciences,Palo Alto,CA,USA),150ng的用Nco I和Pac I消化的pMJ09,和60ng的烟曲霉GH61B或桔橙嗜热子囊菌GH61A嵌合多肽纯化的PCR产物。将反应在37℃温育15分钟接着在50℃温育15分钟。将反应物用40μl的10mM Tris-0.1M EDTA缓冲液稀释,并将3μl的稀释的反应物用于根据生产商的指示转化大肠杆菌XL10SOLOPACK
Figure BDA00003531984601029
Gold感受态细胞。在补充100μg每ml的氨苄青霉素的LB平板上选择转化体。使用BIOROBOT9600制备来自几个所得大肠杆菌转化体的质粒DNA。
鉴定了一个命名为pTH253的质粒,其包含编码桔橙嗜热子囊菌GH61A多肽的氨基酸1-84的多核苷酸(SEQ ID NO:143),来自烟曲霉GH61B的氨基酸85-207,和桔橙嗜热子囊菌GH61A多肽(SEQ ID NO:144)的氨基酸208-249,并使用3130xl Genetic Analyzer确定全长多核苷酸序列。
实施例11:在里氏木霉中表达烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合多肽
使用转化以通过PEG介导的转化将编码烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合多肽导入里氏木霉981-O-8(D4)(里氏木霉RutC30的诱变株;Montenecourt和Eveleigh,1979,Adv.Chem.Ser.181:289-301)以生成里氏木霉菌株TH178。每个质粒含有构巢曲霉amdS基因以使得转化体能够在作为唯一氮源的乙酰胺上生长。
将里氏木霉981-O-8(D4)在27℃和90rpm在25ml补充2%(w/v)葡萄糖和10mM尿苷的YP培养基培养17小时。菌丝体通过使用Vacuum DrivenDisposable Filtration System(Millipore,Bedford,MA,USA)过滤来收集,并用去离子水洗涤两次,并用1.2M山梨醇洗涤两次。原生质体通过将洗涤的菌丝体悬于20ml的含有15mg每ml的GLUCANEXTM(Novozymes A/S,
Figure BDA00003531984601033
Denmark)和0.36单位每ml的甲壳酶(Sigma Chemical Co.,St.Louis,MO,USA)的1.2M山梨醇中,并在34℃在90rpm的轻柔振荡下温育15-25分钟。原生质体通过在400x g离心7分钟并用冷的1.2M山梨醇洗涤两次来收集。原生质体使用血细胞计数器计数并重悬于STC至1X108个原生质体每ml的最终浓度。将过剩的原生质体在-80℃储藏于Cyro 1℃Freezing Container(Nalgene,Rochester,NY,USA)。
将大约1.2μg的质粒pTH253用Pme I消化并添加至100μl的原生质体溶液,并轻柔地混合,接着添加250μl的PEG缓冲液,混合,并在室温温育30分钟。然后添加STC(3ml)并混合,并将转化溶液铺板于使用构巢曲霉amdS选择的COVE平板。将平板在28℃温育5至7日。将转化体亚培养于COVE2平板上并在28℃生长。
将十九个转化体亚培养入含有乙酰胺的新鲜平板,并允许在28℃进行孢子形成7日。
将里氏木霉转化体在含有25ml的pH6的纤维素酶诱导培养基、用转化体的孢子接种的125ml带挡板的摇瓶中培养,并在28℃和200rpm温育5日。运行里氏木霉981-O-8(D4)作为对照。在第5日去除培养液样品。将一ml的每种培养液在微离心机中以15,700x g离心5分钟,并将上清转移至新管。
SDS-PAGE使用CRITERION
Figure BDA00003531984601031
Tris-HCl(5%分辨(resolving))凝胶(Bio-RadLaboratories,Inc.)以CRITERION
Figure BDA00003531984601032
System(Bio-Rad Laboratories,Inc.,Hercules,CA,USA)进行。将五μl的第5日上清(见上文)悬于2X浓缩的Laemmli SampleBuffer(Bio-Rad Laboratories,Inc.,Hercules,CA,USA),并在5%β-巯基乙醇的存在下煮沸5分钟。将上清样品加载于聚丙烯酰胺凝胶上,并以1XTris/Glycine/SDS作为运行缓冲液(Bio-Rad Laboratories,Inc.,Hercules,CA,USA)进行电泳。将所得的凝胶用Bio-Safe Coomassie Stain(Bio-Rad Laboratories,Inc.,Hercules,CA,USA)染色。基于蛋白凝胶显示烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合GH61多肽的最高表达的转化体命名为里氏木霉TH178。
将里氏木霉TH178培养于各含有25ml的pH6.0的纤维素酶诱导培养基的20-125ml带挡板的摇瓶。将烧瓶在28℃在200rpm温育五日。通过SDS-PAGE对烧瓶培养液的分析说明了除了背景里氏木霉蛋白之外新条带的表达,其在对应于所述烟曲霉GH61B和桔橙嗜热子囊菌GH61A嵌合GH61多肽的预期大小的25kDa。
本发明进一步通过下述编号的段落描述:
[1]一种分离的具有纤维素分解增强活性的嵌合GH61多肽,其包含:(a)第一GH61多肽片段,其位于所述嵌合GH61多肽的N端,选自下组:(i)多肽片段,其与SEQ ID NO:78的氨基酸22至84具有至少60%序列同一性;(ii)多肽片段,其由多核苷酸编码,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:77的核苷酸64至301或其cDNA序列,或它们的全长互补链;(iii)多肽片段,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:77的核苷酸64至301或其cDNA序列具有至少60%序列同一性;和(iv)多肽片段,其包含或组成为SEQ ID NO:78的氨基酸22至84;(b)第二GH61多肽片段,其位于所述第一GH61多肽片段的C端,选自下组:(i)多肽片段,其与SEQ ID NO:94的氨基酸85至207具有至少60%序列同一性;(ii)多肽片段,其由多核苷酸编码,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:93的核苷酸306至730或其cDNA序列,或它们的全长互补链;(iii)多肽片段,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:93的核苷酸306至730或其cDNA序列具有至少60%序列同一性;和(iv)多肽片段,其包含或组成为SEQ ID NO:94的氨基酸85至207;和(c)第三GH61多肽片段,其位于所述第二GH61多肽片段的C端,选自下组:(i)多肽片段,其与SEQ ID NO:78的氨基酸208至249具有至少60%序列同一性;(ii)多肽片段,其由多核苷酸编码,所述多核苷酸在至少低严格条件下与以下杂交:SEQID NO:77的核苷酸671至796或其cDNA序列,或它们的全长互补链;(iii)多肽片段,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:77的核苷酸671至796或其cDNA序列具有至少60%序列同一性;和(iv)多肽片段,其包含或组成为SEQ ID NO:78的氨基酸208至249。
[2]段1的嵌合GH61多肽,其中所述第一GH61多肽片段与SEQ ID NO:78的氨基酸22至84具有至少60%,至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%序列同一性。
[3]段1的嵌合GH61多肽,其中所述第一GH61多肽片段由多核苷酸编码,所述多核苷酸在低严格条件,中等严格条件,中等-高严格条件,高严格条件,或非常高严格条件下与以下杂交:SEQ ID NO:77的核苷酸64至301或其cDNA序列,或它们的全长互补链。
[4]段1的嵌合GH61多肽,其中所述第一GH61多肽片段由多核苷酸编码,所述多核苷酸与SEQ ID NO:77的核苷酸64至301或其cDNA序列具有至少60%,至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%序列同一性。
[5]段1的嵌合GH61多肽,其中所述第一GH61多肽片段包含或组成为SEQ ID NO:78的氨基酸22至84。
[6]段1的嵌合GH61多肽,其中所述第一GH61多肽片段由SEQ ID NO:77的核苷酸64至301或其cDNA序列编码。
[7]段1的嵌合GH61多肽,其中所述第二GH61多肽片段与SEQ ID NO:94的氨基酸85至207具有至少60%,至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%序列同一性。
[8]段1的嵌合GH61多肽,其中所述第二GH61多肽片段由多核苷酸编码,所述多核苷酸在低严格条件,中等严格条件,中等-高严格条件,高严格条件,或非常高严格条件下与以下杂交:SEQ ID NO:93的核苷酸306至730或其cDNA序列,或它们的全长互补链。
[9]段1的嵌合GH61多肽,其中所述第二GH61多肽片段由多核苷酸编码,所述多核苷酸与SEQ ID NO:93的核苷酸306至730或其cDNA序列具有至少60%,至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%序列同一性。
[10]段1的嵌合GH61多肽,其中所述第二GH61多肽片段包含或组成为SEQ ID NO:94的氨基酸85至207。
[11]段1的嵌合GH61多肽,其中所述第二GH61多肽片段由SEQ ID NO:93的核苷酸306至730或其cDNA序列编码。
[12]段1的嵌合GH61多肽,其中所述第三GH61多肽片段与SEQ ID NO:78氨基酸208至249具有至少60%,至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少95,至少96%,至少97%,至少98%,至少99%,或100%序列同一性。
[13]段1的嵌合GH61多肽,其中所述第三GH61多肽片段由多核苷酸编码,所述多核苷酸在低严格条件,中等严格条件,中等-高严格条件,高严格条件,或非常高严格条件下与以下杂交:SEQ ID NO:77的核苷酸671至796或其cDNA序列,或它们的全长互补链。
[14]段1的嵌合GH61多肽,其中所述第三GH61多肽片段由多核苷酸编码,所述多核苷酸与SEQ ID NO:77的核苷酸671至796或其cDNA序列具有至少60%,至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%序列同一性。
[15]段1的嵌合GH61多肽,其中所述第三GH61多肽片段包含或组成为SEQ ID NO:78的氨基酸208至249。
[16]段1的嵌合GH61多肽,其中所述第三GH61多肽片段由SEQ ID NO:77的核苷酸671至796或其cDNA序列编码
[17]段1的嵌合GH61多肽,其包含或组成为在所述嵌合GH61多肽的N端的作为第一GH61多肽片段的SEQ ID NO:78的氨基酸22至84,作为在第一GH61多肽片段的C端的第二GH61多肽片段的SEQ ID NO:94的氨基酸85至207,和作为在第二GH61多肽片段的C端的第三GH61多肽片段的SEQ ID NO:78的氨基酸208至249。
[18]段1的嵌合GH61多肽,其包含或组成为SEQ ID NO:144的成熟多肽。
[19]段1-18任一项的嵌合GH61多肽,其进一步包含在第一GH61多肽片段的N端的信号肽。
[20]段19的嵌合GH61多肽,其中所述信号肽是SEQ ID NO:78的信号肽。
[21]段19的嵌合GH61多肽,其中所述信号肽是SEQ ID NO:78的氨基酸1至21。
[22]一种分离的多核苷酸,其编码段1-21任一项的嵌合GH61多肽。
[23]一种核酸构建体,其包含段22的多核苷酸。
[24]一种表达载体,其包含段22的多核苷酸。
[25]一种宿主细胞,其包含段22的多核苷酸。
[26]一种产生具有纤维素分解增强活性的嵌合GH61多肽的方法,其包括:(a)在适于表达所述嵌合GH61多肽的条件下培养段25的宿主细胞;和(b)回收所述嵌合GH61多肽。
[27]一种转基因植物、植物部分或植物细胞,其用编码嵌合GH61多肽的段20的多核苷酸转化。
[28]一种产生段1-21任一项的嵌合GH61多肽的方法,其包括:(a)在有助于产生所述嵌合GH61多肽的条件下培养包含编码所述嵌合GH61多肽的多核苷酸的转基因植物或植物细胞;和(b)回收所述嵌合GH61多肽。
[29]一种用于降解或转化纤维素材料的方法,其包括在段1-21任一项的嵌合GH61多肽的存在下用酶组合物处理所述纤维素材料。
[30]段29的方法,其中所述纤维素材料经预处理。
[31]段29或30的方法,其进一步包括回收经降解的纤维素材料。
[32]段29-31任一项的方法,其中所述酶组合物包含一种或多种选自下组的酶:纤维素酶、半纤维素酶、酯酶、棒曲霉素、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。
[33]段32的方法,其中所述纤维素酶是一种或多种选自下组的酶:内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。
[34]段32的方法,其中所述半纤维素酶是一种或多种选自下组的酶:木聚糖酶、乙酰木聚糖酯酶、阿魏酸酯酶、阿拉伯呋喃糖苷酶、木糖苷酶和葡糖醛酸糖苷酶。
[35]段29-34任一项的方法,其中所述经降解的纤维素材料是糖。
[36]段35的方法,其中所述糖选自下组:葡萄糖、木糖、甘露糖、半乳糖和阿拉伯糖。
[37]一种用于产生发酵产物的方法,其包括(a)在段1-21任一项的嵌合GH61多肽的存在下用酶组合物糖化纤维素材料;(b)用一种或多种发酵微生物发酵经糖化的纤维素材料以产生发酵产物;和(c)从发酵回收所述发酵产物。
[38]段37的方法,其中所述纤维素材料经预处理。
[39]段37或38的方法,其中所述酶组合物包含一种或多种选自下组的酶:纤维素酶、半纤维素酶、酯酶、棒曲霉素、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。
[40]段39的方法,其中所述纤维素酶是一种或多种选自下组的酶:内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。
[41]段39的方法,其中所述半纤维素酶是一种或多种选自下组的酶:木聚糖酶、乙酰木聚糖酯酶、阿魏酸酯酶、阿拉伯呋喃糖苷酶、木糖苷酶和葡糖醛酸糖苷酶。
[42]段37-41任一项的方法,其中步骤(a)和(b)在同时糖化和发酵中同时进行。
[43]段37-42任一项的方法,其中所述发酵产物是醇、烷烃、环烷烃、烯、氨基酸、气体、异戊二烯、酮、有机酸或聚酮化合物。
[44]一种发酵纤维素材料的方法,其包括用一种或多种发酵微生物发酵所述纤维素材料,其中所述纤维素材料是在段1-21任一项的嵌合GH61多肽存在下用酶组合物糖化的。
[45]段44的方法,其中所述纤维素材料在糖化之前经预处理。
[46]段44或45的方法,其中所述酶组合物包含一种或多种选自下组的酶:纤维素酶、半纤维素酶、酯酶、棒曲霉素、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。
[47]段46的方法,其中所述纤维素酶是一种或多种选自下组的酶:内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。
[48]段46的方法,其中所述半纤维素酶是一种或多种选自下组的酶:木聚糖酶、乙酰木聚糖酯酶、阿魏酸酯酶、阿拉伯呋喃糖苷酶、木糖苷酶和葡糖醛酸糖苷酶。
[49]段44-48任一项的方法,其中所述纤维素材料的发酵产生发酵产物。
[50]段49方法,其进一步包括从发酵回收发酵产物。
[51]段49或50任一项的方法,其中所述发酵产物是醇、烷烃、环烷烃、烯、氨基酸、气体、异戊二烯、酮、有机酸或聚酮化合物。
[52]段1-21任一项的嵌合GH61多肽在去污剂中的用途。
[53]一种去污剂组合物,其包含段1-21任一项的嵌合GH61多肽和表面活性剂。
[54]段53的组合物,其进一步包含一种或多种选自下组的酶:淀粉酶、阿拉伯糖酶、角质酶、糖酶、纤维素酶、半乳聚糖酶、漆酶、脂肪酶、甘露聚糖酶、氧化酶、果胶酶、过氧化物酶、蛋白酶和木聚糖酶。
[55]段53或54的组合物,其配制为条、片、粉末、颗粒、糊或液体。
[56]一种用于清洗或洗涤硬表面或待洗衣物的方法,所述方法包括将所述硬表面或待洗衣物与段53-55任一项的组合物相接触。
[57]一种全培养液配制物或细胞培养组合物,其包含段1-21任一项的嵌合GH61多肽。
本文描述和要求保护的本发明并不局限于本文公开的具体方面的范围内,因为这些方面旨在作为本发明几个方面的说明。旨在将任何等同的方面包含于本发明的范围内。实际上,从前面的说明中,除本文所显示和描述的之外,本发明的多种修改对于本领域的技术人员来说是显而易见的。这些修改也旨在落入所附的权利要求的范围内。在冲突的情况下,将以包括定义部分的本公开为准。
Figure IDA00003531985200011
Figure IDA00003531985200021
Figure IDA00003531985200031
Figure IDA00003531985200051
Figure IDA00003531985200061
Figure IDA00003531985200071
Figure IDA00003531985200081
Figure IDA00003531985200091
Figure IDA00003531985200101
Figure IDA00003531985200121
Figure IDA00003531985200131
Figure IDA00003531985200141
Figure IDA00003531985200151
Figure IDA00003531985200161
Figure IDA00003531985200181
Figure IDA00003531985200191
Figure IDA00003531985200211
Figure IDA00003531985200221
Figure IDA00003531985200231
Figure IDA00003531985200241
Figure IDA00003531985200251
Figure IDA00003531985200261
Figure IDA00003531985200271
Figure IDA00003531985200291
Figure IDA00003531985200301
Figure IDA00003531985200311
Figure IDA00003531985200321
Figure IDA00003531985200331
Figure IDA00003531985200341
Figure IDA00003531985200351
Figure IDA00003531985200361
Figure IDA00003531985200381
Figure IDA00003531985200391
Figure IDA00003531985200401
Figure IDA00003531985200411
Figure IDA00003531985200421
Figure IDA00003531985200431
Figure IDA00003531985200441
Figure IDA00003531985200451
Figure IDA00003531985200481
Figure IDA00003531985200491
Figure IDA00003531985200501
Figure IDA00003531985200511
Figure IDA00003531985200521
Figure IDA00003531985200531
Figure IDA00003531985200541
Figure IDA00003531985200551
Figure IDA00003531985200561
Figure IDA00003531985200571
Figure IDA00003531985200581
Figure IDA00003531985200591
Figure IDA00003531985200601
Figure IDA00003531985200621
Figure IDA00003531985200641
Figure IDA00003531985200651
Figure IDA00003531985200661
Figure IDA00003531985200671
Figure IDA00003531985200691
Figure IDA00003531985200701
Figure IDA00003531985200711
Figure IDA00003531985200721
Figure IDA00003531985200731
Figure IDA00003531985200741
Figure IDA00003531985200751
Figure IDA00003531985200761
Figure IDA00003531985200771
Figure IDA00003531985200781
Figure IDA00003531985200791
Figure IDA00003531985200801
Figure IDA00003531985200821
Figure IDA00003531985200831
Figure IDA00003531985200851
Figure IDA00003531985200861
Figure IDA00003531985200871
Figure IDA00003531985200881
Figure IDA00003531985200901
Figure IDA00003531985200911
Figure IDA00003531985200921
Figure IDA00003531985200931
Figure IDA00003531985200941
Figure IDA00003531985200951
Figure IDA00003531985200961
Figure IDA00003531985200971
Figure IDA00003531985200981
Figure IDA00003531985200991
Figure IDA00003531985201001
Figure IDA00003531985201011
Figure IDA00003531985201021
Figure IDA00003531985201031
Figure IDA00003531985201041
Figure IDA00003531985201051
Figure IDA00003531985201071
Figure IDA00003531985201091
Figure IDA00003531985201101
Figure IDA00003531985201111
Figure IDA00003531985201131
Figure IDA00003531985201141
Figure IDA00003531985201161
Figure IDA00003531985201181
Figure IDA00003531985201191
Figure IDA00003531985201201
Figure IDA00003531985201211
Figure IDA00003531985201221
Figure IDA00003531985201231
Figure IDA00003531985201241
Figure IDA00003531985201251
Figure IDA00003531985201261
Figure IDA00003531985201281
Figure IDA00003531985201291
Figure IDA00003531985201301
Figure IDA00003531985201311
Figure IDA00003531985201321
Figure IDA00003531985201331
Figure IDA00003531985201341
Figure IDA00003531985201361
Figure IDA00003531985201371
Figure IDA00003531985201381
Figure IDA00003531985201391
Figure IDA00003531985201411
Figure IDA00003531985201421
Figure IDA00003531985201431
Figure IDA00003531985201441
Figure IDA00003531985201461
Figure IDA00003531985201481
Figure IDA00003531985201491
Figure IDA00003531985201501
Figure IDA00003531985201521
Figure IDA00003531985201551
Figure IDA00003531985201561
Figure IDA00003531985201571
Figure IDA00003531985201581
Figure IDA00003531985201601
Figure IDA00003531985201611

Claims (25)

1.一种具有纤维素分解增强活性的分离的嵌合GH61多肽,其包含:
(a)第一GH61多肽片段,其位于所述嵌合GH61多肽的N端,选自下组:(i)多肽片段,其与SEQ ID NO:78的氨基酸22至84具有至少60%序列同一性;(ii)多肽片段,其由多核苷酸编码,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:77的核苷酸64至301或其cDNA序列,或它们的全长互补链;(iii)多肽片段,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:77的核苷酸64至301或其cDNA序列具有至少60%序列同一性;和(iv)多肽片段,其包含或组成为SEQ ID NO:78的氨基酸22至84;
(b)第二GH61多肽片段,其位于所述第一多肽片段的C端,选自下组:(i)多肽片段,其与SEQ ID NO:94的氨基酸85至207具有至少60%序列同一性;(ii)多肽片段,其由多核苷酸编码,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:93的核苷酸306至730或其cDNA序列,或它们的全长互补链;(iii)多肽片段,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:93的核苷酸306至730或其cDNA序列具有至少60%序列同一性;和(iv)多肽片段,其包含或组成为SEQ ID NO:94的氨基酸85至207;和
(c)第三GH61多肽片段,其位于所述第二GH61多肽片段的C端,选自下组:(i)多肽片段,其与SEQ ID NO:78的氨基酸208至249具有至少60%序列同一性;(ii)多肽片段,其由多核苷酸编码,所述多核苷酸在至少低严格条件下与以下杂交:SEQ ID NO:77的核苷酸671至796或其cDNA序列,或它们的全长互补链;(iii)多肽片段,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:77的核苷酸671至796或其cDNA序列具有至少60%序列同一性;和(iv)多肽片段,其包含或组成为SEQ ID NO:78的氨基酸208至249。
2.权利要求1的嵌合GH61多肽,其中所述第一GH61多肽片段包含或组成为SEQ ID NO:78的氨基酸22至84。
3.权利要求1或2的嵌合GH61多肽,其中所述第二GH61多肽片段包含或组成为SEQ ID NO:94的氨基酸85至207。
4.权利要求1-3任一项的嵌合GH61多肽,其中所述第三GH61多肽片段包含或组成为SEQ ID NO:78的氨基酸208至249。
5.权利要求1-4任一项的嵌合GH61多肽,其包含或组成为作为在所述嵌合GH61多肽的N端的第一GH61多肽片段的SEQ ID NO:78的氨基酸22至84,作为在第一GH61多肽片段的C端的第二GH61多肽片段的SEQ ID NO:94的氨基酸85至207,和作为在第二GH61多肽片段的C端的第三GH61多肽片段的SEQ ID NO:78的氨基酸208至249。
6.权利要求1的嵌合GH61多肽,其包含或组成为SEQ ID NO:144的成熟多肽。
7.一种分离的多核苷酸,其编码权利要求1-6任一项的嵌合GH61多肽。
8.一种宿主细胞,其包含权利要求7的多核苷酸。
9.一种产生具有纤维素分解增强活性的嵌合GH61多肽的方法,其包括:
(a)在适于表达所述嵌合GH61多肽的条件下培养权利要求8的宿主细胞;和
(b)回收所述嵌合GH61多肽。
10.一种转基因植物、植物部分或植物细胞,其用编码嵌合GH61多肽的权利要求7的多核苷酸转化。
11.一种产生权利要求1-6任一项的嵌合GH61多肽的方法,其包括:
(a)在有助于产生所述嵌合GH61多肽的条件下培养包含编码所述嵌合GH61多肽的多核苷酸的转基因植物或植物细胞;和
(b)回收所述嵌合GH61多肽。
12.一种用于降解或转化纤维素材料的方法,其包括在权利要求1-6任一项的嵌合GH61多肽的存在下用酶组合物处理所述纤维素材料。
13.权利要求12的方法,其进一步包括回收经降解的纤维素材料。
14.权利要求12或13的方法,其中所述酶组合物包含一种或多种选自下组的酶:纤维素酶、半纤维素酶、具有纤维素分解增强活性的多肽、酯酶、棒曲霉素、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。
15.权利要求12-14任一项的方法,其中所述经降解的纤维素材料是糖。
16.一种用于产生发酵产物的方法,其包括:
(a)在权利要求1-6任一项的嵌合GH61多肽的存在下用酶组合物糖化纤维素材料;
(b)用一种或多种发酵微生物发酵经糖化的纤维素材料以产生发酵产物;和
(c)从发酵回收所述发酵产物。
17.权利要求16的方法,其中所述酶组合物包含一种或多种选自下组的酶:纤维素酶、半纤维素酶、具有纤维素分解增强活性的多肽、酯酶、棒曲霉素、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。
18.一种发酵纤维素材料的方法,其包括用一种或多种发酵微生物发酵所述纤维素材料,其中所述纤维素材料是在权利要求1-6任一项的嵌合GH61多肽存在下用酶组合物糖化的。
19.权利要求18的方法,其中所述酶组合物包含一种或多种选自下组的酶:纤维素酶、半纤维素酶、具有纤维素分解增强活性的多肽、酯酶、棒曲霉素、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。
20.权利要求18或19的方法,其中所述纤维素材料的发酵产生发酵产物。
21.权利要求20的方法,其进一步包括从发酵回收发酵产物。
22.权利要求1-6任一项的嵌合GH61多肽在去污剂中的用途。
23.一种去污剂组合物,其包含权利要求1-6任一项的嵌合GH61多肽和表面活性剂。
24.一种用于清洗或洗涤硬表面或待洗衣物的方法,所述方法包括将所述硬表面或待洗衣物与权利要求23的组合物相接触。
25.一种全培养液配制物或细胞培养组合物,其包含权利要求1-6任一项的嵌合GH61多肽。
CN2011800655050A 2010-11-18 2011-11-18 具有纤维素分解增强活性的嵌合多肽及其编码多核苷酸 Pending CN103339252A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41506610P 2010-11-18 2010-11-18
US61/415,066 2010-11-18
PCT/US2011/061482 WO2012068509A1 (en) 2010-11-18 2011-11-18 Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

Publications (1)

Publication Number Publication Date
CN103339252A true CN103339252A (zh) 2013-10-02

Family

ID=45048314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800655050A Pending CN103339252A (zh) 2010-11-18 2011-11-18 具有纤维素分解增强活性的嵌合多肽及其编码多核苷酸

Country Status (7)

Country Link
US (1) US9676830B2 (zh)
EP (1) EP2640833B1 (zh)
CN (1) CN103339252A (zh)
BR (1) BR112013010129A2 (zh)
DK (1) DK2640833T3 (zh)
MX (1) MX2013004758A (zh)
WO (1) WO2012068509A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105695439A (zh) * 2014-11-27 2016-06-22 丰益(上海)生物技术研发中心有限公司 一种β-葡萄糖苷酶基因的重组表达方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2855451A1 (en) * 2011-11-21 2013-08-15 Novozymes, Inc. Gh61 polypeptide variants and polynucleotides encoding same
US9458440B2 (en) 2012-06-07 2016-10-04 Roal Oy Proteins for the treatment of cellulosic material
FI124477B (en) * 2012-06-07 2014-09-15 Roal Oy New proteins for the treatment of cellulose materials
AU2014296572A1 (en) 2013-07-29 2016-02-18 Danisco Us Inc. Variant enzymes
FR3022557B1 (fr) * 2014-06-20 2019-01-25 Proteus Variants d'exoglucanases a activite amelioree et leurs utilisations
WO2017009431A1 (en) * 2015-07-14 2017-01-19 University Of Copenhagen Light-driven system and methods for chemical modification of an organic substrate
ES2850355T3 (es) 2016-02-19 2021-08-27 Intercontinental Great Brands Llc Procesos para crear corrientes de múltiples valores de fuentes de biomasa
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124769A1 (en) * 2008-11-18 2010-05-20 Novozymes, Inc. Methods and compositions for degrading cellulosic material

Family Cites Families (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (zh) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
GB1483591A (en) 1973-07-23 1977-08-24 Novo Industri As Process for coating water soluble or water dispersible particles by means of the fluid bed technique
GB1590432A (en) 1976-07-07 1981-06-03 Novo Industri As Process for the production of an enzyme granulate and the enzyme granuate thus produced
DK187280A (da) 1980-04-30 1981-10-31 Novo Industri As Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode
DK263584D0 (da) 1984-05-29 1984-05-29 Novo Industri As Enzymholdige granulater anvendt som detergentadditiver
JPH0697997B2 (ja) 1985-08-09 1994-12-07 ギスト ブロカデス ナ−ムロ−ゼ フエンノ−トチヤツプ 新規の酵素的洗浄剤添加物
EG18543A (en) 1986-02-20 1993-07-30 Albright & Wilson Protected enzyme systems
DK122686D0 (da) 1986-03-17 1986-03-17 Novo Industri As Fremstilling af proteiner
US5989870A (en) 1986-04-30 1999-11-23 Rohm Enzyme Finland Oy Method for cloning active promoters
US4810414A (en) 1986-08-29 1989-03-07 Novo Industri A/S Enzymatic detergent additive
NZ221627A (en) 1986-09-09 1993-04-28 Genencor Inc Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios
ATE125865T1 (de) 1987-08-28 1995-08-15 Novo Nordisk As Rekombinante humicola-lipase und verfahren zur herstellung von rekombinanten humicola-lipasen.
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
DE68924654T2 (de) 1988-01-07 1996-04-04 Novo Nordisk As Spezifische Protease.
DK6488D0 (da) 1988-01-07 1988-01-07 Novo Industri As Enzymer
JP3079276B2 (ja) 1988-02-28 2000-08-21 天野製薬株式会社 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法
WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
CA2058633C (en) 1989-06-13 2000-03-21 Virgil B. Lawlis, Jr. A method for killing cells without lysis
GB8915658D0 (en) 1989-07-07 1989-08-23 Unilever Plc Enzymes,their production and use
US5536655A (en) 1989-09-26 1996-07-16 Midwest Research Institute Gene coding for the E1 endoglucanase
US5275944A (en) 1989-09-26 1994-01-04 Midwest Research Institute Thermostable purified endoglucanas from acidothermus cellulolyticus ATCC 43068
US5110735A (en) 1989-09-26 1992-05-05 Midwest Research Institute Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus
PT97110B (pt) 1990-03-23 1998-11-30 Gist Brocades Nv Processo para catalisar reaccoes acelaraveis por enzimas, mediante adicao ao meio reaccional de sementes de plantas transgenicas e para obtencao das referidas sementes
DK0528828T4 (da) 1990-04-14 1998-08-31 Genencor Internat Gmbh Alkaliske bacillus-lipaser, DNA-sekvenser, der koder herfor, og bacilli der producerer sådanne lipaser
DK115890D0 (da) 1990-05-09 1990-05-09 Novo Nordisk As Enzym
KR100237148B1 (ko) 1990-05-09 2000-01-15 한센 핀 베네드 엔도글루칸아제 효소를 함유하는 셀룰라제 제조물
US6395966B1 (en) 1990-08-09 2002-05-28 Dekalb Genetics Corp. Fertile transgenic maize plants containing a gene encoding the pat protein
AU657278B2 (en) 1990-09-13 1995-03-09 Novo Nordisk A/S Lipase variants
IL99552A0 (en) 1990-09-28 1992-08-18 Ixsys Inc Compositions containing procaryotic cells,a kit for the preparation of vectors useful for the coexpression of two or more dna sequences and methods for the use thereof
EP0495258A1 (en) 1991-01-16 1992-07-22 The Procter & Gamble Company Detergent compositions with high activity cellulase and softening clays
EP0511456A1 (en) 1991-04-30 1992-11-04 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
ES2085024T3 (es) 1991-04-30 1996-05-16 Procter & Gamble Detergentes liquidos reforzados con complejo de acido borico-poliol para inhibir la enzima proteolitica.
JP3471797B2 (ja) 1991-05-01 2003-12-02 ノボザイムス アクティーゼルスカブ 安定化酵素及び洗剤
DK72992D0 (da) 1992-06-01 1992-06-01 Novo Nordisk As Enzym
DK88892D0 (da) 1992-07-06 1992-07-06 Novo Nordisk As Forbindelse
KR100294361B1 (ko) 1992-07-23 2001-09-17 피아 스타르 돌연변이체알파-아밀라제,세정제,접시세척제,및액화제
JP3681750B2 (ja) 1992-10-06 2005-08-10 ノボザイムス アクティーゼルスカブ セルラーゼ変異体
ES2126743T5 (es) 1993-02-11 2010-02-05 Genencor International, Inc. Alfa-amilasa oxidativamente estable.
ATE258224T1 (de) 1993-03-10 2004-02-15 Novozymes As Enzyme mit xylanaseaktivität aus aspergillus aculeatus
CA2138519C (en) 1993-04-27 2007-06-12 Jan Metske Van Der Laan New lipase variants for use in detergent applications
DK52393D0 (zh) 1993-05-05 1993-05-05 Novo Nordisk As
FR2704860B1 (fr) 1993-05-05 1995-07-13 Pasteur Institut Sequences de nucleotides du locus cryiiia pour le controle de l'expression de sequences d'adn dans un hote cellulaire.
JP2859520B2 (ja) 1993-08-30 1999-02-17 ノボ ノルディスク アクティーゼルスカブ リパーゼ及びそれを生産する微生物及びリパーゼ製造方法及びリパーゼ含有洗剤組成物
BR9407808A (pt) 1993-10-13 1997-05-06 Novo Nordisk As Variante de peroxidase com melhorada estabilidade para peróxido de hidrogenio em condições alcalinas composição de alvejamento e composição detergente
JPH07143883A (ja) 1993-11-24 1995-06-06 Showa Denko Kk リパーゼ遺伝子及び変異体リパーゼ
DE4343591A1 (de) 1993-12-21 1995-06-22 Evotec Biosystems Gmbh Verfahren zum evolutiven Design und Synthese funktionaler Polymere auf der Basis von Formenelementen und Formencodes
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
AU1806795A (en) 1994-02-22 1995-09-04 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
ES2251717T3 (es) 1994-03-08 2006-05-01 Novozymes A/S Nuevas celulasas alcalinas.
CA2189441C (en) 1994-05-04 2009-06-30 Wolfgang Aehle Lipases with improved surfactant resistance
WO1995033836A1 (en) 1994-06-03 1995-12-14 Novo Nordisk Biotech, Inc. Phosphonyldipeptides useful in the treatment of cardiovascular diseases
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
AU2884695A (en) 1994-06-23 1996-01-19 Unilever Plc Modified pseudomonas lipases and their use
EP1559776A3 (en) 1994-06-30 2006-01-11 Novozymes Biotech, Inc. Non-toxic, non-toxigenic, non-pathogenic Fusarium expression system and promoters and terminators for use therein
EP1995303A3 (en) 1994-10-06 2008-12-31 Novozymes A/S Enzyme preparation with endoglucanase activity
BE1008998A3 (fr) 1994-10-14 1996-10-01 Solvay Lipase, microorganisme la produisant, procede de preparation de cette lipase et utilisations de celle-ci.
KR970707275A (ko) 1994-10-26 1997-12-01 안네 제케르 지질분해 활성을 갖는 효소(an enzyme with lipolytic activity)
AR000862A1 (es) 1995-02-03 1997-08-06 Novozymes As Variantes de una ó-amilasa madre, un metodo para producir la misma, una estructura de adn y un vector de expresion, una celula transformada por dichaestructura de adn y vector, un aditivo para detergente, composicion detergente, una composicion para lavado de ropa y una composicion para la eliminacion del
JPH08228778A (ja) 1995-02-27 1996-09-10 Showa Denko Kk 新規なリパーゼ遺伝子及びそれを用いたリパーゼの製造方法
EP1683860B1 (en) 1995-03-17 2013-10-23 Novozymes A/S Novel endoglucanases
DE69633825T2 (de) 1995-07-14 2005-11-10 Novozymes A/S Modifiziertes enzym mit lipolytischer aktivität
ATE267248T1 (de) 1995-08-11 2004-06-15 Novozymes As Neuartige lipolytische enzyme
US20030044956A1 (en) 1995-08-23 2003-03-06 Short Jay M. Enzymes having carboxymethyl cellulase activity and methods of use thereof
US5763385A (en) 1996-05-14 1998-06-09 Genencor International, Inc. Modified α-amylases having altered calcium binding properties
WO1998008940A1 (en) 1996-08-26 1998-03-05 Novo Nordisk A/S A novel endoglucanase
JP3532576B2 (ja) 1996-09-17 2004-05-31 ノボザイムス アクティーゼルスカブ セルラーゼ変異体
US6451063B1 (en) 1996-09-25 2002-09-17 Genencor International, Inc. Cellulase for use in industrial processes
CA2265734A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
US6017870A (en) 1996-10-09 2000-01-25 Genencor International, Inc. Purified cellulase and method of producing
US7883872B2 (en) 1996-10-10 2011-02-08 Dyadic International (Usa), Inc. Construction of highly efficient cellulase compositions for enzymatic hydrolysis of cellulose
US5811381A (en) 1996-10-10 1998-09-22 Mark A. Emalfarb Cellulase compositions and methods of use
EP2278001B1 (en) 1996-11-04 2013-10-23 Novozymes A/S Protease variants and compositions
JP2001503269A (ja) 1996-11-04 2001-03-13 ノボ ノルディスク アクティーゼルスカブ ズブチラーゼ変異体及び、組成物
US6159731A (en) 1997-02-12 2000-12-12 Massachusetts Institute Of Technology Daxx, a Fas-binding protein that activates JNK and apoptosis
US6558937B1 (en) 1997-07-31 2003-05-06 Dsm N.V. Cellulose degrading enzymes of aspergillus
US5871550A (en) 1997-08-26 1999-02-16 Genencor International, Inc. Mutant Thermonospora spp. cellulase
ES2267200T3 (es) 1997-11-19 2007-03-01 Genencor International, Inc. Celulasa producida por actinomycetes y metodo para producirla.
CA2315017C (en) 1997-12-16 2011-10-11 Genencor International, Inc. Novel egiii-like enzymes, dna encoding such enzymes and methods for producing such enzymes
US5955310A (en) 1998-02-26 1999-09-21 Novo Nordisk Biotech, Inc. Methods for producing a polypeptide in a bacillus cell
AU4213999A (en) 1998-05-27 1999-12-13 Novo Nordisk Biotech, Inc. Methods for producing a polypeptide by modifying the copy number of a gene
EP1124949B1 (en) 1998-10-26 2006-07-12 Novozymes A/S Constructing and screening a dna library of interest in filamentous fungal cells
JP4620253B2 (ja) 1999-03-22 2011-01-26 ノボザイムス,インコーポレイティド 菌類細胞中で遺伝子を発現させるためのプロモーター
EP1179051A4 (en) 1999-05-19 2003-04-23 Midwest Research Inst ENDOGLUCANASE E1 VARIANTS: Y245G, Y82R AND W42R
ES2166316B1 (es) 2000-02-24 2003-02-16 Ct Investig Energeticas Ciemat Procedimiento de produccion de etanol a partir de biomasa lignocelulosica utilizando una nueva levadura termotolerante.
US7151204B2 (en) 2001-01-09 2006-12-19 Monsanto Technology Llc Maize chloroplast aldolase promoter compositions and methods for use thereof
US20060075519A1 (en) 2001-05-18 2006-04-06 Novozymes A/S Polypeptides having cellobiase activity and ploynucleotides encoding same
US6982159B2 (en) 2001-09-21 2006-01-03 Genencor International, Inc. Trichoderma β-glucosidase
US7049125B2 (en) 2001-12-18 2006-05-23 Genencor International, Inc. EGVIII endoglucanase and nucleic acids encoding the same
US7056721B2 (en) 2001-12-18 2006-06-06 Genencor International, Inc. EGVI endoglucanase and nucleic acids encoding the same
US7045331B2 (en) 2001-12-18 2006-05-16 Genencor International, Inc. EGVII endoglucanase and nucleic acids encoding the same
US7005289B2 (en) 2001-12-18 2006-02-28 Genencor International, Inc. BGL5 β-glucosidase and nucleic acids encoding the same
US7045332B2 (en) 2001-12-18 2006-05-16 Genencor International, Inc. BGL4 β-glucosidase and nucleic acids encoding the same
CN100448996C (zh) 2002-01-23 2009-01-07 皇家奈达尔科股份有限公司 戊糖的发酵
DK1578943T3 (da) 2002-08-16 2012-01-09 Danisco Us Inc Nye variant-Hypocrea jecorina-CBH1-cellulaser
EP1556512B1 (en) 2002-11-07 2016-06-15 Danisco US Inc. Bgl6 beta-glucosidase and nucleic acids encoding the same
US7407788B2 (en) 2002-11-21 2008-08-05 Danisco A/S, Genencor Division BGL7 beta-glucosidase and nucleic acids encoding the same
JP2007534294A (ja) 2003-03-21 2007-11-29 ジェネンコー・インターナショナル・インク Cbh1相同体及び変異体cbh1セルラーゼ
CA2771875A1 (en) 2003-04-01 2005-01-06 Danisco Us Inc. Variant hypocrea jecorina cbh1
ES2393058T3 (es) 2003-05-02 2012-12-18 Novozymes Inc. Variantes de beta-glucosidasa
ES2340588T3 (es) 2003-05-29 2010-06-07 Genencor Int Genes nuevos de trichoderma.
CN103088001A (zh) 2003-08-25 2013-05-08 诺维信股份有限公司 糖苷水解酶的变体
US7244605B2 (en) 2003-10-28 2007-07-17 Novozymes, Inc. Polypeptides having beta-glucosidase activity and polynucleotides encoding same
US8716023B2 (en) 2003-12-09 2014-05-06 Novozymes, Inc. Methods for eliminating or reducing the expression of a genes in a filamentous fungal strains
ES2469874T3 (es) 2004-01-30 2014-06-20 Novozymes Inc Polip�ptidos con actividad de mejora celulol�tica y polinucle�tidos que los codifican
US7271244B2 (en) 2004-02-06 2007-09-18 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2006078256A2 (en) 2004-02-12 2006-07-27 Novozymes, Inc. Polypeptides having xylanase activity and polynucleotides encoding same
CN1930294A (zh) 2004-03-25 2007-03-14 金克克国际有限公司 纤维素酶融合蛋白和编码该纤维素酶融合蛋白的异源纤维素酶融合构建物
US8097445B2 (en) 2004-03-25 2012-01-17 Danisco Us Inc. Exo-endo cellulase fusion protein
DK176540B1 (da) 2004-09-24 2008-07-21 Cambi Bioethanol Aps Fremgangsmåde til behandling af biomasse og organisk affald med henblik på at udvinde önskede biologisk baserede produkter
US8008056B2 (en) 2004-12-30 2011-08-30 Danisco Us Inc. Variant Hypocrea jecorina CBH2 cellulases
CN101160405B (zh) 2005-04-12 2014-01-01 纳幕尔杜邦公司 处理生物质以获得目标化学物质
AR053066A1 (es) 2005-04-26 2007-04-18 Novozymes As Arabinofuranosidasas
PT1874927E (pt) 2005-04-29 2014-04-23 Ab Enzymes Oy Celulases melhoradas
BRPI0616721A2 (pt) 2005-09-30 2011-06-28 Novozymes Inc métodos para degradar ou converter um material celulósico e para produzir uma substáncia, e, composição detergente
FI120045B (fi) 2005-12-22 2009-06-15 Roal Oy Selluloosamateriaalin käsittely ja siinä käyttökelpoiset entsyymit
WO2007071820A1 (en) 2005-12-22 2007-06-28 Ab Enzymes Oy Novel enzymes
US8304212B2 (en) 2006-07-10 2012-11-06 Dyadic International, Inc. Methods and compositions for degradation of lignocellulosic material
MX2009012845A (es) 2007-05-31 2009-12-15 Novozymes Inc Metodos para aumentar la actividad celulosica mejorada de un polipeptido.
CA2687609A1 (en) 2007-05-31 2008-12-04 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
DK2195421T3 (en) 2007-09-28 2015-12-14 Novozymes As Polypeptides with acetylxylanesteraseaktivitet and polynucleotides encoding them
DK2215224T3 (da) 2007-11-27 2014-01-27 Novozymes As Polypeptider med alfa-glucuronidaseaktivitet og polynukleotider, der koder for dem
US8034599B2 (en) 2007-11-30 2011-10-11 Novozymes A/S Polypeptides having arabinofuranosidase activity and polynucleotides encoding same
BRPI0820102A2 (pt) 2007-12-05 2017-05-23 Novozymes As polipeptídeo isolado, construção de ácido nucléico, célula hospedeira recombinante, métodos de produzir o polipeptídeo, de produzir um mutante de uma célula precursora, de inibir a expressão de um polipeptídeo tendo atividade de xilanase em uma célula, de produzir uma proteína e para degradar um material cotendo xilano, célula mutante, planta transgênica, parte de planta ou célula vegetal, e, molécula de rna inibidora de filamento duplo
EP2224822B1 (en) 2007-12-06 2014-05-21 Novozymes A/S Polypeptides having acetylxylan esterase activity and polynucleotides encoding same
CN101939420A (zh) 2007-12-07 2011-01-05 诺维信公司 具有阿魏酸酯酶活性的多肽和编码该多肽的多核苷酸
EP2245050A2 (en) 2007-12-19 2010-11-03 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
CA2709367A1 (en) 2007-12-19 2009-07-09 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
CN101945889A (zh) 2007-12-19 2011-01-12 诺维信公司 具有纤维素分解增强活性的多肽和编码该多肽的多核苷酸
JP2011507525A (ja) 2007-12-19 2011-03-10 ノボザイムス アクティーゼルスカブ セルロース分解増強活性を有するポリペプチドとこれをコードするポリヌクレオチド
CA2721108A1 (en) 2008-04-17 2009-10-22 Novozymes A/S Polypeptides having ferulic acid esterase activity and polynucleotides encoding same
US8735128B2 (en) 2008-07-29 2014-05-27 Novozymes A/S Polypeptides having alpha-glucuronidase activity and polynucleotides encoding same
CA2732099A1 (en) 2008-07-31 2010-02-04 Novozymes A/S Polypeptides having acetylxylan esterase activity and polynucleotides encoding same
JP2012504390A (ja) 2008-09-30 2012-02-23 ノボザイムス,インコーポレイティド 糸状菌細胞におけるポジティブ及びネガティブ選択遺伝子の使用方法
EP2356136A1 (en) 2008-11-10 2011-08-17 Novozymes Inc. Polypeptides having feruloyl esterase activity and polynucleotides encoding same
CN102300986A (zh) 2008-12-04 2011-12-28 诺维信股份有限公司 具有纤维素分解增强活性的多肽和编码该多肽的多核苷酸
EP2373684A1 (en) 2008-12-04 2011-10-12 Novozymes Inc. Polypeptides having feruloyl esterase activity and polynucleotides encoding same
EP2398889B1 (en) 2009-02-20 2018-04-25 Danisco US Inc. Fermentation broth formulations
WO2010108918A1 (en) 2009-03-24 2010-09-30 Novozymes A/S Polypeptides having acetyl xylan esterase activity and polynucleotides encoding same
DK2435561T3 (en) 2009-05-29 2018-11-05 Novozymes Inc PROCEDURES FOR IMPROVING THE DEGRADATION OR CONVERSION OF CELLULOSE SUBSTANCES
US8143021B2 (en) 2009-07-07 2012-03-27 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
EP3269804B1 (en) 2009-09-17 2020-11-11 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
MX2012003473A (es) 2009-09-29 2012-05-22 Novozymes Inc Polipeptidos que tienen actividad celulitica mejorada y polinucleotidos que codifican para los mismos.
US8586827B2 (en) 2009-09-30 2013-11-19 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US8586829B2 (en) 2009-09-30 2013-11-19 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124769A1 (en) * 2008-11-18 2010-05-20 Novozymes, Inc. Methods and compositions for degrading cellulosic material

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHRISTIANSEN C ET AL.: "The carbohydrate-binding module family 20 - Diversity, structure, and function.", 《FEBS JOURNAL》 *
HARRIS PAUL V ET AL.: "Stimulation of Lignocellulosic Biomass Hydrolysis by Proteins of Glycoside Hydrolase Family 61: Structure and Function of a Large, Enigmatic Family.", 《BIOCHEMISTRY》 *
MURASHIMA KOICHIRO ET AL.: "Exploring amino acids responsible for the temperature profile of glycoside hydrolase family 45 endoglucanase EGL3 from Humicola grisea.", 《BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY》 *
YU VOLKOV I ET AL.: "Prospects for the Practical Application of Substrate-Binding Modules of Glycosyl Hydrolases.", 《APPLIED BIOCHEMISTRY AND MICROBIOLOGY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105695439A (zh) * 2014-11-27 2016-06-22 丰益(上海)生物技术研发中心有限公司 一种β-葡萄糖苷酶基因的重组表达方法
CN105695439B (zh) * 2014-11-27 2023-08-01 丰益(上海)生物技术研发中心有限公司 一种β-葡萄糖苷酶基因的重组表达方法

Also Published As

Publication number Publication date
EP2640833A1 (en) 2013-09-25
WO2012068509A1 (en) 2012-05-24
EP2640833B1 (en) 2016-08-24
DK2640833T3 (en) 2016-11-28
US20140059719A1 (en) 2014-02-27
US9676830B2 (en) 2017-06-13
BR112013010129A2 (pt) 2016-07-05
MX2013004758A (es) 2013-06-28

Similar Documents

Publication Publication Date Title
CN102639697B (zh) 具有木聚糖酶活性的多肽和编码该多肽的多核苷酸
CN103384678B (zh) 具有纤维素水解增强活性的多肽及其编码多核苷酸
CN103534348B (zh) 具有纤维二糖水解酶活性的多肽和编码该多肽的多核苷酸
CN102597243B (zh) 具有纤维素分解增强活性的多肽和编码该多肽的多核苷酸
CN102482652B (zh) 具有纤维二糖水解酶活性的多肽和编码该多肽的多核苷酸
CN102770534B (zh) 具有纤维素分解增强活性的多肽及编码其的多核苷酸
CN103282489B (zh) 具有纤维素分解增强活性的多肽变体及其编码多核苷酸
CN103221538A (zh) β-葡糖苷酶变体及其编码多核苷酸
CN103797126A (zh) 用于增强纤维素材料的降解或转化的方法
CN102712916A (zh) 具有β-葡糖苷酶活性的多肽和编码该多肽的多核苷酸
CN102666847A (zh) 具有纤维二糖水解酶活性的多肽和编码该多肽的多核苷酸
CN103608461A (zh) 增加多肽的纤维素分解增强活性的方法
CN103517986A (zh) 具有纤维二糖水解酶活性的多肽及编码该多肽的多核苷酸
CN102300986A (zh) 具有纤维素分解增强活性的多肽和编码该多肽的多核苷酸
CN103282504A (zh) 用家族61多肽预处理纤维素材料的方法
CN103958674A (zh) 具有木聚糖酶活性的多肽及其编码多核苷酸
CN103517985A (zh) 具有纤维二糖水解酶活性的多肽及编码该多肽的多核苷酸
CN103703125B (zh) 具有内切葡聚糖酶活性的多肽及其编码多核苷酸
CN103237891A (zh) 具有纤维素分解增强活性的多肽变体及其编码多核苷酸
EP2640833B1 (en) Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
CN103958672A (zh) Gh61多肽变体以及编码所述变体的多核苷酸
CN103068976A (zh) 具有纤维二糖水解酶活性的多肽和编码该多肽的多核苷酸
CN103649308A (zh) 具有内切葡聚糖酶活性的多肽和编码该多肽的多核苷酸
CN103108951A (zh) 具有β-葡糖苷酶活性的多肽和编码该多肽的多核苷酸
CN104053666A (zh) 具有内切葡聚糖酶活性的多肽和编码该多肽的多核苷酸

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20170315

C20 Patent right or utility model deemed to be abandoned or is abandoned