CN103328388A - 锂锰复合氧化物及其制备方法 - Google Patents

锂锰复合氧化物及其制备方法 Download PDF

Info

Publication number
CN103328388A
CN103328388A CN2011800536136A CN201180053613A CN103328388A CN 103328388 A CN103328388 A CN 103328388A CN 2011800536136 A CN2011800536136 A CN 2011800536136A CN 201180053613 A CN201180053613 A CN 201180053613A CN 103328388 A CN103328388 A CN 103328388A
Authority
CN
China
Prior art keywords
composite oxide
manganese composite
lithium manganese
ion
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800536136A
Other languages
English (en)
Other versions
CN103328388B (zh
Inventor
高炯信
金兑垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Materials Co Ltd
Original Assignee
Phoenix Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Materials Co Ltd filed Critical Phoenix Materials Co Ltd
Publication of CN103328388A publication Critical patent/CN103328388A/zh
Application granted granted Critical
Publication of CN103328388B publication Critical patent/CN103328388B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及一种锂锰复合氧化物及其制备方法,尤其涉及一种锂锰复合氧化物及其制备方法,其中应用了湿磨过程和喷雾干燥过程,且在所述复合氧化物表面的Mn3+离子与Mn4+离子含量比可通过控制热处理时的氧化气氛而调节。

Description

锂锰复合氧化物及其制备方法
技术领域
本发明涉及一种锂锰复合氧化物及其制备方法,尤其涉及一种其表面Mn3+离子与Mn4+离子含量比被调节的锂锰复合氧化物,以及其制备方法。
背景技术
锂离子电池为二次电池,具有高能量密度和能够获得相对高的电压的特点,并且多用于小型电子装置,例如笔记本电脑、摄影机、数码相机和移动电话。而且,锂离子电池未来有望作为大型设备,例如电动汽车的能源,和家庭分散式能源。
作为用于锂离子电池中的阳极活性材料,传统的锂复合氧化物例如LiCoO2、LiNiO2和LiMn2O4是有代表性的,其中,具有尖晶石结构的LiMn2O4在安全性方面表现优异,并且由于使用了资源丰富的锰,其在成本上是有利的。因此,其在作为用于锂离子电池的阳极材料受到关注。
然而,LiMn2O4会引发由Mn3+造成的称为杨-泰勒畸变(Jahn-Tellerdistortion)的结构变形,当使用含Mn3+的锰氧化物作为用于锂离子二次电池中的阳极活性材料时,由于锰洗脱,其寿命特性在55°C或更高的高温下很差。
很多技术改进被研发以克服这些问题。例如,为了改善LiMn2O4的循环特性,已知将LiMn2O4中的部分Mn用杂原子替代的方法。日本专利特开No.H11-189419(专利文献1)公开了具有尖晶石结构的锂锰复合氧化物,组成分子式表示为Li1+xMn2-yMyO4+z,16d位被诸如Co、Cr和Al的三价金属掺杂,由于能控制容量最低限度的降低,使用三价金属掺杂是十分有用的。然而,这种取代方法由于不能减少Mn3+离子含量而具有局限性。
发明内容
欲解决的技术问题
为了解决与现有技术相关的上述问题,本发明的目的在于提供一种锂锰复合氧化物及其制备方法,其中所述锂锰复合氧化物表面的Mn3+离子与Mn4+离子的含量比被调节至一定范围。
采用的技术手段
为了完成本发明的一个目的,本发明提供一种由下述化学式1表示的锂锰复合氧化物,其中Mn的氧化值为3+和4+,Mn3+离子与Mn4+离子在所述锂锰复合氧化物表面的含量比A,由下述关系式1定义,为95-100。
[化学式1]
Li1+aMn2-xMxO4
(其中,a为0至0.2,x为0至0.4,且M选自由Al、Mg、Zr、Cu、Ni、Sn、Sr、Zn、Si及其混合物组成的群组);且
[关系式1]
A={Mn4+离子含量/(Mn3+离子含量+Mn4+离子含量)}×100
本发明还提供一种包含由化学式1表示的锂锰复合氧化物的电化学装置。所述电化学装置包括锂二次电池或混合电容器。
本发明还提供一种由上述化学式1表示的锂锰复合氧化物的制备方法,包括:(a)插入锂源、锰源和金属源的步骤;(b)通过向其中混合湿磨介质然后对其进行湿磨制备混合浆体的步骤;(c)通过将步骤(b)中的混合浆体喷雾干燥而制备前体颗粒的步骤;以及(d)对步骤(c)中的前体进行热处理的步骤。
本发明特征在于步骤(b)中的混合浆体具有0.3μm或更小的粒径和500cps或更低的粘度。
本发明特征在于步骤(b)中的湿磨是通过在3000至4000rpm的速度下搅拌30至60min实施的,而步骤(c)中的喷雾干燥是通过在1-5bar的压力条件下以气动喷雾的形式实施的。
进一步,本发明特征在于步骤(d)中的热处理是通过以1°C/min至5°C/min的升温速度升温至700-1000°C,然后以1至10L/min的速度注入空气1-10hrs实施的。
在下文中将详述本发明。
本发明提供一种由下述化学式1表示的锂锰复合氧化物及其制备方法,其中Mn的氧化值为3+和4+,Mn3+离子与Mn4+离子在所述锂锰复合氧化物表面的含量比A,由下述关系式1定义,为95-100
[化学式1]
Li1+aMn2-xMxO4
(其中,a为0至0.2,x为0至0.4,且M选自由Al、Mg、Zr、Cu、Ni、Sn、Sr、Zn、Si及其混合物组成的群组);且
[关系式1]
A={Mn4+离子含量/(Mn3+离子含量+Mn4+离子含量)}×100
本发明提供一种制备锂锰复合氧化物的方法,通过使用湿磨过程和喷雾干燥过程,然后控制在热处理中的氧化气氛使其满足化学式1和关系式1的条件。
制备本发明锂锰复合氧化物的方法包括:(a)插入锂源、锰源和金属源的步骤;(b)通过混合和湿磨所述湿磨介质以制备混合浆体的步骤;(c)通过将步骤(b)中的混合浆体喷雾干燥而制备前体颗粒的步骤;以及(d)对步骤(c)中的前体进行热处理的步骤。
在本发明的方法中,其特征在于可在步骤(a)中使用的锂源选自由以下物质组成的群组中的至少一个:碳酸锂、硝酸锂、氧化锂和氯化锂,并且优选可为碳酸锂。
进一步,其特征在于可在步骤(a)中使用的锰源选自由以下物质组成的群组中的至少一个:二氧化锰、γ-二氧化锰、α-二氧化锰、β-二氧化锰和氧化锰(Mn2O3,Mn3O4),优选二氧化锰。
在本发明中优选,除锂源和锰源之外,作为金属源的M为选自由以下物质组成的群组中的至少一种过渡金属化合物:Al、Mg、Zr、Cu、Ni、Sn、Sr、Zn和Si化合物。
本发明步骤(b)中的湿磨,其特征在于通过在3000至4000rpm,优选3800rpm的速度下搅拌30至60min,优选40min。当搅拌条件超出上述范围时,如下所述的粒径可能会难以控制。
本发明步骤(b)中经湿磨的混合浆体,其特征在于具有0.3μm或更小的粒径,当平均粒径超过0.3μm时,由于对粉末封装能力的不良影响或比表面积的降低,例如速率特性或输出特性的电池性能可能恶化。
进一步,步骤(b)中经湿磨的混合浆体的粘度优选可为500cps或更低,当粘度增加至超过500cps时,由于浆体供给泵损坏和喷嘴堵塞将难以连续进行湿磨。
本发明步骤(c)中的喷雾干燥优选可通过依据制备颗粒的均一性、粉末流动性、粉末处理性能、干燥颗粒的有效产量的喷雾干燥方法来实施。在这些喷雾干燥方法中,喷雾干燥可通过以下方法中的一种来实施:气动喷雾、旋转喷雾、超声喷雾和火焰喷雾,优选气动喷雾,在1-5bar的压力条件下实施,优选2.5bar。
本发明步骤(d)中的热处理可通过以1°C/min至5°C/min,优选3°C/min的升温速度升温至700-1000°C,优选800-900°C,然后在氧化条件下以1至10L/min的速度注入空气1-10hrs。
在热处理过程中,当升温速度、反应时间和空气速度超出上述范围时,可能很难控制Mn3+离子与Mn4+离子在所述表面的含量比如[关系式1]。
本发明提供一种制备锂锰复合氧化物的方法,其制备的条件为,其中研磨条件和热处理时的氧化气氛为可控的;如下述化学式1所示,其中,Mn的氧化值为3+和4+,Mn3+离子与Mn4+离子在所述锂锰复合氧化物表面的含量比A,由下述关系式1定义,为95-100
[化学式1]
Li1+aMn2-xMxO4
(其中,a为0至0.2,x为0至0.4,且M选自由Al、Mg、Zr、Cu、Ni、Sn、Sr、Zn、Si及其混合物组成的群组);且
[关系式1]
A={Mn4+离子含量/(Mn3+离子含量+Mn4+离子含量)}×100
在所述关系式1中,Mn3+离子与Mn4+离子在所述表面的含量比A的值优选控制在95-100的范围内。当所述A值小于95时,Mn3+离子的相对含量变高。因此,循环特性可能由于结构劣化而恶化。
本发明的有益效果
本发明中制备锂锰复合氧化物的方法和由此制备的锂锰复合氧化物在充电/放电循环特性方面表现优异,这是由于通过控制在所述表面的Mn3+离子含量而克服了由Mn3+引起的结构问题。
附图说明
本发明的上述和其他目的及特征将通过以下结合附图对本发明的描述而变得明显,所述附图分别为:
图1为实施例1-4制备的阳极活性材料和比较例中阳极活性材料的ESR分析数据;
图2为使用XPS的Mn(2P)谱图结果;和
图3为显示使用实施例1-4制备的阳极活性材料和比较例中阳极活性材料的电池的寿命特性的图。
具体实施方式
在下文中,将参考实施例进一步详述制备锂锰复合氧化物的方法和由此制备的锂锰复合氧化物,并且本发明的范围不能据此以任何方式进行限制。
实施例1
基于400g根据需要化学计量比称量作为锂源的Li2CO3、作为锰源的MnO2和作为异种金属M的Al(OH)3或Mg(OH)2,然后以4:6的固/液比加入到蒸馏水中。所得溶液在400rpm下搅拌10min,然后在湿磨机(产品名:Netzsch,Mincer)中以3800rpm研磨40min,以获得经研磨的颗粒,其具有0.3μm或更低的粒径(D50)和500cp或更低的粘度。湿磨机使用具有0.65mm的氧化锆微珠(Zirconia bead)。
将经研磨的混合浆体置于实验室规模的喷雾干燥器(Ein System,输入温度:270~300°C,输出温度:100-120°C)中,在2.5bar的压力下,通过气动喷雾式的喷雾器产生液滴,以获得球形的阳极活性材料前体颗粒。
然后,将一定量的含锂阳极活性材料前体颗粒置于坩埚中,并以3°C/min的速率加热至850°C,然后在此温度下煅烧6hrs。制备的阳极活性材料的单位颗粒尺寸(一级粒子)为2.5μm,振实密度为1.8g/cm2
实施例2
除了在热处理时以1L/min的速率注入空气外,其他过程重复实施例1。
实施例3
除了在热处理时以3L/min的速率注入空气外,其他过程重复实施例1。
实施例4
除了在热处理时以5L/min的速率注入空气外,其他过程重复实施例1。
比较例
使用目前在市场上可获得的LiMn2O4作为锂二次电池的阳极活性材料。
测试例1:电子自旋共振谱(Electron Spin Resonance spectroscopy,ESR)分析
通过ESR分析实施例1-4制备的阳极活性材料的缺氧性,结果示于图1。
电子自旋共振谱(ESR)分析是用于分析未配对电子对微弱射频电磁辐射的选择性吸收,该未配对电子存在于在一定强度的磁场中的材料的原子结构中,较高的峰值意味着在目标材料的原子结构中存在大量的未配对电子。在LiMn2O4化学键合时产生缺氧,因此通用的方法是在空气中煅烧。由于LiMn2O4中的缺氧率与Mn3+的含量比成正比,Mn3+的量可通过对照由ESR分析得到的缺氧率而被相对的确定。也就是说,ESR图中较高的峰表示较高的缺氧率,并意味着较高的Mn3+含量比。
如图1所示,可以证实实施例1显示了最高的峰,实施例4显示了最低的峰。也就是说,可以证实随着输入空气速度的增加,峰高和Mn3+含量比变得更低。
测试例2:XPS分析
X-射线光电子能谱(X-ray photoelectron spectroscopy,XPS)在用于发现固相中不同原子的氧化态方面是一种有效的工具。在阳极活性材料表面的Mn原子的氧化值,通过XPS分析的Mn 2P3/2谱的曲线拟合技术来确定,其结果列于下面的表1,其中所述阳极活性材料为实施例1中制备的Li1+aMn2-xMxO4和市场上可获得的比较例1中的产品。
[表1]
Mn3+(%) Mn4+(%) A
实施例1 99.99 0.01 0.01
实施例2 84.52 15.48 15.48
实施例3 51.20 48.80 48.80
实施例4 0.02 99.98 99.98
比较例1 9.31 90.69 90.69
可以证实,相比于使用了商购的氧化锰复合氧化物的比较例1,实施例4显示了在所述表面上更低的Mn3+离子含量比,从而具有更高的A值。
在这些结果中,实施例1、实施例4和比较例1的结果示于图2。可以发现,Mn原子的氧化值取决于所述阳极材料表面的氧含量,相比于比较例1中的商品,实施例4中的A值为99.98意味着其中的大多数为Mn4+
制备例
实施例1-4制备的阳极活性材料、作为导电材料的炭黑(Denka Black)和作为粘合剂的聚偏二氟乙烯(polyvinylidene fluoride,PVDF)以94:3:3的比例加入并均匀混合,然后加入12ml N-甲基吡咯烷酮(N-methylpyrrolidone,NMP)作为溶剂,以制备均匀混合物。将上述混合物均匀涂覆在厚度为20μm的铝箔上,在130°C下干燥1hr,通过使用涂覆铬的辊以1ton的压力进行压缩,并在100°C的真空烘箱干燥12hrs。
根据已知的制备工艺来制备纽扣电池,使用准备好的阳极和锂铂作为对电极,多孔聚乙烯膜(SK,厚度:20μm)作为隔膜,以及使用液体电解质,其中LiPF6以1M浓度溶于碳酸亚乙酯和碳酸甲乙酯(体积比1:2)的混合溶剂中。
测试例3:循环特性
为了评价测试电池的电化学性能,其中该测试电池使用实施例1-4和比较例1中的阳极活性材料制备,使用电化学分析仪(TOSCAT 3100,ToyoSystem Co.,Ltd.),通过在4.3~3V范围的截止电压下,在25°C下应用0.1C的放电率进行充电/放电测试,结果示于图3。
如图3所示,实施例4,其中空气的输入量为5L/min,在第50次循环中显示了97.5%的效率,然而比较例1中的商品显示了91.5%的效率。
工业实用性
本发明中制备锂锰复合氧化物的方法和由此制备的锂锰复合氧化物在充电/放电循环特性方面表现优异,这是由于通过控制所述表面的Mn3+离子含量而克服了由Mn3+引起的结构问题。

Claims (8)

1.一种锂锰复合氧化物,其由下述化学式1表示,其中Mn的氧化值为3+和4+,Mn3+离子与Mn4+离子在所述锂锰复合氧化物表面的含量比A,由下述关系式1定义,为95-100:
[化学式1]
Li1+aMn2-xMxO4
(其中,a为0至0.2,x为0至0.4,且M选自由Al、Mg、Zr、Cu、Ni、Sn、Sr、Zn、Si及其混合物组成的群组);且
[关系式1]
A={Mn4+离子含量/(Mn3+离子含量+Mn4+离子含量)}×100。
2.一种包含权利要求1所述的锂锰复合氧化物的电化学装置。
3.根据权利要求2所述的包含权利要求1所述的锂锰复合氧化物的电化学装置,其为锂二次电池或混合电容器。
4.一种制备由下述化学式1表示的锂锰复合氧化物的方法,在所述锂锰复合氧化物中,Mn的氧化值为3+和4+,Mn3+离子与Mn4+离子在其表面的含量比A,由下述关系式1定义,为95-100,
所述方法包括:
(a)插入锂源、锰源和金属源的步骤;
(b)通过湿磨所述锂源、锰源和金属源而制备混合浆体的步骤;
(c)通过将步骤(b)中的混合浆体喷雾干燥而制备前体颗粒的步骤;以及
(d)对步骤(c)中的前体进行热处理的步骤;
[化学式1]
Li1+aMn2-xMxO4
(其中,a为0至0.2,x为0至0.4,且M选自由Al、Mg、Zr、Cu、Ni、Sn、Sr、Zn、Si及其混合物组成的群组);且
[关系式1]
A={Mn4+离子含量/(Mn3+离子含量+Mn4+离子含量)}×100。
5.根据权利要求4所述的制备由化学式1表示的锂锰复合氧化物的方法,其中步骤(b)中的混合浆体具有0.3μm或更小的粒径和500cps或更低的粘度。
6.根据权利要求4所述的制备锂锰复合氧化物的方法,其中步骤(b)中的湿磨是在3000至4000rpm的速度下搅拌30至60min而实施。
7.根据权利要求4所述的制备锂锰复合氧化物的方法,其中步骤(c)中的喷雾干燥是在1-5bar的压力条件下以气动喷雾的形式而实施。
8.根据权利要求4所述的制备锂锰复合氧化物的方法,其中步骤(d)中的热处理是以1°C/min至5°C/min的升温速度升温至700-1000°C,然后以1至10L/min的速度注入空气1-10hrs而实施。
CN201180053613.6A 2010-11-08 2011-11-07 锂锰复合氧化物及其制备方法 Expired - Fee Related CN103328388B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2010-0110166 2010-11-08
KR1020100110166A KR101272042B1 (ko) 2010-11-08 2010-11-08 리튬 망간 복합 산화물 및 이의 제조 방법
PCT/KR2011/008407 WO2012064053A2 (ko) 2010-11-08 2011-11-07 리튬 망간 복합 산화물 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
CN103328388A true CN103328388A (zh) 2013-09-25
CN103328388B CN103328388B (zh) 2016-08-03

Family

ID=46051386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180053613.6A Expired - Fee Related CN103328388B (zh) 2010-11-08 2011-11-07 锂锰复合氧化物及其制备方法

Country Status (7)

Country Link
US (1) US9171653B2 (zh)
EP (1) EP2639202A4 (zh)
JP (2) JP2014502245A (zh)
KR (1) KR101272042B1 (zh)
CN (1) CN103328388B (zh)
CA (1) CA2821045C (zh)
WO (1) WO2012064053A2 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101510179B1 (ko) * 2012-04-26 2015-04-08 주식회사 포스코이에스엠 리튬 망간 복합 산화물의 제조 방법, 그 제조 방법에 의하여 제조된 리튬 망간 복합 산화물, 및 이를 포함하는 리튬 이온 이차 전지
JP6037679B2 (ja) * 2012-06-28 2016-12-07 日揮触媒化成株式会社 リチウム複合酸化物の製造方法
US9905851B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same
JP6072916B2 (ja) 2013-07-26 2017-02-01 エルジー・ケム・リミテッド 正極活物質及びこの製造方法
US9905850B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same
KR101589293B1 (ko) * 2013-10-17 2016-01-29 주식회사 포스코 스피넬형 리튬 망간 복합 산화물 및 이의 제조 방법
JP6043321B2 (ja) * 2014-07-07 2016-12-14 大陽日酸株式会社 リチウムイオン二次電池用正極材及びその製造方法
KR102555496B1 (ko) * 2015-11-12 2023-07-12 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이를 포함하는 양극 및 리튬 이차 전지
CN105895856B (zh) * 2016-05-17 2019-01-15 浙江美达瑞新材料科技有限公司 多种成份单核壳结构的锂离子电池正极材料及其制备方法
KR101995841B1 (ko) * 2017-08-22 2019-07-03 한국생산기술연구원 화염분무열분해법을 이용한 양극재 제조방법
EP3636597A1 (en) * 2018-10-10 2020-04-15 Northvolt AB Lithium transition metal composite oxide and method of production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701459A (zh) * 2002-06-06 2005-11-23 日本电气株式会社 二次电池
CN1773639A (zh) * 2005-11-17 2006-05-17 复旦大学 锂离子电池材料作为正极的非水体系电化学混合电容器
CN101128949A (zh) * 2005-02-23 2008-02-20 株式会社Lg化学 具有改进的锂离子迁移性及电池容量的二次电池
CN101462773A (zh) * 2009-01-16 2009-06-24 中南大学 球形掺杂锰酸锂的浆料喷雾干燥制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426689B2 (ja) * 1994-03-23 2003-07-14 三洋電機株式会社 非水電解質二次電池
DE19727611A1 (de) * 1997-06-28 1999-02-04 Merck Patent Gmbh Verfahren zur Herstellung vom Lithiummanganmischoxiden und deren Verwendung
JPH11189419A (ja) 1997-12-24 1999-07-13 Masayuki Yoshio リチウム二次電池用スピネル系マンガン酸化物
JP2000143246A (ja) * 1998-11-05 2000-05-23 Tosoh Corp リチウムマンガン複合酸化物の製造方法
WO2001036334A1 (en) * 1999-11-15 2001-05-25 Mitsubishi Chemical Corporation Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
JP4114314B2 (ja) * 1999-11-15 2008-07-09 三菱化学株式会社 リチウムマンガン複合酸化物、リチウム二次電池用正極材料、正極、及びリチウム二次電池、並びにリチウムマンガン複合酸化物の製造方法
JP3661183B2 (ja) 2000-01-18 2005-06-15 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法
JP5226917B2 (ja) * 2000-01-21 2013-07-03 昭和電工株式会社 正極活物質、その製造法及びそれを用いた非水二次電池
JP2002063900A (ja) 2000-08-14 2002-02-28 Hitachi Ltd リチウム二次電池用正極活物質およびリチウム二次電池
JP4735617B2 (ja) * 2001-10-11 2011-07-27 三菱化学株式会社 リチウム遷移金属複合酸化物の製造方法
TW557593B (en) 2002-06-25 2003-10-11 Tatung Co Positive electrode material of Lithium ion secondary cell made by spraying combustion method
JP2004155631A (ja) * 2002-11-08 2004-06-03 Dainippon Toryo Co Ltd 非水リチウム二次電池用のリチウムマンガン系複酸化物粒子、その製造方法及び非水リチウム二次電池
JP4090950B2 (ja) 2003-06-26 2008-05-28 大日本印刷株式会社 複合icカード用icモジュール
JP4179075B2 (ja) 2003-07-14 2008-11-12 東ソー株式会社 リチウムマンガン複合酸化物顆粒体の製造方法
US20080214718A1 (en) * 2007-01-31 2008-09-04 Air Products And Chemicals, Inc. Hydrophobic metal and metal oxide particles with unique optical properties

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701459A (zh) * 2002-06-06 2005-11-23 日本电气株式会社 二次电池
CN101128949A (zh) * 2005-02-23 2008-02-20 株式会社Lg化学 具有改进的锂离子迁移性及电池容量的二次电池
CN1773639A (zh) * 2005-11-17 2006-05-17 复旦大学 锂离子电池材料作为正极的非水体系电化学混合电容器
CN101462773A (zh) * 2009-01-16 2009-06-24 中南大学 球形掺杂锰酸锂的浆料喷雾干燥制备方法

Also Published As

Publication number Publication date
EP2639202A2 (en) 2013-09-18
WO2012064053A2 (ko) 2012-05-18
CA2821045C (en) 2015-05-19
EP2639202A4 (en) 2016-07-13
CN103328388B (zh) 2016-08-03
US9171653B2 (en) 2015-10-27
JP2014502245A (ja) 2014-01-30
US20130327978A1 (en) 2013-12-12
WO2012064053A3 (ko) 2012-09-13
KR101272042B1 (ko) 2013-06-07
CA2821045A1 (en) 2012-05-18
JP2016185903A (ja) 2016-10-27
KR20120089382A (ko) 2012-08-10

Similar Documents

Publication Publication Date Title
CN103328388A (zh) 锂锰复合氧化物及其制备方法
Pieczonka et al. Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high‐voltage Li‐ion batteries
Mo et al. Improved cycling and rate performance of Sm-doped LiNi0. 5Mn1. 5O4 cathode materials for 5 V lithium ion batteries
Wan et al. Effect of metal (Mn, Ti) doping on NCA cathode materials for lithium ion batteries
Ni et al. Improved electrochemical performance of layered LiNi0. 4Co0. 2Mn0. 4O2 via Li2ZrO3 coating
Wang et al. Synthesis of LiNi0. 5Mn1. 5O4 cathode material with improved electrochemical performances through a modified solid-state method
US8101300B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and its production method
Hong et al. Effects of the starting materials and mechanochemical activation on the properties of solid-state reacted Li4Ti5O12 for lithium ion batteries
CN108878798A (zh) 包括用于防止扩散的涂布层的用于全固态电池组的阴极材料及其制备方法
Han et al. Solid-state synthesis of Li4Ti5O12 for high power lithium ion battery applications
CN104934597A (zh) 一类钠离子电池正极材料的制备及应用
Wang et al. Effect of surface fluorine substitution on high voltage electrochemical performances of layered LiNi0. 5Co0. 2Mn0. 3O2 cathode materials
JP6168004B2 (ja) マンガン複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
EP3560607A1 (en) Method for preparing cathode active material for secondary battery and apparatus for preparing cathode active material for secondary battery
CN105633384B (zh) 动力锂离子电池用正极材料表面改性工艺方法
Pan et al. Synthesis and electrochemical performance of micro-sized Li-rich layered cathode material for Lithium-ion batteries
CN104282898A (zh) 一种高镍多元正极材料的表面改性方法
CN110518200A (zh) 一种碳/磷酸锰铁锂纤维丝、氧化镨双层包覆的镍钴铝正极材料及其制备方法
Torres-Castro et al. Synthesis, characterization and electrochemical performance of Al-substituted Li2MnO3
JP2020001935A (ja) 遷移金属複合水酸化物の粒子とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
CN110112385A (zh) 一种提高三元正极材料稳定性及倍率性能的方法
Wen et al. Synergistic effects of Ni2+ and Mn3+ on the electrochemical activation of Li2MnO3 in Co-free and Ni-poor Li-rich layered cathodes
Liu et al. LiNi0. 5Mn1. 5O4 with significantly improved rate capability synthesized by a facile template method using pine wood as a bio-template
KR20180074340A (ko) 리튬 이차 전지용 양극 활물질 제조 방법
Wu et al. Effects of chelating agents on the performance of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 as cathode material for Li-ion battery prepared by sol–gel method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160803

Termination date: 20161107