CN103298973A - 由cvd制备锂基层的方法 - Google Patents

由cvd制备锂基层的方法 Download PDF

Info

Publication number
CN103298973A
CN103298973A CN201180057191XA CN201180057191A CN103298973A CN 103298973 A CN103298973 A CN 103298973A CN 201180057191X A CN201180057191X A CN 201180057191XA CN 201180057191 A CN201180057191 A CN 201180057191A CN 103298973 A CN103298973 A CN 103298973A
Authority
CN
China
Prior art keywords
lithium
cvd
precursor
basic unit
forms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201180057191XA
Other languages
English (en)
Inventor
露西·若丹
菲利普·阿卡兹
让-曼努埃尔·德康
让-吕克·德尚夫尔
玛丽亚·德尔卡门·希门尼斯阿雷瓦洛
西尔万·普莱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of CN103298973A publication Critical patent/CN103298973A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及用于借助CVD制备锂基层的方法,根据此方法,在包含溶剂和路易斯碱的液体混合物中含有锂前体。

Description

由CVD制备锂基层的方法
发明领域
本发明涉及具有高功率密度的薄膜电池的制备。
被作为目标的用途尤其涉及芯片卡和智能标签,它们能够借助小型化的植入物循环地测量参数。另一个重要的用途涉及内部时钟的和微系统的电源。这些用途要求,所有对电池操作而言必要的层均通过与微电子学的工业方法相容的技术来制备。
实际上,薄膜电池沉积在3D基板上,以在不改变部件尺寸的情况下增加活性表面积。在这方面,必须使用能够精确控制材料化学组成的保形沉积技术,因为活性层对它们的组成的改变高度敏感。
更具体地,本发明涉及一种CVD方法(“化学气相沉积”),用于制备含有锂的层,如LiPON(“磷氧氮化锂(Lithium Phosphorous OxyNitride)”)、LiSiPON(“结合有氮的硅磷酸锂(Nitroeen-incorporated LithiumSilicoPhosphate)”)或(Li,La)TiO3(钛酸镧锂),涉及在含有溶剂和路易斯碱的液体混合物中所含的前体。
背景
在现有技术中,已经广泛描述了薄膜形式的“全固体”微电池。运作原理依靠碱金属离子或质子在正极的插入和脱出(或者嵌入/脱出)。主要的体系使用锂离子或Li+作为离子物种。所有微电池部件(集流体、正极和负极、电解质、封装)均为通过PVD(“物理气相沉积”)或CVD获得的薄层形式。
叠层的总厚度为大约15μm。
可以使用不同的材料:
-集流体是金属的,且可以例如含有Pt、Cr、Au、Ti、W、Mo。
-正极可以具体地由LiCoO2、LiNiO2、LiMn2O4、CuS、CuS2、WOySz、TiOySz、V2O5形成。根据所选择的材料,热退火可能是必要的,以增加膜的结晶以及提高它们的插入性能。例如对于氧化锂的情况便是这样。然而,某些非晶态材料无需这样的加工,同时允许锂离子的高度插入。
-电解质必须是优良的离子导体和电子绝缘体。它通常是含有氧化磷、硼、氧化锂或锂盐的玻璃质材料。具有最佳性能的电解质含有磷酸盐,如LiPON(“磷氧氮化锂(Lithium Phosphorous OxyNitride)”)或LiSiPON(“结合有氮的硅磷酸锂(Nitrogen-incorporated Lithium SilicoPhosphate)”)。它们的组成将决定电性能,并且特别是能够提高离子电导率的氮浓度。
-负极可以是通过热蒸发沉积的金属锂、含有锂的金属合金、或者插入化合物(SiTON、SnNx、InNx、SnO2......)。应当注意,也存在没有阳极的微电池(称作“无锂的”)。在这种情况下,将阻隔锂的金属层直接沉积在电解质上。随后锂沉积在该层上。
-封装目的在于保护活性叠层免于受到外部环境特别是受到湿度的影响。可以使用不同的策略:由薄层封装(encapsulation from thin layers)、共层压封装(co-laminated encapsulation)、或者覆盖封装(cover encapsulation)。
在此领域进行的研究目的在于提高微电池的功率密度,并且这以不同的可能方式:
-通过提高材料的性能;和/或
-通过增加厚度;和/或
-通过在3D构造的结构体上进行沉积,这能够提高电池的活性表面积。
此第三种方式是本发明选择的方式,其更加具体地聚焦在电解质沉积上。
公认不能采用PVD技术(物理气相沉积),一种对微电池而言是沉积材料的标准方法,来在3D结构体上沉积。因此必须使用备选技术如CVD,可能地等离子增强的(PE-CVD)。
因此,文件US2005/0016458描述了一种能够形成薄层LiPON基电解质的装置。它利用了PE-CVD技术,并且使用固体锂前体和固体或液体磷前体,将其在鼓泡系统中加热以蒸发。借助存在于沉积室内的等离子体,将氮结合入层中。
然而,所提供的方法出现以下问题:
-对于3D沉积而言,PE-CVD的不佳的性能;
-通过鼓泡使前体蒸发:
·难以控制送入沉积室中的气体流速,这产生了在厚度和/或层组成方面的再现性的问题;
·对所有“前体”源的加热严重限制了对可能被使用的有机金属前体的选择:大多数锂基有机金属材料趋向于形成难以蒸发的低聚物,甚至在延长加热时降解,这导致不佳的蒸发效率;
·对于具有低蒸气压的前体如锂基有机金属配合物而言,产生高到足以以高生长速率获得膜的蒸气速率是极为困难或甚至是不可能的;
-由于等离子体结合模式(plasma incorporation mode)导致难以控制氮速率。
作为总结,这种汽化方法不能控制所涉及的前体的量。而且,因为它对于大量的初始物质仅产生少量蒸气,所以它的效率低。
因此,对于开发不具有上述缺点的形成含有锂的薄层的新方法存在着明显的需要。
发明论述
因此,实际上,本发明的目的在于,在3D基板上形成用于薄膜电池的锂基电解质的方法。该电解质可以是例如含有锂(Li)、磷(P)、氧(O)和氮(N)的LiPON。
正如已经提到的,在这种情况下,采用的沉积技术是CVD。作为提示,CVD是,当通过化学反应,处于特定压力和温度条件下的气相混合物的某些元素通过沉积在形成表面的材料上从蒸气态变成固态时,在所述表面上形成薄层的方法。CVD可以是等离子增强的(PE-CVD)。
则主要困难是由于锂(Li)导致的,因为在环境温度不存在与CVD相容的气体或液体形式的锂化合物。迄今为止,唯一可行的选项是使用固体前体,正如在文件US2005/0016458中所描述的一样。
本发明提供了特别合适的替代解决方案,其包括经历中间液相。使液体蒸发与使气体蒸发相比确实更加容易。更具体地,本发明涉及由CVD形成锂基层的方法,根据此方法,在含有路易斯碱的混合物中,锂前体处于液体形式。
根据一个优选的实施方案,根据本发明的方法因此使用至少包含锂前体、路易斯碱和溶剂的液体混合物。
换言之,液体介质包含至少三种不同的实体,即锂前体、溶剂和路易斯碱。应当注意,在某些情况下,同一种分子可以执行这些功能中的两种(例如,溶剂和路易斯碱或者锂前体和路易斯碱),但是,本发明在常用的前体和溶剂之外,还提供路易斯碱的有意添加,所述路易斯碱有利的是如后文所限定的一样。
根据CVD的原理,随后将该液体混合物以气溶胶的形式喷涂,随后蒸发。
优选地,该层由选自由下组中的材料制成:
-LiPON;
-LiSiPON;和
-(Li,La)TiO3
正如已提到的,锂前体在溶液中是难溶或不稳定的。事实上,锂(Li)是属于元素周期表第一列的化学元素。这些元素称为碱性元素,通常是强正电性的,因此主要导致形成具有强离子性的配合物。
实际上,在CVD中使用的锂前体,即锂基有机金属化合物,以固体低聚物的形式出现。现在,这些固体低聚物通常具有低的蒸气压、以及在常规用于溶解有机金属前体的(称为“通常的”)溶剂中的不佳的溶解性能。
因此,为了溶解锂前体,在本发明的上下文中提供的解决方案是使用溶剂和路易斯碱。通过进入靠近金属中心的配位层,路易斯碱破坏了低聚物的聚合物结构,从而促进了二聚体或甚至是单体结构的形成和稳定化。
这样形成的化合物称为“加合物”,大多数通常具有更高的蒸气压、在常规的脂族和/或芳族有机溶剂中的提高的溶解性、以及气相前体提高的热稳定性(在蒸发和沉积室之间蒸气传输的阶段期间),而且还具有提高的在液相中的化学稳定性(在原料储存器中前体储存的阶段期间)。
而且,在路易斯碱为胺的具体情况下,在单一步骤中,向靠近金属元素的配位层中引入了潜在的氮源,从而能够掺杂所要合成的层。
因此,并且有利的是,在还含有锂前体和溶剂的液体混合物中存在的路易斯碱是胺,且还更有利的是:
-TMEDA(N,N,N’,N’-四甲基乙二胺);或
-TMPDA(N,N,2,2-四甲基-1,3-丙二胺)。
更具体地,胺路易斯碱可以是伯胺(R-NH2)、仲胺(R2-NH)或叔胺(NR3),此处R=CH3、C2H5、C3H7、C4H9,或在仲胺和/或叔胺的情况下为这些基团的组合。
胺路易斯碱可以是单齿的,如前文所述,或者更有利的为R2N-(CH2)x-NR2型的二齿的(二胺),此处x=1、2、3或4,且R=CH3、C2H5、C3H7、C4H9,或这些基团的组合。
最后,路易斯碱可以是(R-O-R)醚型的含氧化合物,此处R=CH3、C2H5、C3H7、C4H9,或这些基团的组合。
此外,含氧的路易斯碱可以是单齿的,如前文所述(R-O-R),或者更有利的为R-O-(CH2)x-O-R型的二齿的(Glyme x),此处,x=1、2、3或4,且R=CH3、C2H5、C3H7、C4H9,或这些基团的组合。
作为一种变体,路易斯碱可以是乙酰丙酮或苄醇。
当然可以使用路易斯碱的混合物。
正如已提到的,与前体联合使用适当选择的路易斯碱将提供:
-在原料储存器中的溶液中的前体的化学稳定,
-它们在常规的脂族和/或芳族有机溶剂中的溶解度的提高,
-在以气体形式在CVD反应器的蒸发器和沉积室之间的传输阶段期间,前体的分子结构的稳定。
优选地,锂前体是有机金属前体,有利的为醇盐,例如叔丁醇锂(LiOtBu),或β-二酮酸盐,如乙酰丙酮化锂(LiAcac)和/或2,2,6,6-四甲基-3-5-庚二酸锂(LiTMHD),或氨化物如双-三甲代甲硅烷基氨基锂(LiHMDS)。当然它可以是多种锂前体的混合物。
在路易斯碱的存在下,锂前体在液体溶液中的放置优选借助以下溶剂达成:经验式CxH2x+2的脂族有机溶剂,此处x=3、4、5、6、7、8或9;或不含氧的芳香族溶剂如苯、甲苯、二甲苯、均三甲苯......;或含氧的醇型有机溶剂如丁醇或异丙醇。单甘醇二甲醚也是可能的溶剂。它可以是多种溶剂的混合物。
与以固体形式提供锂前体的现有技术相反,本发明提供了将以液体形式存在的锂前体汽化。当然,如果锂前体不是液体,它可以具有固态初始形式。其借助至少一种溶剂和一种路易斯碱在溶液中的放置随后形成中间体的步骤,之后其汽化。
在液体混合物中,路易斯碱的摩尔浓度通常为锂前体的摩尔浓度的1至20倍。Li浓度可以有利地在0.01M至1M之间的范围内。
正如已提到的,层,特别是电解质,可以含有除了锂(Li)之外的元素,特别是磷(P)、氮(N)、氧(O)、硅(Si)、钛(Ti)或镧(La)。这些元素可以借助锂前体或者可能经由其他前体被引入。
在一个优选的实施方案中,将这些其他元素,特别是磷和/或氮,也以液体形式引入。这些有利地是在溶液中的或是纯液体形式的有机金属前体。在这种情况下,液体混合物则除了含有锂前体、路易斯碱和溶剂,还含有至少另一种有机金属前体。
对于磷而言,可以使用磷酸酯类溶液,如磷酸三苯酯(TPPa)或磷酸三甲酯(TMPa),以及亚磷酸酯类溶液,例如亚磷酸三苯酯(TPPi)或亚磷酸三甲酯(TMPi)。溶液的浓度有利地在0.01M至lM之间的范围内。
Ti前体可以是醇盐或β-二酮酸盐或氧代-β-二酮酸盐(例如,TiO(Acac)2)或烷氧代(alcoxo)-β-二酮酸盐(例如Ti(OR)2(TMHD)2)。La前体可以是配合的或非配合的β-二酮酸盐(例如,La(TMHD)3)或它的加合物(例如,La(TMHD)3四甘醇二甲醚)。
不同的前体可以被制成或引入到不同的溶液或混合物,尤其是两种,例如,一种含有Li+N且另一种含有P。作为一种变体,所有前体均在相同的混合物(例如,Li+P+N)中,其因此也含有路易斯碱和溶剂。正如已提到的,可以通过路易斯碱形成氮源。
常规地,根据本发明的方法在CVD型沉积容器中实施。它可以在低压进行,也可以在大气压进行。
在大气压,该方法包括以下步骤:
-引入前体:以气溶胶的形式喷射。气溶胶可以通过压电陶瓷产生,或通过喷雾喷嘴型系统产生,或经由自动型液体注射器产生;
-通过向其中注入有载体气体(Ar、O2、N2、空气)的导管,将气溶胶传输至沉积室中;
-在靠近受热基板的表面处,蒸发前体;
-在受热基板表面处反应(向沉积室中注射反应性气体的可能性)。可以将基板在200至700℃之间加热。
在低压,该方法包括以下步骤:
-引入前体:经由自动型液体注射器喷涂,随后在蒸发器中蒸发;
-通过受热的导管,将气体化合物传输至沉积室中;
-在受热基板的表面处反应。向沉积室中注射反应性气体的可能性:O2、N2O、H2、NH3......将在室中有压力固定。它的范围在0.1毫巴至500毫巴之间。基板温度范围在200至800℃之间,有利地在300至500℃之间。
在两种情况下,均小心地控制前体流速。沉积速度可以超过750nm/h。
正如已提到的,尤其是在涉及用于微电池的电解质的优选用途中,根据本发明的方法有利地能够在3D构造的结构体上形成层。
附图简述
实施本发明的方法和得到的优点将更好地由以下参照附图的非限制性实施方案体现,在附图中:
图1图示了阻抗光谱测量,其能够计算在大气压借助根据本发明的方法进行的沉积的离子电导率。
图2图示了在大气压借助根据本发明的方法在3D基板上进行的沉积的SEM(扫描电子显微)图像。
图3图示了阻抗光谱测量,其能够计算在低压借助根据本发明的方法进行的沉积的离子电导率成为可能。
图4图示了在低压借助根据本发明的方法在3D基板上进行的沉积的SEM(扫描电子显微)图像。
本发明的实施方案
I/LiPON层的制备:
I-1/在大气压的实施方案:
使用浓度范围在0.03M至0.12M之间的LiAcac或LiTMHD与TPPa的混合物。所用的溶剂为丁醇或甲苯,通过加入作为路易斯碱的乙酰丙酮或苄醇或TMEDA或它们的混合物(具有范围在锂前体的摩尔浓度的1至20倍之间的摩尔浓度)。
沉积速率在50至300nm/h之间变化,基板载体温度在400至550℃之间。
图1的曲线能够计算该材料的离子电导率:2.10-8S/cm。
对于高形状因子(shape factor)(1∶5),沉积的保形性(conformality)高于70%(图2)。
通过XPS测得的组成为Li2.54PO3.97N0.19。前体浓度的变化改变LiPON层(LixPOyNz)的比率x、y和z。
I-2/低压实施方案
在这种情况下所用的前体混合物为LiOtBu和TMEDA和TPPa。Li前体溶液的浓度为0.1M,且磷的浓度为0.03M。TMEDA(路易斯碱)的浓度为LiOtBu的浓度的大约10倍。基板载体温度范围在420至480℃之间,氧的比例从25%至60%改变。工作压力范围在10至20毫巴之间。
沉积速率范围在220至980nm/h之间。
电性质显示了2.10-9S/cm的离子电导率和<7.10-14S/cm的电子电导率(图3)。
对于显著的形状因子(1∶5),沉积的保形性为56%(图4)。
XPS和EDX分析显示了LixPOyNz层的形成。
II/其他材料:
II-1/在低压的LiSiPON:
将由以下形成的混合物:
-双-三甲代甲硅烷基氨基Li(hmds),
-TMEDA,和
-TPPa
以0.03M至0.1M之间的范围内的浓度使用。
基板载体的温度范围在400至600℃之间,氧的比例在25至70℃之间变化。工作压力范围在10至25毫巴之间。
沉积速率范围在100至400nm/h之间。
II-2/在大气压的(Li,La)TiO 3
将LiAcac或LiTMHD、以及Ti前体如醇盐或β-二酮酸盐或氧代-β-二酮酸盐(例如,TiO(Acac)2)或烷氧代-β-二酮酸盐(例如,Ti(OR)2(TMHD)2)、以及La前体如配合的或非配合的β-二酮酸盐(例如,La(TMHD)3)或其加合物(例如La(TMHD)3四甘醇二甲醚)的混合物以在0.01M至0.1M之间的范围内的浓度使用。所用的溶剂为丁醇或甲苯,通过加入乙酰丙酮或苄醇或TMEDA或它们的混合物(具有范围在锂前体的摩尔浓度的1至20倍之间的摩尔浓度)得到。
沉积速率在50至500nm/h之间变化,基板载体的温度范围在400至650℃之间。
II-3/在低压的(Li,La)TiO 3
将LiTMHD和Ti(OiPr)2(TMHD)2与La(TMHD)3的混合物以在0.01M至0.1M之间的范围内的浓度使用。所用的溶剂为单甘醇二甲醚,通过加入TMEDA(具有范围在锂前体的摩尔浓度的1至20倍之间的摩尔浓度)得到。
沉积速率在50至500nm/h之间变化,基板载体的温度范围在400至800℃之间,优选在500至650℃之间。

Claims (10)

1.一种使用至少包含锂前体、路易斯碱和溶剂的液体混合物由CVD形成锂基层的方法。
2.权利要求1所述的由CVD形成锂基层的方法,其特征在于,将所述液体混合物以气溶胶的形式喷涂,随后蒸发。
3.权利要求1或2所述的由CVD形成锂基层的方法,其特征在于,所述层由LiPON、LiSiPON或(Li,La)Ti03制成。
4.在前权利要求中任一项所述的由CVD形成锂基层的方法,其特征在于,所述路易斯碱是胺,有利的是TMEDA或TMPDA型胺。
5.在前权利要求中任一项所述的由CVD形成锂基层的方法,其特征在于,所述锂前体是有机金属前体,有利的是醇盐、β-二酮酸盐或氨化物。
6.在前权利要求中任一项所述的由CVD形成锂基层的方法,其特征在于,所述溶剂是不含氧的脂族或芳香族有机溶剂如甲苯或辛烷,或醇型含氧的有机溶剂,如丁醇或异丙醇。
7.在权利要求3至6中任一项所述的由CVD形成锂基层的方法,其特征在于,磷前体和/或氮前体也以液体形式或以溶液的形式出现。
8.权利要求7所述的由CVD形成锂基层的方法,其特征在于,将所述磷前体和/或所述氮前体加入含有所述锂前体的所述液体混合物中。
9.在前权利要求中任一项所述的由CVD形成锂基层的方法,其特征在于,在3D构造的结构体上形成所述层。
10.在前权利要求中任一项所述的由CVD形成锂基层的方法,其特征在于,所述层形成微电池的电解质。
CN201180057191XA 2010-12-09 2011-12-08 由cvd制备锂基层的方法 Pending CN103298973A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1060280A FR2968677A1 (fr) 2010-12-09 2010-12-09 Procédé de fabrication de couches a base de lithium par cvd
FR1060280 2010-12-09
PCT/FR2011/052899 WO2012076817A1 (fr) 2010-12-09 2011-12-08 Procédé de fabrication de couches a base de lithium par cvd

Publications (1)

Publication Number Publication Date
CN103298973A true CN103298973A (zh) 2013-09-11

Family

ID=44303388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180057191XA Pending CN103298973A (zh) 2010-12-09 2011-12-08 由cvd制备锂基层的方法

Country Status (7)

Country Link
US (1) US20130260024A1 (zh)
EP (1) EP2649216A1 (zh)
JP (1) JP2014500401A (zh)
KR (1) KR20140035311A (zh)
CN (1) CN103298973A (zh)
FR (1) FR2968677A1 (zh)
WO (1) WO2012076817A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454021A (zh) * 2019-02-06 2021-09-28 乔治洛德方法研究和开发液化空气有限公司 化合物和含锂膜的制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268954B (zh) * 2013-05-20 2015-04-22 天津师范大学 LiSiPON锂离子电池固态电解质薄膜及其制备方法与应用
JP6650597B2 (ja) * 2015-07-02 2020-02-19 パナソニックIpマネジメント株式会社 酸窒化膜の製造方法
KR102659195B1 (ko) 2016-07-11 2024-04-19 삼성전자주식회사 플라즈마 화학기상증착 장치 및 이를 이용한 Li 기반의 박막 형성방법
JP6692726B2 (ja) * 2016-09-14 2020-05-13 株式会社アルバック 固体電解質膜の形成方法
KR101895290B1 (ko) * 2017-01-23 2018-09-05 영남대학교 산학협력단 금속-유기 화학 기상 증착에 의한 삼차원 고체 배터리용 리튬 포스페이트 박막 전해질의 균일한 증착 방법 및 장치
TW202120432A (zh) 2019-10-08 2021-06-01 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 用於沉積含鋰層、島或簇的鋰前驅體
WO2021127159A2 (en) * 2019-12-20 2021-06-24 Sion Power Corporation Lithium metal electrodes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214105B1 (en) * 1995-03-31 2001-04-10 Advanced Technology Materials, Inc. Alkane and polyamine solvent compositions for liquid delivery chemical vapor deposition
WO2002027063A2 (en) * 2000-09-28 2002-04-04 President And Fellows Of Harward College Vapor deposition of oxides, silicates and phosphates
CN1688742A (zh) * 2002-08-28 2005-10-26 微米技术有限公司 采用醇形成金属氧化物的系统和方法
US20060099831A1 (en) * 2001-03-30 2006-05-11 Borovik Alexander S Silicon source reagent compositions, and method of making and using same for microelectronic device structure
CN101142221A (zh) * 2005-01-18 2008-03-12 普莱克斯技术有限公司 用于制备有机金属化合物的方法
CN101348499A (zh) * 2007-07-20 2009-01-21 罗门哈斯公司 制备有机金属化合物的方法
CN101523644A (zh) * 2006-08-11 2009-09-02 加州理工学院 可使氟化物溶解度提高的离解剂、制剂及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6886240B2 (en) * 2003-07-11 2005-05-03 Excellatron Solid State, Llc Apparatus for producing thin-film electrolyte

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214105B1 (en) * 1995-03-31 2001-04-10 Advanced Technology Materials, Inc. Alkane and polyamine solvent compositions for liquid delivery chemical vapor deposition
WO2002027063A2 (en) * 2000-09-28 2002-04-04 President And Fellows Of Harward College Vapor deposition of oxides, silicates and phosphates
US20060099831A1 (en) * 2001-03-30 2006-05-11 Borovik Alexander S Silicon source reagent compositions, and method of making and using same for microelectronic device structure
CN1688742A (zh) * 2002-08-28 2005-10-26 微米技术有限公司 采用醇形成金属氧化物的系统和方法
CN101142221A (zh) * 2005-01-18 2008-03-12 普莱克斯技术有限公司 用于制备有机金属化合物的方法
CN101523644A (zh) * 2006-08-11 2009-09-02 加州理工学院 可使氟化物溶解度提高的离解剂、制剂及方法
CN101348499A (zh) * 2007-07-20 2009-01-21 罗门哈斯公司 制备有机金属化合物的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V.BORNAND,ET AL.,: ""Deposition of LiTaO3 thin films by pyrosol process"", 《THIN SOLID FILMS》, vol. 304, 31 December 1997 (1997-12-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454021A (zh) * 2019-02-06 2021-09-28 乔治洛德方法研究和开发液化空气有限公司 化合物和含锂膜的制造方法
CN113454021B (zh) * 2019-02-06 2023-12-15 乔治洛德方法研究和开发液化空气有限公司 化合物和含锂膜的制造方法

Also Published As

Publication number Publication date
KR20140035311A (ko) 2014-03-21
FR2968677A1 (fr) 2012-06-15
EP2649216A1 (fr) 2013-10-16
US20130260024A1 (en) 2013-10-03
WO2012076817A1 (fr) 2012-06-14
JP2014500401A (ja) 2014-01-09

Similar Documents

Publication Publication Date Title
CN103298973A (zh) 由cvd制备锂基层的方法
US6852139B2 (en) System and method of producing thin-film electrolyte
US20050016458A1 (en) Apparatus for producing thin-film electrolyte
US6582481B1 (en) Method of producing lithium base cathodes
JP5841014B2 (ja) 固体電解質薄膜の製造方法、固体電解質薄膜、および固体電池
US6511516B1 (en) Method and apparatus for producing lithium based cathodes
CN103403938A (zh) 层结构和其在高温燃料电池的连接体与阴极之间形成陶瓷层结构的用途
WO2011158948A1 (en) Method of manufacturing power storage device
KR101895290B1 (ko) 금속-유기 화학 기상 증착에 의한 삼차원 고체 배터리용 리튬 포스페이트 박막 전해질의 균일한 증착 방법 및 장치
US9920426B2 (en) Method for producing lithium phosphorus oxynitride layer
WO2005008828A1 (en) System and method of producing thin-film electrolyte
US20100261066A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2021534321A (ja) アモルファスホウケイ酸リチウムを調製するための蒸着方法
JP2013073907A (ja) 電極合材の製造方法
CN118120070A (zh) 电极涂覆方法和经涂覆的电极
Temeche et al. Polymer Precursor Derived Li x PON Electrolytes: Toward Li–S Batteries
JP2011210491A (ja) 活物質粒子、非水電解液二次電池用正極板、ならびに非水電解液二次電池
KR102700784B1 (ko) 화합물 및 리튬 함유 막의 제조 방법
JP6692726B2 (ja) 固体電解質膜の形成方法
CN1414924A (zh) 生产锂基阴极的方法及设备
Temeche et al. Electrochemical Performance of Li x SiON Polymer Electrolytes Derived from an Agriculture Waste Product, Rice Hull Ash
KR20130013876A (ko) 고체전해질 박막 제조방법 및 제조장치
KR100522551B1 (ko) 화학 기상 증착법에 의해 제조된 리튬 2차 박막 전지
Dobbelaere Plasma-enhanced atomic layer deposition of transition metal phosphates
KR20220095662A (ko) 고체 전해질의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C05 Deemed withdrawal (patent law before 1993)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130911