WO2012076817A1 - Procédé de fabrication de couches a base de lithium par cvd - Google Patents

Procédé de fabrication de couches a base de lithium par cvd Download PDF

Info

Publication number
WO2012076817A1
WO2012076817A1 PCT/FR2011/052899 FR2011052899W WO2012076817A1 WO 2012076817 A1 WO2012076817 A1 WO 2012076817A1 FR 2011052899 W FR2011052899 W FR 2011052899W WO 2012076817 A1 WO2012076817 A1 WO 2012076817A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
precursor
cvd
producing
based layer
Prior art date
Application number
PCT/FR2011/052899
Other languages
English (en)
Inventor
Lucie Jodin
Philipp Achatz
Jean-Manuel Decams
Jean-Luc Deschanvres
Maria Del Carmen Jimenez Arevalo
Sylvain Poulet
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Centre National De La Recherche Scientifique
Institut Polytechnique De Grenoble
Annealsys
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Centre National De La Recherche Scientifique, Institut Polytechnique De Grenoble, Annealsys filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP11811047.7A priority Critical patent/EP2649216A1/fr
Priority to JP2013542593A priority patent/JP2014500401A/ja
Priority to KR1020137013777A priority patent/KR20140035311A/ko
Priority to CN201180057191XA priority patent/CN103298973A/zh
Publication of WO2012076817A1 publication Critical patent/WO2012076817A1/fr
Priority to US13/894,612 priority patent/US20130260024A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is in the field of the manufacture of batteries in thin films, with high energy density.
  • Targeted applications include smart cards and smart tags for recurrent measurement of parameters using miniaturized implants.
  • Another important application concerns the supply of internal clocks and microsystems. All of these applications require that all the layers necessary for the operation of the battery be manufactured with techniques compatible with the industrial processes of microelectronics.
  • the film batteries are deposited on 3D substrates to increase the active area without changing the size of the component.
  • conformal deposition techniques to accurately control the chemical composition of the material because the active layers are very sensitive to a change in their composition.
  • the present invention relates to a CVD process ("Chemical Vapor Deposition” or “chemical vapor deposition”) for the manufacture of a lithium-based layer, LiPON ("Lithium Phosphorous OxyNitride”), LiSiPON ("Nitrogen- embedded image Lithium Silico-phosphate) or (Li, La) TiO 3 (Lithium lanthanum titanate), involving precursors contained in a liquid mixture comprising a solvent and a Lewis base.
  • CVD process Chemical Vapor Deposition” or “chemical vapor deposition”
  • LiPON Lithium Phosphorous OxyNitride
  • LiSiPON Nonrogen- embedded image Lithium Silico-phosphate
  • Li, La TiO 3
  • the "all solid" microbatteries, in the form of thin films, have been widely described in the prior art.
  • the operating principle is based on the insertion and deinsertion (or intercalation / deintercalation) of an alkali metal ion or a proton in the positive electrode.
  • the main systems use, as ionic species, the lithium ion or Li + .
  • All the components of the microbattery are in the form of thin layers obtained by PVD (Physical Vapor Deposition) or CVD deposition.
  • the total thickness of the stack is of the order of 15 ⁇ .
  • the current collectors are metallic and may be, for example, based on Pt, Cr, Au, Ti, W, Mo.
  • the positive electrode can be notably made of LiCo0 2, Li i0 2, LiMn 2 0 4, CuS, CuS 2, WO y S z, TiO y S z, V 2 0 5.
  • thermal annealing may be necessary to increase the crystallization of the films and their insertion properties. This is particularly the case for lithiated oxides. Nevertheless, some amorphous materials do not require such treatment, while allowing high insertion of lithium ions.
  • the electrolyte must be a good ionic conductor and electronic insulator. It is generally a vitreous material based on phosphorus oxide, boron, lithium oxides or lithium salts.
  • the most efficient electrolytes are phosphate-based, such as LiPON ("Lithium Phosphorous OxyNitride”) or LiSiPON
  • the negative electrode may be thermal vapor deposited metal lithium, a lithium-based metal alloy or an insertion compound
  • Li free a lithium-blocking metal layer is deposited directly on the electrolyte. Lithium is then deposited on this layer.
  • encapsulation is intended to protect the active stack of the external environment and specifically of moisture. Different strategies can be used: encapsulation from thin layers, encapsulation from co-laminates, or wrapping encapsulation.
  • the objective of the work carried out in this field is to increase the energy density of the micro-batteries, and this by various possible ways:
  • PVD Physical Vapor Deposition
  • document US 2005/0016458 describes an apparatus for producing a LiPON-based thin-film electrolyte. It uses the PE-CVD technique, as well as solid lithium precursors and solid or liquid phosphorus precursors, heated in bubblers to be evaporated. The nitrogen is incorporated in the layer by means of a plasma present in the deposition chamber.
  • organometallic lithium-based tend to form oligo-mothers difficult to evaporate, and even to decompose when the heating is prolonged, which leads to poor evaporation efficiency;
  • the present invention therefore relates to a method for producing a lithium-based electrolyte for thin-film batteries on a 3D substrate.
  • This electrolyte may for example be the LiPON which contains lithium (Li), phosphorus (P), oxygen (O) and nitrogen (N).
  • CVD is a process by which a thin layer is formed on a surface when, by chemical reaction, certain elements of a gas mixture placed under the particular conditions of pressure and temperature pass from the vapor state to the solid state by depositing on the constituent material of the surface.
  • the CVD process may be assisted by plasma (PE-CVD).
  • the main difficulty then comes from lithium (Li) because there are no lithium compounds gaseous or liquid at room temperature, compatible with CVD.
  • the only option available to date is to use solid precursors as described in US 2005/0016458.
  • the present invention provides a particularly suitable alternative solution which consists in passing through a liquid phase. Indeed, it is easier to vaporize a liquid than a solid. More specifically, the present invention relates to a method of making by CVD a lithium-based layer, wherein the lithium precursor is in liquid form in a mixture containing a Lewis base. According to a preferred embodiment, the method according to the invention therefore uses a liquid mixture comprising at least one lithium precursor, a Lewis base and a solvent.
  • the liquid medium comprises at least three distinct entities, namely, the lithium precursor, a solvent and a Lewis base.
  • the same molecule can fulfill two of these functions (for example solvent and Lewis base or lithium precursor and Lewis base) but that according to the invention is the intentional addition of a Lewis base, advantageously as defined below, in addition to the precursor and the solvent normally used.
  • this liquid mixture is then sprayed in aerosol form and then evaporated.
  • the layer is made of a material chosen from the following group:
  • lithium precursors are poorly soluble or unstable in solution. Indeed, lithium (Li) is a chemical element belonging to the first column of the periodic table of the elements. These so-called alkaline elements have, in general, a strong electropositive character, leading mainly to the formation of complexes with strong ionic characters.
  • the lithium precursors used in the CVD deposit namely the lithium-based organometallic compounds, are found in the form of solid oligomers. However, these solid oligomers have, as a rule, low vapor pressures, as well as poor solubility properties in the solvents conventionally used for the dissolution of organometallic precursors (so-called "usual").
  • the solution proposed in the context of the present invention is therefore the use of a solvent and a Lewis base for dissolving the lithium precursor.
  • the Lewis base breaks the polymeric structure of the oligomer, promoting the formation and stabilization of dimeric or even monomeric structures.
  • adducts most often have higher vapor pressures, solubility in conventional aliphatic and / or aromatic organic solvents increased, and an increase in the thermal stability of the precursors in the gas phase (during the transport phase vapors between the evaporator and the deposition chamber) but also chemical in the liquid phase (during the storage phase of the precursor in the source reservoirs).
  • the Lewis base is an amine
  • a potential source of nitrogen for doping the layer to be synthesized is introduced into the coordination sphere close to the metal element, in a single step.
  • the Lewis base present in the liquid mixture, further containing the lithium precursor and the solvent, is an amine, even more advantageously:
  • TMEDA ( ⁇ , ⁇ , ⁇ ', N' -tetramethylethylenediamine);
  • TMPDA N, N, 2,2-tetramethyl-1,3-propanediamine
  • the aminated Lewis base can be a primary (R-NH 2 ), secondary (R 2 -NH) or tertiary amine (NR 3 ), with R-CH 3 , C 2 H 5, C 3 H 7 , C 4 H 9, or a combination of these groups in the case of secondary and / or tertiary amines.
  • ROR oxygenated ether compound
  • the Lewis base may be acetylacetone or benzyl alcohol.
  • Lewis bases can of course be implemented.
  • a Lewis base judiciously chosen in association with the precursor will allow:
  • the lithium precursor is an organometallic precursor, advantageously an alkoxide, for example lithium tert-butoxide (LiO'Bu), or a ⁇ -diketonate, such as lithium acetylacetonate (LiAcac) and / or Lithium 2,2,6,6-tetramethyl-3-5-heptanedionate (LiTMHD), or an amide such as lithium bis (trimethylsilylamide) (LiHMDS). It can of course be a mixture of lithium precursors.
  • an alkoxide for example lithium tert-butoxide (LiO'Bu)
  • a ⁇ -diketonate such as lithium acetylacetonate (LiAcac) and / or Lithium 2,2,6,6-tetramethyl-3-5-heptanedionate (LiTMHD)
  • LiTMHD Lithium 2,2,6,6-tetramethyl-3-5-heptanedionate
  • amide such as lithium bis
  • the present invention proposes to vaporize a lithium precursor in liquid form.
  • the lithium precursor is not liquid, it can have a solid initial form. Solubilization using at least one solvent and a Lewis base is then an intermediate step before its vaporization.
  • the molar concentration of Lewis base is generally 1 to 20 times higher than that of the lithium precursor.
  • the concentration of Li may advantageously be between 0.01 M and 1 M.
  • the layer, in particular the electrolyte may contain other elements apart from lithium (Li), in particular phosphorus (P), nitrogen (N), oxygen (O), silicon (Si), titanium (Ti) or lanthanum (La). These elements can be provided through the lithium precursor, or possibly via other precursors.
  • these other elements are also provided in liquid form. It is advantageously organometallic precursors in solution or in the form of pure liquids.
  • the liquid mixture then contains, in addition to the lithium precursor, the Lewis base and the solvent, at least one other organometallic precursor.
  • phosphate-based solutions such as triphenyl phosphate (TPPa) or trimethyl phosphate (TMPa), as well as phosphite-based solutions, for example triphenyl phosphite (TPPi) or trimethyl phosphite (TMPi), can to be used.
  • concentration of the solutions is advantageously between 0.OlM and 1M.
  • the precursor of Ti may be of alkoxide or ⁇ -diketonate or ⁇ - ⁇ -diketonate type (for example TiO (Acac) 2 ) or alkoxo- ⁇ -diketonate (for example Ti (OR) 2 (TMHD) 2 ).
  • the precursor of La may be of complexed or non-complexed ⁇ -diketonate type (for example La (TMHD) 3 ) or its adduct (for example La (TMHD) 3 tetraglyme).
  • the various precursors may be prepared or provided in different solutions or mixtures, in particular two, for example one containing Li + N and the other P. Alternatively, all the precursors are in the same mixture (for example Li + P + N), which in fact also contains the Lewis base and the solvent. As already said, it is eventually the Lewis base that is the source of nitrogen.
  • the process according to the invention is carried out in a CVD type deposition reactor. It can be used both at low pressure and at atmospheric pressure. At atmospheric pressure, the process has the following steps:
  • the aerosol can be generated either by a piezoelectric ceramic, or by a system of the spray nozzle type, or by means of automobile-type liquid injectors;
  • a carrier gas Ar, O 2 , N 2 , air
  • the substrate can be heated to between 200 and 700 ° C.
  • the process has the following steps:
  • the pressure in the chamber is fixed. It is between 0.1 mbar and 500 mbar.
  • the temperature of the substrate is between 200 and 800 ° C, preferably between 300 and 500 ° C.
  • the method according to the invention advantageously allows the production of layers on 3D textured structures.
  • FIG. 1 illustrates the impedance spectroscopy measurement for calculating the ionic conductivity of a deposit produced at atmospheric pressure, using the method according to the invention.
  • FIG. 2 illustrates an image by SEM (scanning electron microscopy) of a deposit made on a 3D substrate at atmospheric pressure, using the method according to the invention.
  • FIG. 3 illustrates the impedance spectroscopy measurement making it possible to calculate the ionic conductivity of a deposit produced at low pressure, using the method according to the invention.
  • FIG. 4 illustrates an image by SEM (scanning electron microscopy) of a deposit made on a low pressure 3D substrate, using the method according to the invention.
  • a mixture of LiAcac or LiTMHD and TPPa is used at concentrations between 0.03M and 0.12M.
  • the solvent used is butanol or toluene by adding, as Lewis base, acetylacetone or benzyl alcohol or TMEDA, or a mixture thereof (with a molar concentration of between 1 and 20 times that of lithium precursor).
  • the deposition rates vary between 50 and 300 nm / h, with substrate carrier temperatures ranging from 400 to 550 ° C.
  • Deposition compliance is greater than 70% for high form factors (1: 5) ( Figure 2).
  • the composition measured by XPS is Li2.54PO3.97N0.19.
  • the variation of precursor concentrations affects the x, y and z ratios of the LiPON layer (Li x PO y N z ). 1-2 / Low pressure embodiment
  • the mixture of precursors used in this case is LiO 1 Bu and TMEDA and TPPa.
  • the concentration of the Li precursor solution is 0.1 M and that of 0.03 M phosphorus.
  • the concentration of TMEDA (Lewis base) is approximately 10 times higher than that of LiO 1 Bu.
  • the temperature of the substrate holder is between 420 and 480 ° C, the proportion of oxygen varies from 25% to 60%.
  • the working pressure is between 10 and 20 mbar.
  • the deposition rates are between 220 and 980 nm / h.
  • the temperature of the substrate holder is between 400 and 600 ° C, the proportion of oxygen varies from 25 to 70 ° C.
  • the working pressure is between 10 and 25 mbar.
  • the deposition rates are between 100 and 400 nm / h. 11-2 / (Li, La) TiO at atmospheric pressure:
  • a mixture of LiAcac or LiTMHD, and Ti precursor of alkoxide or ⁇ -diketonate or ⁇ - ⁇ -diketonate type for example TiO (Acac) 2
  • alkoxo- ⁇ -diketonate for example Ti (OR) 2 (TMHD) 2
  • TMHD alkoxo- ⁇ -diketonate
  • TMHD complexed or uncomplicated ⁇ -diketonate precursor
  • La (TMHD) 3 complexed or uncomplicated ⁇ -diketonate precursor
  • TMHD complexed or uncomplicated ⁇ -diketonate precursor
  • La (TMHD) 3 complexed or uncomplicated ⁇ -diketonate precursor
  • TMHD complexed or uncomplicated ⁇ -diketonate precursor
  • TMHD complexed or uncomplicated ⁇ -diketonate precursor
  • La (TMHD) 3 complexed or uncomplicated ⁇ -d
  • the deposition rates vary between 50 and 500 nm / h, with substrate carrier temperatures ranging from 400 to 650 ° C. 11-3 / (Li, La) TiO at low pressure:
  • a mixture of LiTMHD and Ti (OiPr) 2 (TMHD) 2 and La (TMHD) 3 is used at concentrations between 0.01M and 0.1M.
  • the solvent used is monoglyme by adding TMEDA (with a molar concentration of between 1 and 20 times that of the lithium precursor).
  • the deposition rates vary between 50 and 500 nm / h, with substrate carrier temperatures ranging from 400 to 800 ° C, preferably from 500 to 650 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention concerne un procédé de réalisation par CVD d'une couche à base de lithium selon lequel le précurseur de lithium est contenu dans un mélange liquide comprenant un solvant et une base de Lewis.

Description

PROCEDE DE FABRICATION DE COUCHES A BASE DE LITHIUM PAR CVD
DOMAINE DE L'INVENTION La présente invention s'inscrit dans le domaine de la fabrication de batteries en films minces, à forte densité d'énergie.
Les applications visées concernent notamment les cartes à puces et les étiquettes intelligentes permettant la mesure récurrente de paramètres à l'aide d'implants miniaturisés. Une autre application importante concerne l'alimentation d'horloges internes et de microsystèmes. L'ensemble de ces applications impose que toutes les couches nécessaires au fonctionnement de la batterie soient fabriquées avec des techniques compatibles avec les procédés industriels de la microélectronique. En pratique, les batteries en films sont déposées sur des substrats 3D afin d'augmenter la surface active sans modifier la taille du composant. Dans ce cadre, il est nécessaire d'utiliser des techniques de dépôt conforme permettant de maîtriser avec précision la composition chimique du matériau car les couches actives sont très sensibles à une modification de leur composition.
Plus précisément, la présente invention concerne un procédé CVD (« Chemical Vapor Déposition » ou dépôt chimique en phase vapeur) de fabrication d'une couche à base de lithium, de type LiPON (« Lithium Phosphorous OxyNitride »), LiSiPON (« Nitrogen-incorporated Lithium SilicoPhosphate ») ou (Li,La)Ti03 (Lithium lanthanum titanate), mettant enjeu des précurseurs contenus dans un mélange liquide comprenant un solvant et une base de Lewis.
ETAT ANTÉRIEUR DE LA TECHNIQUE Les microbatteries « tout solide », sous forme de films minces, ont été largement décrites dans l'art antérieur. Le principe de fonctionnement repose sur l'insertion et la désinsertion (ou intercalation/désintercalation) d'un ion de métal alcalin ou d'un proton dans l'électrode positive. Les principaux systèmes utilisent, comme espèce ionique, l'ion lithium ou Li+. Tous les composants de la microbatterie (collecteurs de courant, électrodes positive et négative, électrolyte, encapsulation) sont sous forme de couches minces obtenues par dépôt PVD (« Physical Vapour Déposition ») ou CVD. L'épaisseur totale de l'empilement est de l'ordre de 15 μιη.
Différents matériaux peuvent être utilisés:
les collecteurs de courant sont métalliques et peuvent être, par exemple, à base de Pt, Cr, Au, Ti, W, Mo.
l'électrode positive peut être notamment constituée de LiCo02, Li i02, LiMn204, CuS, CuS2, WOySz, TiOySz, V205. Selon les matériaux choisis, un recuit thermique peut être nécessaire pour augmenter la cristallisation des films et leurs propriétés d'insertion. C'est notamment le cas pour les oxydes lithiés. Néanmoins, certains matériaux amorphes ne nécessitent pas un tel traitement, tout en permettant une insertion élevée d'ions lithium.
l'électrolyte doit être bon conducteur ionique et isolant électronique. Il s'agit en général d'un matériau vitreux à base d'oxyde de phosphore, de bore, d'oxydes de lithium ou de sels de lithium. Les électrolytes les plus performants sont à base de phosphate, tels que LiPON (« Lithium Phosphorous OxyNitride ») ou LiSiPON
(« Nitrogen-incorporated Lithium SilicoPhosphate »). De leur composition vont dépendre les propriétés électriques, notamment la concentration en azote qui permet d'augmenter la conductivité ionique.
l'électrode négative peut être du lithium métallique déposé par évaporation thermique, un alliage métallique à base de lithium ou bien un composé d'insertion
(SiTON, SnNx, InNx, Sn02...). A noter qu'il existe également des micro-batteries sans anode (appelées « Li free »). Dans ce cas, une couche de métal bloquant le lithium est déposée directement sur l'électrolyte. Le lithium vient alors se déposer sur cette couche.
- l'encapsulation a pour objet de protéger l'empilement actif de l'environnement extérieur et spécifiquement de l'humidité. Différentes stratégies peuvent être utilisées: encapsulation à partir de couches minces, encapsulation à partir de co- laminés, ou encore encapsulation par capotage. L'objectif des travaux réalisés dans ce domaine est d'augmenter la densité d'énergie des micro-batteries, et ce par différentes voies possibles :
en augmentant les performances des matériaux ; et/ou
en augmentant les épaisseurs ; et/ou
en réalisant les dépôts sur des structures texturées 3D, ce qui permet d'augmenter la surface active de la batterie. C'est dans le cadre de cette troisième voie que s'inscrit la présente invention, qui s'intéresse tout particulièrement au dépôt d'électrolyte.
Il est admis que la technique PVD (dépôt physique en phase vapeur), méthode standard de dépôt des matériaux pour les micro-batteries, n'est pas adaptée à des dépôts sur des structures 3D. Il est donc nécessaire d'utiliser des techniques alternatives comme la CVD, éventuellement assistée par plasma (PE-CVD).
Ainsi, le document US 2005/0016458 décrit un appareil permettant de réaliser un électrolyte en couche mince à base de LiPON. Celui-ci met en œuvre la technique PE-CVD, ainsi que des précurseurs de lithium solides et des précurseurs de phosphore solides ou liquides, chauffés dans des bulleurs pour être évaporés. L'azote est incorporé dans la couche grâce à un plasma présent dans la chambre de dépôt.
Le procédé proposé soulève toutefois les problématiques suivantes:
les mauvaises propriétés de la PE-CVD pour le dépôt 3D ;
l'évaporation des précurseurs par bullage :
• contrôle difficile des débits gazeux envoyés dans la chambre de dépôt, engendrant des problèmes de reproductibilité en termes d'épaisseur et/ou de composition des couches ;
• chauffage de la totalité de la source « précurseur » limitant fortement le choix des précurseurs organométalliques potentiellement utilisables : la plupart des organométalliques à base de lithium ont tendance à former des oligo mères difficilement évaporables, et même à se décomposer lorsque le chauffage se prolonge, ce qui mène à un mauvais rendement d'évaporation ;
• pour les précurseurs présentant une faible tension de vapeur, tels que des complexes organométalliques à base de lithium, il est extrêmement difficile voire impossible de générer des taux de vapeur suffisamment importants pour l'obtention de films avec des vitesses de croissance élevées ;
contrôle du taux d'azote difficile à cause du mode d'incorporation par plasma.
En résumé, ce procédé de vaporisation ne permet pas de contrôler la quantité de précurseurs mis en jeu. De plus, son rendement est faible puisqu'il engendre peu de vapeur pour une quantité de matière initiale importante. Il existe donc un besoin évident de développer de nouveaux procédés de réalisation de couches minces à base de lithium ne présentant pas les inconvénients susmentionnés. EXPOSE DE L ' INVENTION
En pratique, la présente invention vise donc un procédé de réalisation d'un électrolyte à base de lithium pour des batteries en films minces sur substrat 3D. Cet électrolyte peut par exemple être le LiPON qui contient du lithium (Li), du phosphore (P), de l'oxygène (O) et de l'azote (N).
Comme déjà dit, dans ce contexte, la technique de dépôt adaptée est la CVD. Pour rappel, la CVD est un procédé par lequel se forme une couche mince sur une surface lorsque, par réaction chimique, certains éléments d'un mélange gazeux placés dans les conditions particulières de pression et de température passent de l'état vapeur à l'état solide en se déposant sur le matériau constitutif de la surface. Eventuellement, le procédé CVD peut être assisté par plasma (PE-CVD).
La principale difficulté vient alors du lithium (Li) car il n'existe pas de composés de lithium gazeux ou liquides à température ambiante, compatibles avec la CVD. La seule option jusqu'alors disponible est d'utiliser des précurseurs solides, comme décrit dans le document US 2005/0016458.
La présente invention propose une solution alternative particulièrement adaptée qui consiste à passer par une phase liquide. En effet, il est plus aisé de vaporiser un liquide qu'un solide. Plus précisément, la présente invention concerne un procédé de réalisation par CVD d'une couche à base de lithium, selon lequel le précurseur de lithium se présente sous forme liquide dans un mélange contenant une base de Lewis. Selon un mode de réalisation privilégié, le procédé selon l'invention met donc en œuvre un mélange liquide comprenant au moins un précurseur de lithium, une base de Lewis et un solvant.
En d'autres termes, le milieu liquide comprend au moins trois entités distinctes, à savoir, le précurseur de lithium, un solvant et une base de Lewis. A noter que dans certains cas, une même molécule peut remplir deux de ces fonctions (par exemple solvant et base de Lewis ou précurseur de lithium et base de Lewis) mais que selon l'invention, il s'agit de l'ajout intentionnel d'une base de Lewis, avantageusement comme définie ci-dessous, en plus du précurseur et du solvant normalement mis en œuvre. Selon le principe de la CVD, ce mélange liquide est alors pulvérisé sous forme d'aérosol puis évaporé.
De manière privilégiée, la couche est réalisée dans un matériau choisi dans le groupe suivant :
- LiPON ;
- LiSiPON ; et
- (Li,La)Ti03.
Comme mentionné, les précurseurs du lithium sont peu solubles ou peu stables en solution. En effet, le lithium (Li) est un élément chimique appartenant à la première colonne du tableau périodique des éléments. Ces éléments dits alcalins possèdent, d'une manière générale, un fort caractère électropositif, conduisant principalement à la formation de complexes à forts caractères ioniques. En pratique, les précurseurs du lithium mis en œuvre dans le dépôt CVD, à savoir les composés organométalliques à base de lithium, se retrouvent sous forme d'oligomères solides. Or, ces oligomères solides possèdent, en règle générale, de faibles tensions de vapeur, ainsi que de médiocres propriétés de solubilité dans les solvants classiquement utilisés pour la mise en solution des précurseurs organométalliques (dits « usuels »).
La solution proposée dans le cadre de la présente invention est donc l'utilisation d'un solvant et d'une base de Lewis pour la mise en solution du précurseur du lithium. En entrant dans la sphère de coordination proche du centre métallique, la base de Lewis casse la structure polymérique de l'oligomère, favorisant la formation et la stabilisation de structures dimériques voire monomériques.
Les composés chimiques ainsi formés, appelés « adduits », présentent le plus souvent des tensions de vapeur plus importantes, une solubilité dans les solvants organiques aliphatiques et/ou aromatiques classiques accrue, ainsi qu'une augmentation de la stabilité thermique des précurseurs en phase gazeuse (durant la phase de transport des vapeurs entre l'évaporateur et la chambre de dépôt) mais également chimique en phase liquide (durant la phase de stockage du précurseur dans les réservoirs sources).
En outre, dans le cas particulier où la base de Lewis est une aminé, on fait entrer dans la sphère de coordination proche de l'élément métallique une source potentielle d'azote permettant de doper la couche à synthétiser, et ce en une seule étape.
Ainsi et de manière avantageuse, la base de Lewis, présente dans le mélange liquide, contenant en outre le précurseur de lithium et le solvant, est une aminé, encore plus avantageusement :
- le TMEDA (Ν,Ν,Ν ' ,N ' -tétraméthyléthylènediamine) ; ou
le TMPDA (N,N,2,2-tétraméthyl- 1 ,3-propanediamine).
Plus précisément, la base de Lewis aminée peut être une aminé primaire (R-NH2), secondaire (R2-NH) ou tertiaire (NR3), avec R— CH3, C2H5, C3H7, C4H9, ou une combinaison de ces groupements dans le cas d'amines secondaires et/ou tertiaires.
La base de Lewis aminée peut être monodente, comme cité précédemment, ou plus avantageusement bidente (diamine) de type R2N-(CH2)X-NR2 avec x = 1, 2, 3 ou 4 et R = CH3, C2H5, C3H7, C4H9 ou une combinaison de ces groupements.
Enfin, la base de Lewis peut être un composé oxygéné de type éther (R-O-R) avec R = CH3, C2H5, C3H7, C4H9 ou une combinaison de ces groupements. A nouveau, la base de Lewis oxygénée peut être monodente comme cité précédemment (R-O-R), ou plus avantageusement bidente (Glyme x) de type R-O- (CH2)x-0-R avec x = 1, 2, 3 ou 4 et R = CH3, C2H5, C3H7, C4H9 ou une combinaison de ces groupements.
Alternativement, la base de Lewis peut être de l'acétylacétone ou de l'alcool benzylique.
Un mélange de bases de Lewis peut bien sûr être mis en œuvre. Comme déjà dit, l'utilisation d'une base de Lewis judicieusement choisie en association avec le précurseur va permettre :
une stabilisation chimique du précurseur en solution dans le réservoir source, une augmentation de la solubilité de ce dernier dans les solvants organiques aliphatiques et/ou aromatiques classiques,
une stabilisation de la structure moléculaire du précurseur durant la phase de transport sous forme de gaz entre l'évaporateur et la chambre de dépôt du réacteur CVD. De manière privilégiée, le précurseur du lithium est un précurseur organométallique, avantageusement un alkoxyde, comme par exemple le lithium tert-butoxide (LiO'Bu), ou un β-dicétonate, comme l'acétylacétonate de lithium (LiAcac) et/ou le 2,2,6, 6-tétraméthyl-3-5-heptanedionate de lithium (LiTMHD), ou un amidure comme le Bis-triméthylsilylamidure de lithium (LiHMDS). Il peut bien sûr s'agir d'un mélange de précurseurs de lithium.
La mise en solution sous forme liquide du précurseur de lithium, en présence d'une base de Lewis, est avantageusement réalisée au moyen d'un solvant organique aliphatique de formule brute CxH2x+2 avec x = 3, 4 , 5, 6, 7, 8 ou 9, ou un solvant aromatique non oxygéné comme le benzène, toluène, xylène, mesitylène..., ou bien encore un solvant organique oxygéné de type alcool, comme le butanol ou l'isopropanol. Le monoglyme est également un solvant possible. Il peut s'agir d'un mélange de solvants. Contrairement à l'art antérieur où le précurseur du lithium était fourni sous forme solide, la présente invention propose de vaporiser un précurseur de lithium se trouvant sous forme liquide. Bien sûr, si le précurseur de lithium n'est pas liquide, il peut avoir une forme initiale solide. Sa mise en solution à l'aide d'au moins un solvant et une base de Lewis constitue alors une étape intermédiaire avant sa mise sous forme vapeur.
Dans le mélange liquide, la concentration molaire en base de Lewis est généralement 1 à 20 fois supérieure à celle du précurseur de lithium. La concentration en Li peut être comprise avantageusement entre 0,01 M et 1 M. Comme déjà dit, la couche, notamment Pélectrolyte, peut contenir d'autres éléments en dehors du lithium (Li), en particulier du phosphore (P), de l'azote (N), de l'oxygène (O), du silicium (Si), du titane (Ti) ou du lanthane (La). Ces éléments peuvent être apportés grâce au précurseur de lithium, ou éventuellement via d'autres précurseurs.
Dans un mode de réalisation privilégié, ces autres éléments, notamment le phosphore et/ou l'azote, sont également apportés sous forme liquide. Il s'agit avantageusement de précurseurs organométalliques mis en solution ou sous forme de liquides purs. Dans ce cas de figure, le mélange liquide contient alors, outre le précurseur de lithium, la base de Lewis et le solvant, au moins un autre précurseur organométallique .
Pour le phosphore, des solutions à base de phosphate, comme le triphényl phosphate (TPPa) ou triméthyl phosphate (TMPa), ainsi que des solutions à base de phosphite, par exemple le triphényl phosphite (TPPi) ou triméthyl phosphite (TMPi), peuvent être utilisées. La concentration des solutions est avantageusement comprise entre O.OlM et lM. Le précurseur de Ti peut être de type alkoxyde ou β-dicétonate ou οχο-β-dicétonate (par exemple TiO(Acac)2) ou alcoxo-P-dicétonate (par exemple Ti(OR)2(TMHD)2). Le précurseur de La peut être de type β-dicétonate complexé ou non (par exemple La(TMHD)3) ou son adduit (par exemple La(TMHD)3tétraglyme). Les différents précurseurs peuvent être préparés ou apportés dans des solutions ou mélanges différents, en particulier deux, par exemple l'un contenant Li + N et l'autre P. Alternativement, tous les précurseurs se trouvent dans le même mélange (par exemple Li + P + N), qui de fait contient également la base de Lewis et le solvant. Comme déjà dit, c'est éventuellement la base de Lewis qui constitue la source d'azote.
De manière classique, le procédé selon l'invention est réalisé dans un réacteur de dépôt de type CVD. Il peut être mis en œuvre aussi bien à basse pression qu'à pression atmosphérique. A pression atmosphérique, le procédé compte les étapes suivantes :
introduction des précurseurs : pulvérisation sous forme d'aérosol. L'aérosol peut- être généré soit par une céramique piézoélectrique, soit par un système de type buse de pulvérisation, soit par l'intermédiaire d'injecteurs de liquides de type automobile ;
transfert de l'aérosol jusqu'à la chambre de dépôt par une canalisation dans laquelle on injecte un gaz porteur (Ar, 02, N2, air) ;
évaporation des précurseurs à proximité de la surface du substrat chauffé ;
- réaction à la surface du substrat chauffé (possibilité d'injecter des gaz réactifs dans la chambre de dépôt). Le substrat peut être chauffé entre 200 et 700°C.
A basse pression, le procédé compte les étapes suivantes :
introduction des précurseurs : pulvérisation par l'intermédiaire d'injecteurs de liquides de type automobile puis évaporation dans un évaporateur ;
- transfert du mélange gazeux jusqu'à la chambre de dépôt par une canalisation chauffée ;
- réaction à la surface du substrat chauffé. Possibilité d'injecter des gaz réactifs dans la chambre de dépôt: 02, N20, H2i NH3... La pression dans la chambre est fixée. Elle est comprise entre 0,1 mbar et 500 mbar. La température du substrat est comprise entre 200 et 800°C, avantageusement entre 300 et 500°C.
Dans les deux cas, les débits de précurseurs sont soigneusement contrôlés. Les vitesses de dépôt peuvent dépasser 750 nm/h. Comme déjà mentionné, notamment dans l'application privilégiée concernant les électrolytes pour micro-batteries, le procédé selon l'invention permet avantageusement la réalisation de couches sur des structures texturées 3D.
BRÈVE DESCRIPTION DES FIGURES
La manière dont l'invention peut être réalisée et les avantages qui en découlent ressortiront mieux des exemples de réalisation qui suivent, donnés à titre indicatif et non limitatif, à l'appui des figures annexées parmi lesquelles :
La figure 1 illustre la mesure de spectroscopie d'impédance permettant de calculer la conductivité ionique d'un dépôt réalisé à pression atmosphérique, à l'aide du procédé selon l'invention. La figure 2 illustre une image par MEB (microscopie électronique à balayage) d'un dépôt réalisé sur un substrat 3D à pression atmosphérique, à l'aide du procédé selon l'invention.
La figure 3 illustre la mesure de spectroscopie d'impédance permettant de calculer la conductivité ionique d'un dépôt réalisé à basse pression, à l'aide du procédé selon l'invention.
La figure 4 illustre une image par MEB (microscopie électronique à balayage) d'un dépôt réalisé sur un substrat 3D à basse pression, à l'aide du procédé selon l'invention.
EXEMPLES DE RÉALISATION DE L'INVENTION
Il PRÉPARATION D'UNE COUCHE DE LIPON : 1-1/ Mode de réalisation à pression atmosphérique :
Un mélange de LiAcac ou LiTMHD et de TPPa est utilisé à des concentrations comprises entre 0,03M et 0,12M. Le solvant utilisé est le butanol ou le toluène en ajoutant, comme base de Lewis, de l'acétylacétone ou de l'alcool benzylique ou du TMEDA, ou un mélange de ces derniers (avec une concentration molaire comprise entre 1 et 20 fois celle du précurseur de lithium).
Les vitesses de dépôt varient entre 50 et 300 nm/h, avec des températures du porte- substrat comprises entre 400 et 550°C.
La courbe de la figure 1 permet de calculer la conductivité ionique de ce matériau : 2.10"8S/cm.
La conformité du dépôt est supérieure à 70% pour les facteurs de formes élevés (1 :5) (Figure 2).
La composition mesurée par XPS est de Li2.54PO3.97N0.19. La variation des concentrations des précurseurs jouent sur les rapports x, y et z de la couche de LiPON (LixPOyNz). 1-2/ Mode de réalisation à basse pression
Le mélange de précurseurs utilisés dans ce cas est du LiOlBu et TMEDA et du TPPa. La concentration de la solution de précurseur de Li est de 0,1 M et celle de phosphore de 0,03M. La concentration en TMEDA (base de Lewis) est environ 10 fois supérieure à celle du LiOlBu. La température du porte-substrat est comprise entre 420 et 480°C, la proportion d'oxygène varie de 25% à 60%>. La pression de travail est comprise entre 10 et 20 mbar. Les vitesses de dépôt sont comprises entre 220 et 980 nm/h.
Les propriétés électriques montrent une conductivité ionique de 2.10~9S/cm et une conductivité électronique <7.10"14S/cm (Figure 3). La conformité du dépôt sur des facteurs de forme importants (1:5) est de 56%> (Figure 4)·
Les analyses XPS et EDX mettent en évidence la formation d'une couche LixPOyNz. II/ AUTRES MATÉRIAUX :
11-1/ LiSiPON à basse pression :
Un mélange constitué de :
- Bis-triméthylsilylamidure Li(hmds),
- TMEDA, et du
- TPPa
est utilisé à des concentrations comprises entre 0,03M et 0,1M. La température du porte-substrat est comprise entre 400 et 600°C, la proportion d'oxygène varie de 25 à 70°C. La pression de travail est comprise entre 10 et 25 mbar.
Les vitesses de dépôt sont comprises entre 100 et 400 nm/h. 11-2/ (Li,La)TiO à pression atmosphérique :
Un mélange de LiAcac ou LiTMHD, et de précurseur de Ti de type alkoxyde ou β- dicétonate ou οχο-β-dicétonate (par exemple TiO(Acac)2) ou alcoxo-P-dicétonate (par exemple Ti(OR)2(TMHD)2), et de précurseur de La de type β-dicétonate complexé ou non (par exemple La(TMHD)3) ou son adduit (par exemple La(TMHD)3tétraglyme), est utilisé à des concentrations comprises entre 0,01 M et 0,1M. Le solvant utilisé est le butanol ou le toluène en ajoutant de Pacétylacétone ou de l'alcool benzylique ou du TMEDA, ou un mélange de ces derniers (avec une concentration molaire comprise entre 1 et 20 fois celle du précurseur de lithium).
Les vitesses de dépôt varient entre 50 et 500 nm/h, avec des températures du porte- substrat comprises entre 400 et 650°C. 11-3/ (Li,La)TiO à basse pression :
Un mélange de LiTMHD et de Ti(OiPr)2(TMHD)2 et La(TMHD)3 est utilisé à des concentrations comprises entre 0,01M et 0,1M. Le solvant utilisé est le monoglyme en ajoutant du TMEDA (avec une concentration molaire comprise entre 1 et 20 fois celle du précurseur de lithium).
Les vitesses de dépôt varient entre 50 et 500 nm/h, avec des températures du porte- substrat comprises entre 400 et 800°C, de préférence entre 500 et 650°C.

Claims

REVENDICATIONS
Procédé de réalisation par CVD d'une couche à base de lithium mettant en œuvre un mélange liquide comprenant un précurseur de lithium, une base de Lewis et un solvant.
Procédé de réalisation par CVD d'une couche à base de lithium selon la revendication 1, caractérisé en ce que le mélange liquide est pulvérisé sous forme d'aérosol puis évaporé.
Procédé de réalisation par CVD d'une couche à base de lithium selon la revendication 1 ou 2, caractérisé en ce que la couche est réalisée en LiPON, LiSiPON ou (Li,La)Ti03.
Procédé de réalisation par CVD d'une couche à base de lithium selon l'une des revendications précédentes, caractérisé en ce que la base de Lewis est une aminé, avantageusement de type TMEDA ou TMPDA.
Procédé de réalisation par CVD d'une couche à base de lithium selon l'une des revendications précédentes, caractérisé en ce que le précurseur de lithium est un précurseur organométallique, avantageusement un alkoxyde, un β-dicétonate ou un amidure.
Procédé de réalisation par CVD d'une couche à base de lithium selon l'une des revendications précédentes, caractérisé en ce que le solvant est un solvant organique aliphatique ou aromatique non oxygéné, comme le toluène ou l'octane, ou un solvant organique oxygéné de type alcool, comme le butanol ou l'isopropanol.
Procédé de réalisation par CVD d'une couche à base de lithium selon l'une des revendications 3 à 6, caractérisé en ce que le précurseur de phosphore et/ou le précurseur d'azote se présente également sous forme liquide ou sous forme de solution.
8. Procédé de réalisation par CVD d'une couche à base de lithium selon la revendication 7, caractérisé en ce que le précurseur de phosphore et/ou le précurseur d'azote est ajouté dans le mélange liquide contenant le précurseur de lithium.
9. Procédé de réalisation par CVD d'une couche à base de lithium selon l'une des revendications précédentes, caractérisé en ce que la couche est réalisée sur une structure texturée 3D. 10. Procédé de réalisation par CVD d'une couche à base de lithium selon l'une des revendications précédentes, caractérisé en ce que la couche constitue l'électrolyte d'une micro-batterie.
PCT/FR2011/052899 2010-12-09 2011-12-08 Procédé de fabrication de couches a base de lithium par cvd WO2012076817A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11811047.7A EP2649216A1 (fr) 2010-12-09 2011-12-08 Procédé de fabrication de couches a base de lithium par cvd
JP2013542593A JP2014500401A (ja) 2010-12-09 2011-12-08 Cvdによるリチウムベースの層の製造方法
KR1020137013777A KR20140035311A (ko) 2010-12-09 2011-12-08 화학적 기상 증착법으로 리튬계층을 형성하는 방법
CN201180057191XA CN103298973A (zh) 2010-12-09 2011-12-08 由cvd制备锂基层的方法
US13/894,612 US20130260024A1 (en) 2010-12-09 2013-05-15 Method for producing lithium-based layers by cvd

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1060280 2010-12-09
FR1060280A FR2968677A1 (fr) 2010-12-09 2010-12-09 Procédé de fabrication de couches a base de lithium par cvd

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/894,612 Continuation US20130260024A1 (en) 2010-12-09 2013-05-15 Method for producing lithium-based layers by cvd

Publications (1)

Publication Number Publication Date
WO2012076817A1 true WO2012076817A1 (fr) 2012-06-14

Family

ID=44303388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/052899 WO2012076817A1 (fr) 2010-12-09 2011-12-08 Procédé de fabrication de couches a base de lithium par cvd

Country Status (7)

Country Link
US (1) US20130260024A1 (fr)
EP (1) EP2649216A1 (fr)
JP (1) JP2014500401A (fr)
KR (1) KR20140035311A (fr)
CN (1) CN103298973A (fr)
FR (1) FR2968677A1 (fr)
WO (1) WO2012076817A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268954A (zh) * 2013-05-20 2013-08-28 天津师范大学 LiSiPON锂离子电池固态电解质薄膜及其制备方法与应用
WO2021072036A1 (fr) 2019-10-08 2021-04-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Précurseurs de lithium pour le dépôt de couches, d'îlots ou d'agrégats contenant du lithium

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6650597B2 (ja) * 2015-07-02 2020-02-19 パナソニックIpマネジメント株式会社 酸窒化膜の製造方法
KR102659195B1 (ko) 2016-07-11 2024-04-19 삼성전자주식회사 플라즈마 화학기상증착 장치 및 이를 이용한 Li 기반의 박막 형성방법
JP6692726B2 (ja) * 2016-09-14 2020-05-13 株式会社アルバック 固体電解質膜の形成方法
KR101895290B1 (ko) * 2017-01-23 2018-09-05 영남대학교 산학협력단 금속-유기 화학 기상 증착에 의한 삼차원 고체 배터리용 리튬 포스페이트 박막 전해질의 균일한 증착 방법 및 장치
JP7153094B2 (ja) * 2019-02-06 2022-10-13 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 化合物及びリチウム含有膜の製造方法
EP4174984A1 (fr) * 2019-12-20 2023-05-03 Sion Power Corporation Electrodes en métal lithium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214105B1 (en) * 1995-03-31 2001-04-10 Advanced Technology Materials, Inc. Alkane and polyamine solvent compositions for liquid delivery chemical vapor deposition
WO2002027063A2 (fr) * 2000-09-28 2002-04-04 President And Fellows Of Harward College Metallisation par evaporation sous vide d'oxydes metalliques, de silicates et de phosphates, et dioxyde de silicium
US20050016458A1 (en) 2003-07-11 2005-01-27 Ji-Guang Zhang Apparatus for producing thin-film electrolyte

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084080B2 (en) * 2001-03-30 2006-08-01 Advanced Technology Materials, Inc. Silicon source reagent compositions, and method of making and using same for microelectronic device structure
US7041609B2 (en) * 2002-08-28 2006-05-09 Micron Technology, Inc. Systems and methods for forming metal oxides using alcohols
US7098339B2 (en) * 2005-01-18 2006-08-29 Praxair Technology, Inc. Processes for the production of organometallic compounds
CN101523644A (zh) * 2006-08-11 2009-09-02 加州理工学院 可使氟化物溶解度提高的离解剂、制剂及方法
US7659414B2 (en) * 2007-07-20 2010-02-09 Rohm And Haas Company Method of preparing organometallic compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214105B1 (en) * 1995-03-31 2001-04-10 Advanced Technology Materials, Inc. Alkane and polyamine solvent compositions for liquid delivery chemical vapor deposition
WO2002027063A2 (fr) * 2000-09-28 2002-04-04 President And Fellows Of Harward College Metallisation par evaporation sous vide d'oxydes metalliques, de silicates et de phosphates, et dioxyde de silicium
US20050016458A1 (en) 2003-07-11 2005-01-27 Ji-Guang Zhang Apparatus for producing thin-film electrolyte

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BORNAND ET AL: "Deposition of LiTaO3 thin films by pyrosol process", THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 304, no. 1-2, 1 July 1997 (1997-07-01), pages 239 - 244, XP005278722, ISSN: 0040-6090, DOI: DOI:10.1016/S0040-6090(97)00172-7 *
CHO SANG-IN ET AL: "Improvement of discharge capacity of LiCoO2 thin-film cathodes deposited in trench structure by liquid-delivery metalorganic chemical vapor deposition", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 82, no. 19, 12 May 2003 (2003-05-12), pages 3345 - 3347, XP012034041, ISSN: 0003-6951, DOI: DOI:10.1063/1.1571958 *
YAMAGUCHI N ET AL: "High-rate deposition of LiNbO3 films by thermal plasma spray CVD", THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 316, no. 1-2, 21 March 1998 (1998-03-21), pages 185 - 188, XP004146236, ISSN: 0040-6090, DOI: DOI:10.1016/S0040-6090(98)00412-X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268954A (zh) * 2013-05-20 2013-08-28 天津师范大学 LiSiPON锂离子电池固态电解质薄膜及其制备方法与应用
WO2021072036A1 (fr) 2019-10-08 2021-04-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Précurseurs de lithium pour le dépôt de couches, d'îlots ou d'agrégats contenant du lithium

Also Published As

Publication number Publication date
CN103298973A (zh) 2013-09-11
KR20140035311A (ko) 2014-03-21
FR2968677A1 (fr) 2012-06-15
JP2014500401A (ja) 2014-01-09
EP2649216A1 (fr) 2013-10-16
US20130260024A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
WO2012076817A1 (fr) Procédé de fabrication de couches a base de lithium par cvd
EP2089316B1 (fr) Oxydes complexes carbones
US6582481B1 (en) Method of producing lithium base cathodes
US9631269B2 (en) Thermal evaporation process for manufacture of solid state battery devices
US6852139B2 (en) System and method of producing thin-film electrolyte
US6886240B2 (en) Apparatus for producing thin-film electrolyte
EP2529431B1 (fr) Procédé d&#39;optimisation d&#39;un matériau de cathode et matériau de cathode ayant des propriétés électrochimiques améliorées
EP2387626B1 (fr) Complexes organometalliques pour le depot chimique en phase vapeur de platine
EP3519605B1 (fr) Composant nucléaire avec revetement de crc amorphe, procédé de fabrication par dli-mocvd et utilisation contre l&#39;oxydation/hydruration
KR20080060296A (ko) 리튬 이차전지용 음극 및 그 제조 방법, 및 리튬이차전지용 음극을 구비한 리튬 이차전지
EP1995815B1 (fr) Verre organique électrolytique, son procédé de fabrication et dispositif le comprenant
CN112585294A (zh) 用于制备无定形硼硅酸锂的方法
WO2009037397A1 (fr) Procede de preparation d&#39;un materiau nanocomposite par depot chimique en phase vapeur
WO2005008828A1 (fr) Systeme et procede de production d&#39;un electrolyte en film mince
BE1021719B1 (fr) Procede pour la fabrication de films minces par voie humide
KR20160088699A (ko) 산화금속 박막의 제조 방법
Yun et al. Chemical/morphological transition behavior of lithium phosphorus oxynitride solid-electrolyte in air: An analytical approach based on X-ray photoelectron spectroscopy and atomic force microscopy
CA2970257A1 (fr) Procede pour le depot de films minces par voie humide
JP2023540258A (ja) 電池材料粉末への膜の堆積
EP2096700B1 (fr) Procédé de fabrication d&#39;une membrane polymérique à conduction ionique pour pile à combustible
FR2985740A1 (fr) Depot chimique en phase vapeur de ptsi a partir de complexes organometalliques de pt.
Ablat et al. Molecular Layer Deposition of Organic–Inorganic Hafnium Oxynitride Hybrid Films for Electrochemical Applications
CN1414924A (zh) 生产锂基阴极的方法及设备
Bharath et al. Deposition of SrCO3 thin film consisting of self-assembled bundles of nanostructures by a plasma-enhanced liquid injection chemical vapour deposition technique
Cho et al. Effect of P2O5 in Li2O–P2O5–B2O3 electrolyte fabricated by aerosol flame deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811047

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013542593

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137013777

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE