CN110527974A - 一种原子层沉积LiPON固态电解质薄膜的制备方法 - Google Patents

一种原子层沉积LiPON固态电解质薄膜的制备方法 Download PDF

Info

Publication number
CN110527974A
CN110527974A CN201810517106.7A CN201810517106A CN110527974A CN 110527974 A CN110527974 A CN 110527974A CN 201810517106 A CN201810517106 A CN 201810517106A CN 110527974 A CN110527974 A CN 110527974A
Authority
CN
China
Prior art keywords
atomic layer
layer deposition
solid electrolyte
preparation
electrolyte film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810517106.7A
Other languages
English (en)
Inventor
任丽彬
丁飞
刘兴江
桑林
王胜利
石彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 18 Research Institute
Original Assignee
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 18 Research Institute filed Critical CETC 18 Research Institute
Priority to CN201810517106.7A priority Critical patent/CN110527974A/zh
Publication of CN110527974A publication Critical patent/CN110527974A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种原子层沉积LiPON固态电解质薄膜的制备方法。本发明属于新能源材料技术领域。原子层沉积LiPON固态电解质薄膜的制备方法,通过原子层沉积方法生长LiPON固态电解质薄膜:只采用普通的原子层沉积设备,不需要等离子体发生器进行辅助或增强;ALD沉积过程中只采用两种反应前驱体源,其中一种为锂前驱体源,另一种为磷和氮一体化前驱体源;在一定温度下通过ALD生长制备LiPON固态电解质薄膜。本发明具有膜层厚度能实现原子层尺度级精确控制、工艺简单、操作方便、离子电导率高等优点。

Description

一种原子层沉积LiPON固态电解质薄膜的制备方法
技术领域
本发明属于新能源材料技术领域,特别是涉及一种原子层沉积LiPON固态电解质薄膜的制备方法。
背景技术
目前,液态锂离子电池由于具有较高的比能量、长寿命、无自放电等特点被广泛应用在手机、笔记本电脑等便携式电子产品和电动汽车等领域,但其安全性问题频发,三星Note7爆炸、特斯拉电动车着火事件更是将锂电推到了舆论的风口浪尖。究其根源是其采用的有机液态电解质易燃易爆,在高温、滥用、短路等情况下易触发“热失控”,引起电池短路,出现燃烧甚至爆炸等安全性问题。
能够从根本上解决上述问题的技术途径是发展新体系固态电池技术。固态电池原理上与液态锂离子电池相似,最大的区别在于采用不易燃的固态电解质取代现有的有机液态电解质,因而能够实现电池的高安全性能,即使电池被刺穿、挤压、剪切也不会有爆炸燃烧等问题产生。因而固体电解质取代传统液体有机电解液的全固态锂电池正吸引越来越多的关注。
固态电解质是固态电池的最核心和最关键部件,其理化特性直接决定了固态电池功率密度、循环稳定性、安全性以及使用寿命等,因此,固态电解质一直以来都是固态电池领域的研究重点。目前能够实际应用的固态电解质薄膜比较少,由于LiPON薄膜与金属锂接触电化学性能稳定,作为固态电解质,已经应用于商业化金属锂负极固态薄膜电池之中。这种化合物尽管具有相对较低的约2×10-6S/cm的离子电导率,但却表现出优异的电化学稳定性,相对Li/Li+体系的分解电压高达5.5V以上,十分便于实际应用过程中电池的快速充放电;在300℃时还能表现出良好的热稳定性,具有很高的热稳定性,在一范围内不会发生相变,可应用于比较恶劣的环境中工作,如航空航天等电子电导率低于10-14S/cm,大大提高了电池的储存性能,如以LiPON为电解质的锂电池在储存12个月自放电微不足道。LiPON薄膜机械稳定性也特别高,在多次充放电循环过程中不会像许多阴极材料那样出现“枝晶”裂化或粉末化等现象,这一点已为作为电解质的薄膜电池超长的循环寿命所证实。例如,Excellatron的LiPON薄膜电池循环寿命长达50,000次。
除了作为电解质材料,由于LiPON具有很高的电化学稳定性,将其用于液体电解质与电极界面上作为保护层,防止电极上发生不可逆化学反应,显著提高了电极的循环性能。另外,利用薄膜的稳定性以及致密性,已将其用于全固态薄膜锂电池的封装材料,大大提高了电池的充放电稳定性。
目前LiPON固态薄膜的制备方法主要有磁控溅射法、离子束沉积法、脉冲激光沉积与氮离子源发生器相结合法、原子层沉积与氮离子源发生器相结合法等。
美国橡树岭国家实验室Bates等人(J.Electrochem.Soc.,Vol.144,No.2,1997)公布了一种稳定的锂磷氧氮薄膜电解质的制备方法。该方法是以Li3PO4为靶材,在N2气氛下进行射频(RF)磁控溅射Li3PO4,通过N元素掺杂Li3PO4形成LiPON薄膜。该方法制备的薄膜台阶覆盖性差,只能针对平整光滑的基材表面;而且制备的LiPON膜典型厚度为1μm,不能制备纳米级厚度的致密性无针孔电解质薄膜。
德国Susann Nowak等人(Journal of Power Sources,275(2015))公布了一种较薄LiPON电解质膜的制备方法。该方法首先将Li3PO4粉末进行冷压形成Li3PO4圆片;然后在900℃左右下烧结12h制备Li3PO4靶材;接下来在真空腔室中通过离子束溅射方法,采用Ar气作为载气,N2作为反应气体,制备的LiPON膜厚度最薄可以达到12nm。该方法工艺比较繁琐复杂、长时间高温烧结耗能,成本较高;靶材在烧结制备过程中容易开裂,影响下一步离子束溅射LiPON膜的质量;沉积面积小,难以实际应用。
CN1191655C公布了一种高沉积速率制备锂离子固体电解质薄膜的制备方法。该方法采用脉冲激光沉积与氮离子源发生器相结合的方法制备LiPON电解质膜,采用紫外或可见脉冲激光烧蚀Li3PO4靶材,采用电子回旋共振或离子耦合等离子方法产生氮离子或原子自由基,该方法沉积速率是RF磁控溅射方法的近10倍,但是该方法对设备要求高,沉积的薄膜台阶覆盖性差、表面较粗糙。
原子层沉积(ALD)是一种新兴薄膜生长技术,是通过将气相前驱体脉冲交替地通入反应器并在沉积基体上化学吸附并反应,通过单原子层逐次沉积形成薄膜的一种方法,具有大面积厚度均匀性、极好的三维保形性、适合各种形状的基底、可以精确控制薄膜成分和厚度、原子级尺寸控制等特点,已经逐渐开始在微电子、半导体、太阳电池功能层制备、纳米材料、新能源材料领域等应用。
CN105862012A公布了一种固态复合固态电解质薄膜及其制备方法。该方法是首先采用锂源和磷源TMPO,在基体上通过原子层沉积生成Li3PO4薄膜;然后采用锂源和氮等离子体,在Li3PO4薄膜上通过原子层沉积与氮等离子体增强结合制备Li3N薄膜,形成Li3PO4—Li3N组合方式的复合式薄膜。该方法沉积的薄膜台阶覆盖性较好;但工艺比较复杂,而且设备要求比较高,除了ALD设备外,还必须有等离子体发生器进行辅助和增强。
发明内容
本发明为解决公知技术中存在的技术问题而提供一种原子层沉积LiPON固态电解质薄膜的制备方法。
本发明的目的是提供一种具有膜层厚度能实现原子层尺度级精确控制、工艺简单、操作方便、离子电导率高等特点的原子层沉积LiPON固态电解质薄膜的制备方法。
本发明工艺简单、膜层厚度能实现原子层尺度级精确控制、并且离子电导率高的薄膜材料是固态电池电解质材料。
本发明LiPON固态电解质薄膜是通过原子层沉积(ALD)方法,只采用普通的原子层沉积设备(不需要等离子体发生器进行辅助或增强)来制备LiPON固态电解质薄膜。
本发明原子层沉积LiPON固态电解质薄膜的制备方法所采取的技术方案是:
一种原子层沉积LiPON固态电解质薄膜的制备方法,其特点是:原子层沉积LiPON固态电解质薄膜的制备过程,采用普通的原子层沉积设备,通过简单的原子层沉积方法生长LiPON固态电解质薄膜;原子层沉积设备不需要等离子体发生器进行辅助或增强;原子层沉积只采用两种反应前驱体源,一种为锂前驱体源,另一种为磷和氮一体化前驱体源;具体工艺步骤:
(1)将沉积基体放入ALD反应腔室中;
(2)加热前驱体源和ALD反应腔室;
(3)向ALD反应腔室中脉冲通入第一种前驱体蒸汽,在沉积基体表面羟基基团活性点处发生化学吸附反应,直至基体表面达到饱和;
(4)通入惰性吹扫气体,把未被表面吸附的多余的第一种前驱体蒸汽和反应副产物带出反应腔室;
(5)向ALD反应腔室中脉冲通入第二种前驱体蒸汽,和已吸附的第一种前驱体进行表面化学反应;
(6)通入惰性吹扫气体,把多余的第二种前驱体蒸汽和反应副产物带出反应腔室;
(7)经清洗后,在基体表面得到一层LiPON单分子膜,一个ALD沉积周期完成;重复上述步骤(3)-(6)得到所需厚度的LiPON固态电解质薄膜。
本发明原子层沉积LiPON固态电解质薄膜的制备方法还可以采用如下技术方案:
所述的原子层沉积LiPON固态电解质薄膜的制备方法,其特点是:原子层沉积生长温度为200-320℃。
所述的原子层沉积LiPON固态电解质薄膜的制备方法,其特点是:锂源前驱体温度为60-110℃,磷和氮源一体化前驱体温度为50-100℃。
所述的原子层沉积LiPON固态电解质薄膜的制备方法,其特点是:锂前驱体源为LiOtBu、LiHMDS、Li(thd)、Li(hfac)、Li(Piv)(H2O)、Li(acac)、Li(CH2SiMe3)或Li(tBu2Cp),优选LiOtBu或LiHMDS。
所述的原子层沉积LiPON固态电解质薄膜的制备方法,其特点是:磷和氮一体化前驱体源为DEPA、(NH4)3PO4、C4H14N3PS、C6H18N3OP或C10H19ClNO5P;优选DEPA或(NH4)3PO4
所述的原子层沉积LiPON固态电解质薄膜的制备方法,其特点是:惰性吹扫气体为氮气、氩气、氦气中的一种或混合气体。
本发明具有的优点和积极效果是:
原子层沉积LiPON固态电解质薄膜的制备方法由于采用了本发明全新的技术方案,与现有技术相比,本发明具有以下明显特点:
(1)采用普通的原子层沉积(ALD)设备,不需要特殊的氮等离子体发生器进行辅助或增强,降低了设备成本的同时,工艺简单,操作方便;
(2)采用同时含有磷元素和氮元素的物质作为磷和氮源一体化前驱体,因此一个ALD LiPON周期只需交替通入两种反应前驱体源,简化了工艺,缩短了流程,提高了单位时间内的沉积速度;
(3)采用原子层沉积(ALD)法,沉积的膜层厚度能实现原子层尺度级精确控制,能够制备出超薄、致密、无针孔的LiPON薄膜,同时可以精确控制薄膜的组分,极大地优化和提高LiPON膜的离子电导率。
附图说明
图1是本发明LiPON固态电解质薄膜制备方法的工艺流程示意图。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
参阅附图1
实施例1
一种原子层沉积LiPON固态电解质薄膜的制备方法,采用原子层沉积设备,通过原子层沉积方法生长LiPON固态电解质薄膜;原子层沉积采用两种反应前驱体源,一种为锂前驱体源,另一种为磷和氮一体化前驱体源;具体制备过程:
以3cm x 3cm硅片为基体,放入ALD设备反应腔室中,抽真空15min至真空度达到大约0.05torr,第一种前驱体锂源LiOtBu加热温度至90℃,第二种前驱体磷和氮源DEPA加热温度至90℃,ALD反应腔室温度加热到250℃。
用高纯Ar气作为两种前驱体源的载气、高纯N2作为吹扫气体,流量为5sccm。
当两种前驱体源和ALD反应腔室温度均达到设定温度后,首先向反应腔室中脉冲通入LiOtBu气相前驱体0.6sec、静置吸附10sec;接下来通入高纯N2进行吹扫20sec;然后脉冲通入DEPA气相前驱体0.6sec、静置反应15sec;高纯N2进行吹扫30sec。
ALD循环50次,可以在硅基体上沉积生长出致密、平整、无针孔、均匀的LiPON固态电解质薄膜,厚度大约在5nm。
实施例2
一种原子层沉积LiPON固态电解质薄膜的制备方法,采用原子层沉积设备,通过原子层沉积方法生长LiPON固态电解质薄膜;原子层沉积采用两种反应前驱体源,一种为锂前驱体源,另一种为磷和氮一体化前驱体源;具体制备过程:
以5cm x 5cm用耐高温粘结剂制备的钴酸锂电极片为基体,放入ALD设备反应腔室中,抽真空15min至真空度达到大约0.05torr,第一种前驱体锂源LiHMDS加热温度至60℃,第二种前驱体磷和氮源DEPA加热温度至85℃,ALD反应腔室温度加热到270℃。
用高纯Ar气作为两种前驱体源的载气、高纯N2作为吹扫气体,流量为5sccm。
当两种前驱体源和ALD反应腔室温度均达到设定温度后,首先向反应腔室中脉冲通入LiHMDS气相前驱体0.4sec、静置吸附10sec;接下来通入高纯N2进行吹扫20sec;然后脉冲通入DEPA气相前驱体0.6sec、静置反应15sec;高纯N2进行吹扫30sec。
ALD循环100次。可以在钴酸锂电极基体上沉积生长出覆盖性好、致密、无针孔、均匀的LiPON固态电解质薄膜,厚度大约在10nm。
本实施例具有所述的膜层厚度能实现原子层尺度级精确控制、工艺简单、操作方便、离子电导率高等积极效果。

Claims (6)

1.一种原子层沉积LiPON固态电解质薄膜的制备方法,其特征是:原子层沉积LiPON固态电解质薄膜的制备过程,采用普通的原子层沉积设备,通过简单的原子层沉积方法生长LiPON固态电解质薄膜;原子层沉积设备不需要等离子体发生器进行辅助或增强;原子层沉积只采用两种反应前驱体源,一种为锂前驱体源,另一种为磷和氮一体化前驱体源;具体工艺步骤:
(1)将沉积基体放入ALD反应腔室中;
(2)加热前驱体源和ALD反应腔室;
(3)向ALD反应腔室中脉冲通入第一种前驱体蒸汽,在沉积基体表面羟基基团活性点处发生化学吸附反应,直至基体表面达到饱和;
(4)通入惰性吹扫气体,把未被表面吸附的多余的第一种前驱体蒸汽和反应副产物带出反应腔室;
(5)向ALD反应腔室中脉冲通入第二种前驱体蒸汽,和已吸附的第一种前驱体进行表面化学反应;
(6)通入惰性吹扫气体,把多余的第二种前驱体蒸汽和反应副产物带出反应腔室;
(7)经清洗后,在基体表面得到一层LiPON单分子膜,一个ALD沉积周期完成;重复上述步骤(3)-(6)得到所需厚度的LiPON固态电解质薄膜。
2.根据权利要求1所述的原子层沉积LiPON固态电解质薄膜的制备方法,其特征是:原子层沉积生长温度为200-320℃。
3.根据权利要求1所述的原子层沉积LiPON固态电解质薄膜的制备方法,其特征是:锂源前驱体温度为60-110℃,磷和氮源一体化前驱体温度为50-100℃。
4.根据权利要求1、2或3所述的原子层沉积LiPON固态电解质薄膜的制备方法,其特征是:锂前驱体源为LiOtBu、LiHMDS、Li(thd)、Li(hfac)、Li(Piv)(H2O)、Li(acac)、Li(CH2SiMe3)或Li(tBu2Cp),优选LiOtBu或LiHMDS。
5.根据权利要求1、2或3所述的原子层沉积LiPON固态电解质薄膜的制备方法,其特征是:磷和氮一体化前驱体源为DEPA、(NH4)3PO4、C4H14N3PS、C6H18N3OP或C10H19ClNO5P;优选DEPA或(NH4)3PO4
6.根据权利要求1、2或3所述的原子层沉积LiPON固态电解质薄膜的制备方法,其特征是:惰性吹扫气体为氮气、氩气、氦气中的一种或混合气体。
CN201810517106.7A 2018-05-25 2018-05-25 一种原子层沉积LiPON固态电解质薄膜的制备方法 Pending CN110527974A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810517106.7A CN110527974A (zh) 2018-05-25 2018-05-25 一种原子层沉积LiPON固态电解质薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810517106.7A CN110527974A (zh) 2018-05-25 2018-05-25 一种原子层沉积LiPON固态电解质薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN110527974A true CN110527974A (zh) 2019-12-03

Family

ID=68657228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810517106.7A Pending CN110527974A (zh) 2018-05-25 2018-05-25 一种原子层沉积LiPON固态电解质薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN110527974A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736282A (zh) * 2020-12-26 2021-04-30 维达力实业(深圳)有限公司 固态电解质、固态电池、固态电池制造设备及制备方法
US20220025515A1 (en) * 2016-07-11 2022-01-27 Samsung Electronics Co., Ltd. Plasma-enhanced chemical vapor deposition apparatus and method of forming lithium-based film by using the same
CN114114474A (zh) * 2021-09-06 2022-03-01 长春理工大学 一种抗损伤宽角度减反射复合微纳结构及其制备方法
CN114695951A (zh) * 2022-03-19 2022-07-01 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种复合固态电解质的制备方法
CN115000502A (zh) * 2022-07-21 2022-09-02 惠州亿纬锂能股份有限公司 一种具有核壳结构的固态电解质复合材料及其制备方法和应用
CN116253570A (zh) * 2023-03-20 2023-06-13 超威电源集团有限公司 一种LiPON靶材及薄膜的制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689635A (zh) * 2007-03-26 2010-03-31 西姆贝特公司 用于锂薄膜电池的基材
CN103137929A (zh) * 2011-11-24 2013-06-05 比亚迪股份有限公司 一种锂离子电池隔膜及其制备方法、含有该隔膜的锂离子电池
CN103866285A (zh) * 2012-12-18 2014-06-18 中国科学院微电子研究所 利用原子层沉积制备薄膜的方法
CN109390633A (zh) * 2017-08-08 2019-02-26 中国电子科技集团公司第十八研究所 一种微型固态薄膜锂电池的制备方法
WO2019053404A1 (en) * 2017-09-15 2019-03-21 Dyson Technology Limited MULTIPLE ACTIVE AND INTERSTRATE LAYERS IN A SEMICONDUCTOR DEVICE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689635A (zh) * 2007-03-26 2010-03-31 西姆贝特公司 用于锂薄膜电池的基材
CN103137929A (zh) * 2011-11-24 2013-06-05 比亚迪股份有限公司 一种锂离子电池隔膜及其制备方法、含有该隔膜的锂离子电池
CN103866285A (zh) * 2012-12-18 2014-06-18 中国科学院微电子研究所 利用原子层沉积制备薄膜的方法
CN109390633A (zh) * 2017-08-08 2019-02-26 中国电子科技集团公司第十八研究所 一种微型固态薄膜锂电池的制备方法
WO2019053404A1 (en) * 2017-09-15 2019-03-21 Dyson Technology Limited MULTIPLE ACTIVE AND INTERSTRATE LAYERS IN A SEMICONDUCTOR DEVICE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIKKO NISULA等: "Atomic Layer Deposition of Lithium Phosphorus Oxynitride", 《CHEMISTRY OF MATERIALS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220025515A1 (en) * 2016-07-11 2022-01-27 Samsung Electronics Co., Ltd. Plasma-enhanced chemical vapor deposition apparatus and method of forming lithium-based film by using the same
US11898244B2 (en) * 2016-07-11 2024-02-13 Samsung Electronics Co., Ltd. Plasma-enhanced chemical vapor deposition method of forming lithium-based film by using the same
CN112736282A (zh) * 2020-12-26 2021-04-30 维达力实业(深圳)有限公司 固态电解质、固态电池、固态电池制造设备及制备方法
CN112736282B (zh) * 2020-12-26 2022-07-12 维达力实业(深圳)有限公司 固态电解质、固态电池、固态电池制造设备及制备方法
CN114114474A (zh) * 2021-09-06 2022-03-01 长春理工大学 一种抗损伤宽角度减反射复合微纳结构及其制备方法
CN114695951A (zh) * 2022-03-19 2022-07-01 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种复合固态电解质的制备方法
CN114695951B (zh) * 2022-03-19 2024-04-19 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种复合固态电解质的制备方法
CN115000502A (zh) * 2022-07-21 2022-09-02 惠州亿纬锂能股份有限公司 一种具有核壳结构的固态电解质复合材料及其制备方法和应用
CN116253570A (zh) * 2023-03-20 2023-06-13 超威电源集团有限公司 一种LiPON靶材及薄膜的制备方法与应用

Similar Documents

Publication Publication Date Title
CN110527974A (zh) 一种原子层沉积LiPON固态电解质薄膜的制备方法
Sastre et al. Fast charge transfer across the Li7La3Zr2O12 solid electrolyte/LiCoO2 cathode interface enabled by an interphase-engineered all-thin-film architecture
Vardar et al. Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode
US10115999B2 (en) All-solid-state lithium-ion secondary battery including a solid electrolyte and an intermediate layer
Pearse et al. Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte
Mu et al. Stable silicon anodes by molecular layer deposited artificial zincone coatings
US8956761B2 (en) Lithium ion battery and method for manufacturing of such battery
CN103904360B (zh) 一种固态电解质及其制作方法与全固态锂电池
US6156395A (en) Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby
EP2421082A1 (en) Method for manufacturing solid electrolytic cell, and solid electrolytic cell
US20150180001A1 (en) Amorphous ionically-conductive metal oxides, method of preparation, and battery
BR112013021247B1 (pt) Material de eletrodo, capacitor eletrolítico sólido, folha de catodo para uso em um capacitor eletrolítico sólido, coletor de corrente para um eletrodo, eletrodos positivo e negativo para uma bateria secundária eletrolítica não aquosa e para um capacitor híbrido eletrolítico não aquoso, bateria secundária eletrolítica não aquosa, eletrodo para um capacitor de camada elétrica dupla eletrolítica não aquosa, capacitor de camada elétrica dupla eletrolítica não aquosa, e, capacitor híbrido eletrolítico não aquoso
JP5444771B2 (ja) 固体電解質電池および固体電解質電池の製造方法
Piper et al. Cross-linked aluminum dioxybenzene coating for stabilization of silicon electrodes
Endo et al. In situ observation of lithiation and delithiation reactions of a silicon thin film electrode for all-solid-state lithium-ion batteries by x-ray photoelectron spectroscopy
Xie et al. Planar and 3D deposition of Li4Ti5O12 thin film electrodes by MOCVD
Knoops et al. Atomic layer deposition for all-solid-state 3D-integrated batteries
CN113151790B (zh) 离子/电子共导体薄膜及其制备方法、固态电池及电动车
CN111987287B (zh) 一种锂金属电极及其制备方法和应用
Su et al. Progress of Atomic Layer Deposition and Molecular Layer Deposition in the Development of All‐Solid‐State Lithium Batteries
Uchida et al. Fabrication of amorphous LiPON, LiAlGePO, and GeSn films in low-temperature plasma sputtering process for all-solid-state Li+-ion battery
CN110176625B (zh) 一种固体电解质材料及其制备方法
Oikawa et al. Fabrication of LiCoO2 Composite Electrodes for All-solid-state Li Secondary Batteries via Liquid Sintering Using Porous La2/3− xLi3xTiO3 Substrates
Zhang et al. Silicon-Based Anodes for Long-Cycle-Life Lithium-ion Batteries
CN100370642C (zh) 电池极板的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191203