CN103229237A - 信号处理设备、信号处理方法以及信号处理程序 - Google Patents

信号处理设备、信号处理方法以及信号处理程序 Download PDF

Info

Publication number
CN103229237A
CN103229237A CN2011800560205A CN201180056020A CN103229237A CN 103229237 A CN103229237 A CN 103229237A CN 2011800560205 A CN2011800560205 A CN 2011800560205A CN 201180056020 A CN201180056020 A CN 201180056020A CN 103229237 A CN103229237 A CN 103229237A
Authority
CN
China
Prior art keywords
signal
mixed
coefficient
value
sef
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800560205A
Other languages
English (en)
Other versions
CN103229237B (zh
Inventor
杉山昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CN103229237A publication Critical patent/CN103229237A/zh
Application granted granted Critical
Publication of CN103229237B publication Critical patent/CN103229237B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M9/00Arrangements for interconnection not involving centralised switching
    • H04M9/08Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic
    • H04M9/082Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic using echo cancellers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02165Two microphones, one receiving mainly the noise signal and the other one mainly the speech signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Noise Elimination (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

为了在无法在噪声源附近捕获参考信号时实现充分的噪声消除。本发明的特征在于包括:用于获得第一混合信号的第一输入装置,在第一混合信号中混合了第一信号和第二信号;用于获得第二混合信号的第二输入装置,在第二混合信号中以与第一混合信号不同的比率混合了第一信号和第二信号;延迟装置,用于通过基于从第二信号的产生源到第二输入装置的传输距离而以一延迟量延迟第一混合信号来产生延迟的第一混合信号;减法装置,用于输出估计的第一信号,在估计的第一信号中已经从延迟的第一混合信号中减去了伪第二信号;以及自适应滤波装置,用于将基于估计的第一信号更新的系数应用于第二混合信号来产生伪第二信号。

Description

信号处理设备、信号处理方法以及信号处理程序
技术领域
本发明涉及用于消除噪声、干扰信号以及混合在信号中的回声的信号处理技术。
背景技术
背景噪声通常叠加在从麦克风或手持送受话器等输入的语音信号上,当进行语音编码和语音识别时这会成为很大的问题。作为目标在于消除听觉上叠加的噪声的信号处理设备,专利文献1公开了一种使用自适应滤波器的2-输入型噪声消除设备。
由专利文献1所公开的2-输入型噪声消除设备使用自适应滤波器来产生与在语音输入端处混合在语音中的噪声成分相对应的伪噪声,该自适应滤波器近似于从噪声源到语音输入端的声学路径(噪声路径)的脉冲响应。并且,通过从被输入到语音输入端的信号(混合信号)中减去为噪声,噪声消除设备进行操作以便可以抑制噪声成分。这里,混合信号是指其中混合了语音信号和噪声的信号,并且通常从麦克风或手持送受话器提供至语音输入端。进一步地,参考信号是指与噪声源中的噪声成分有相关性的、在噪声源附近捕获到的信号。以这种方式,通过在噪声源附近捕获参考信号,假设参考信号近似地等于噪声源中的噪声成分是有可能的。提供给参考输入端的参考信号被输入到自适应滤波器中。
[现有技术文献]
[专利文献]
[专利文献1]日本专利申请公开No.1996-241086
发明内容
本发明要解决的问题
假设上面提到的2-输入型噪声消除设备在噪声源附近捕获参考信号。当噪声消除设备无法在噪声源附近捕获参考信号时,脉冲响应的影响不能被忽略,其对应于从噪声源到捕获参考信号的空间位置的空间传输路径(附加的噪声路径)。具体地,由于该附加噪声路径导致了到自适应滤波器的输入的延迟,所以伪噪声也存在延迟,并且无法通过从混合信号中减去伪噪声而实现足够的噪声消除。
本发明的目标在于提供一种解决上述问题的技术。
解决问题的手段
信号处理设备,包括:第一输入装置,用于获得第一混合信号,在第一混合信号中混合了第一信号和第二信号;第二输入装置,用于获得第二混合信号,在第二混合信号中以与第一混合信号不同的比率混合了第一信号和第二信号;延迟装置,用于通过基于从第二信号的产生源到第二输入装置的传输距离而以一延迟量延迟第一混合信号来产生延迟的第一混合信号;减法装置,用于输出估计的第一信号,在该估计的第一信号中从延迟的第一混合信号中减去伪第二信号;以及自适应滤波装置,用于将基于估计的第一信号更新的系数应用于第二混合信号来产生伪第二信号。
一种信号处理方法,包括:获得第一混合信号,在第一混合信号中混合了第一信号和第二信号;获得第二混合信号,在第二混合信号中以与第一混合信号不同的比率混合了第一信号和第二信号;通过基于从第二信号的产生源直到第二混合信号被输入的传输距离而以一延迟量延迟第一混合信号来产生延迟的第一混合信号;输出估计的第一信号,在该估计的第一信号中已经从延迟的第一混合信号中减去了伪第二信号;以及通过将基于估计的第一信号而更新的系数应用于第二混合信号而产生伪第二信号。
一种信号处理程序,使得计算机执行步骤,该步骤包括:用于获得第一混合信号的步骤,在第一混合信号中混合了第一信号和第二信号;用于获得第二混合信号的步骤,在第二信号中以与第一混合信号不同的比率混合了第一信号和第二信号;用于通过基于从第二信号的产生源直到第二混合信号被输入的传输距离而以一延迟量延迟第一混合信号来产生延迟的第一混合信号的步骤;用于输出估计的第一信号的步骤,在该估计的第一信号中已经从延迟的第一混合信号中减去了伪第二信号;以及用于将基于估计的第一信号而更新的系数应用于第二混合信号来产生伪第二信号的步骤。
本发明的效果
根据本发明,即使在无法在第二信号产生源附近捕获第二混合信号时,也能够实现足够的第二信号的消除。
附图说明
[图1]图1为示出了根据本发明第一示例性实施例的信号处理设备的配置的框图。
[图2]图2为示出了根据本发明第二示例性实施例的信号处理设备的配置的框图。
[图3]图3为示出了根据本发明第三示例性实施例的信号处理设备的配置的框图。
[图4]图4为示出了根据本发明第三示例性实施例的可变延迟单元的配置的框图。
[图5]图5为示出了根据本发明第四示例性实施例的信号处理设备的配置的框图。
[图6]图6为示出了根据本发明第四示例性实施例的可变延迟单元的配置的框图。
[图7]图7为示出了根据本发明第五示例性实施例的信号处理设备的配置的框图。
[图8]图8为示出了根据本发明第五示例性实施例的可变延迟单元的配置的框图。
[图9]图9为示出了根据本发明第六示例性实施例的信号处理设备的配置的框图。
[图10]图10为示出了根据本发明第六示例性实施例的自适应滤波器的配置的框图。
[图11]图11为示出了根据本发明第六示例性实施例的自适应滤波器的配置的框图。
[图12]图12为示出了根据本发明第七示例性实施例的信号处理设备的配置的框图。
[图13]图13为示出了根据本发明第八示例性实施例的信号处理设备的配置的框图。
[图14]图14为示出了根据本发明第九示例性实施例的信号处理设备的配置的框图。
[图15]图15为示出了根据本发明第十示例性实施例的信号处理设备的配置的框图。
[图16]图16为示出了根据本发明第十一示例性实施例的信号处理设备的配置的框图。
[图17]图17为示出了根据本发明另一示例性实施例的信号处理设备的配置的框图。
具体实施方式
下面将参考附图对本发明的示例性实施例进行详细的示例性描述。然而,在下面的示例性实施例中提到的部件始终是范例,并不是要将本发明的技术范围限定于此。
(第一示例性实施例)
作为本发明第一示例性实施例的信号处理设备100将使用图1进行描述。
信号处理设备100包括第一输入单元101、第二输入单元102、减法单元103、自适应滤波器104以及延迟单元105。这里,第一输入单元101获得第一混合信号XP(k),在该第一混合信号中混合有来自第一信号产生源160的第一信号以及来自第二信号产生源170的第二信号。进一步地,第二输入单元102获得第二混合信号XR(k),在该第二混合信号中第一信号与第二信号以不同于第一混合信号XP(k)的比率混合。进一步地,延迟单元105基于从第二信号的产生源170到第二输入单元102的传输距离来延迟第一混合信号XP(k)以产生延迟的第一混合信号。减法单元103从延迟的第一混合信号XP(k)中减去估计被混合在第一混合信号XP(k)中的伪第二信号n(k),并输出估计的第一信号e(k)。进一步地,自适应滤波器104将基于估计的第一信号e(k)更新的系数应用于第二混合信号XR(k)而产生伪第二信号n(k)。
根据上述的配置,即使在无法在第二信号产生源170附近捕获第二混合信号时,实现足够的第二信号的消除也是可能的。
(第二示例性实施例)
作为根据本发明的信号处理设备的第二示例性实施例,将会描述噪声消除设备,其从劣化信号(一种其中混合有期望信号和噪声的信号)中消除全部或者部分噪声并且输出增强的信号(一种其中的期望信号已被增强的信号)。图2为示出了噪声消除设备(噪声消除器)200的整个配置的框图。噪声消除设备200还用作多种设备的一部分,比如数码相机、膝上型计算机以及蜂窝电话,然而,本发明并不局限于此,而是可以应用于所有被要求对输入信号中进行噪声消除的信息处理设备。
如图2所示,根据该示例性实施例的噪声消除设备200包括自适应滤波器204、减法单元203以及固定延迟单元205,消除了从输入端201和202输入的信号中所包括的至少一部分噪声,并且从输出端206输出结果。进一步地,噪声消除设备200操作在如下的环境中,在该环境中存在作为第一信号的产生源的期望信号源290、作为第二信号的产生源的噪声源291以及噪声路径293和294。该噪声消除设备200操作的要点是,变换与要通过自适应滤波器消除的噪声具有相关性的信号并产生伪噪声,并且通过从其上叠加有噪声的语音信号中减去伪噪声来消除噪声。该实施例的特点是,噪声消除设备200在对叠加有噪声的语音进行延迟之后减去伪噪声。
其中混合有语音和噪声的主信号(第一混合信号)作为样本值序列被提供给第一输入端201,噪声消除设备200将输入的主信号提供给固定延迟单元205。固定延迟单元205将主信号延迟正好D个样本,并将经过延迟的主信号提供给减法单元203。这里,D为自然数。
与噪声具有相关性的参考信号(第二混合信号)作为样本值序列被提供给输入端202,噪声消除设备200将输入的参考信号提供给自适应滤波器204。
参考信号从输入端202被提供给自适应滤波器204。噪声消除设备200将输入的参考信号提供给自适应滤波器204。自适应滤波器204对参考信号和滤波器系数进行卷积运算,并将结果作为伪噪声传送至减法单元203。
从输入端201获得并且被延迟了D个样本的主信号被提供给减法单元203。伪噪声被从自适应滤波器204提供给减法单元203。减法单元203从经过延迟的主信号中减去伪噪声,并且将结果作为输出传送给输出端206,同时也向自适应滤波器204反馈。
自适应滤波器204使用从输入端202提供的参考信号以及从减法单元203反馈的输出来更新系数以便使减法单元203的输出功率最小。专利文献1公开了作为这种自适应滤波器的系数更新算法的“LMS算法(最小均方算法)”和“LIM(学习标识方法)”。LIM也被称为标准化LMS算法。
即使在无法在噪声源附近捕获参考信号时,信号处理也能够实现足够的消除。能够通过固定延迟单元205实现信号处理的原因如下。首先,假定用XR(k)表示参考信号,用n1(k)表示自适应滤波器204的输出。另外,用n0(k)表示噪声源信号,用s(k)表示语音源信号,用H1表示从噪声源到输入端201的声学路径(噪声路径293)上的特征向量(脉冲响应),用H2表示从噪声源到输入端202的声学路径(噪声路径294)上的特征向量(脉冲响应)。为了描述方便,假设这些声学路径是非时变的,并且忽略与时间概念相对应的样本号k。当用X0(k)表示参考信号矢量,用W(k)表示自适应滤波器的系数矢量,用M表示tap的数量,用N0(k)表示由噪声源信号的时间序列样本n0(k)所构成的噪声源信号矢量,用h1(j),j=0、1、……、M-1,表示噪声路径293上的特征向量的因子,以及用h2(j),j=0、1、……、D-1,表示噪声路径294上的特征向量的因子时,X0(k)、W(k)、N0(k)、H1以及H2由下面从(公式0)到(公式4)的公式表示。
X0(k)=[xR(k),xR(k-1)…,xR(k-M+1)]T……(公式0)
W(k)=[w(k,0),w(k,1)…,w((k,M-1)]T……(公式1)
N0(k)=[n0(k),n0(k-1)…,n0(k-M+1)]T……(公式2)
H1=[h1(0),h1(1)…,h1(M-1)]T……(公式3)
H2=[h2(0),h2(1)…,h2(D-1)]T……(公式4)
这里,[ ]T表示矩阵的转置。
主信号XP(k)、自适应滤波器204的输出n1(k)以及参考信号XR(k)由下面从(公式5)到(公式7)的公式表示。
xP(k)=s(k)+H1 T*N0(k)……(公式5)
n1(k)=WT(k)*N0(k)……(公式6)
xR(k)=H2 T*N0(k)……(公式7)
当在噪声源附近能够捕获参考信号时,噪声路径294上的脉冲响应H2将为1。在这种情况下,在不存在固定延迟单元205时,减法单元203的输出e1(k)可以使用从(公式4)到(公式7)的公式由下面的(公式8)表示。
e1(k)=xP(k)-n1(k)=s(k)+H1 T*N0(k)-WT(k)*N0(k)=s(k)+{H1 T-WT(k)}*N0(k)……(公式8)
也就是,当H1 T=WT(k)成立时,e1(k)=S(k)成立,并且噪声得以消除。
通过这种方式,噪声得以消除的条件就是自适应滤波器204具有与噪声路径293相同的脉冲响应。这表示,从噪声源291经过自适应滤波器204到减法单元203的路径的电特性与从噪声源291经过噪声路径293到减法单元203的路径的电特性是相同的。然而,当噪声路径294存在时,该条件得不到满足。
当无法在噪声源的附近捕获参考信号时,噪声路径294上的脉冲响应H2将不为1。由于这种原因,当从噪声源291经过噪声路径294以及自适应滤波器204到减法单元203的路径的电特性与从噪声源291经过噪声路径293到减法单元203的路径的电特性相同的时候,噪声被完全消除。通过改变自适应滤波器204的频率特性,应对由噪声路径294的特性所引起的对频率特性的影响是可能的。也就是,使从噪声源291经过噪声路径294以及自适应滤波器204到减法单元203的路径的频率特性与从噪声源291经过噪声路径293到减法单元203的路径的频率特性相同是有可能的。然而,不可能通过自适应滤波器的特性的变化来应对由噪声路径294的特性所引起的对延迟特性的影响。这是因为自适应滤波器204无法实现负延迟特性。
由于这种原因,根据该示例性实施例,引入了固定延迟单元205,由噪声路径294的特性所引起的对延迟特性的影响得以抵消。也就是,固定延迟单元205产生了足以抵消由噪声路径294的特性所引起的对延迟特性的影响的延迟。因此,使从噪声源291经过噪声路径294以及自适应滤波器204到减法单元203的路径的延迟特性与从噪声源291经过噪声路径293以及固定延迟单元205到减法单元203的路径的延迟特性相同是有可能的。固定延迟单元205不会对频率特性产生任何影响。因此,在从噪声源291经过噪声路径294以及自适应滤波器204到减法单元203的路径和从噪声源291经过噪声路径293以及固定延迟单元205到减法单元203的路径上,频率特性以及延迟特性二者均分别变得相同。因此,在减法单元203的输出处噪声得以完全消除。
根据该示例性实施例,通过上述的配置,噪声消除设备200在延迟主信号之后减去了伪噪声。由于噪声消除设备200根据伪噪声发生的延迟对主信号进行延迟,所以即使在无法在噪声源附近捕获参考信号时也可能使伪噪声与主信号的相对延迟为零。由于这种原因,即使在无法在噪声源附近捕获参考信号时,噪声消除设备200也能实现足够的噪声消除。
(第三示例性实施例)
将使用图3对作为根据本发明的信号处理设备的第三示例性实施例的噪声消除设备300进行描述。在与第二示例性实施例进行比较时,根据该示例性实施例的噪声消除设备300与第二示例性实施例的不同在于,具有可变延迟单元305,而并非固定延迟单元205。由于除了这些元件之外的其它组成部分与第二示例性实施例是相同的,这里将相同的标记分配给相同的组成部分,并将省略描述。
输入端201向可变延迟单元305提供主信号。可变延迟单元305将从输入端201提供的主信号延迟D个样本,并将结果提供给减法单元203。减法单元203的输出被反馈给可变延迟单元305。可变延迟单元305使用主信号以及减法单元203的输出来调整延迟样本的数量D以便减法单元203的输出功率变为最小。
可变延迟单元305的内部配置如图4所示。可变延迟单元305包括延迟元件4011、4012、……、401n-1、选择单元411以及控制单元412。延迟元件4011、4012、……、401n-2分别将被提供的信号延迟一个样本,并将经过延迟的信号提供给下一个延迟元件。另外,延迟元件4011、4012、……、401n-1将输出提供给选择单元411。选择单元411在被提供的信号中选择一个并输出该经过延迟的信号。当选择单元411选择延迟元件401D并输出延迟信号时,作为结果可变延迟单元305将主信号延迟D个样本。
控制单元412计算可变延迟单元305应该使用被提供的信号而延迟的样本数量,并将该信息提供给选择单元411。选择单元411选择与从控制单元412提供的信息相对应的延迟元件的输出,并且进行输出。
作为控制单元412确定将要延迟的样本数量D的过程,可以使用D.M.Etter等人,“System Modeling Using an Adaptive Delay Filter”,IEEE Transactions on Circuits and Systems,770-774页,1987年7月,所公开的自适应延迟滤波器(ADF:自适应延迟滤波器)。ADF使用多个增益固定的延迟来观测误差,并且选择与其它误差最不同的误差所对应的延迟。由于在确定延迟的时候可以为增益设定任意值,所以当增益被设置为1时,ADF可以照原样地应用于该示例性实施例。
进一步地,减法单元203的输出包括与可变延迟单元305的操作无关的语音。因此,对于噪声消除设备300来说,当语音功率足够小时(在预定的阈值或者更小的情况下),优选地控制可变延迟单元305以及自适应滤波器204的时间应该受到限制。通过调整这种对可变延迟单元305以及自适应滤波器204的选择性控制,噪声消除设备300能够进行更准确的延迟控制以及自适应滤波器系数的更新。
噪声消除设备300能够使用由专利文献1所公开的SNR估计方法所获得的SNR来判断语音功率是否足够小。当SNR高时,语音功率大于噪声功率,而当SNR低时,语音功率小于噪声功率。除此之外的SNR估计方法同样是已知的,噪声消除设备300能够使用这些方法中的任何方法来检测语音功率足够小的时刻。
根据该示例性实施例,通过上述的配置,即使在无法在噪声源附近捕获参考信号并且针对噪声源的延迟量未知时,也有可能实现如下的信号处理,在该信号处理中能够估计与从噪声源到输入端202的路径相对应的延迟并且能够实现足够的噪声消除。
(第四示例性实施例)
将使用图5和图6对作为根据本发明的信号处理设备的第四示例性实施例的噪声消除设备500进行描述。在与第三示例性实施例进行比较时,根据该示例性实施例的噪声消除设备500与第三示例性实施例的区别在于,具有可变延迟单元505,而非可变延迟单元305。由于除了这些元件之外的其它组成部分与第三示例性实施例是相同的,这里将相同的标记分配给相同的组成部分,并将省略描述。
能够从外部设置的最大延迟值Dmax被提供给可变延迟单元505。可变延迟单元505通过与可变延迟单元305相同的操作获得延迟样本数量D,使输入信号产生延迟,该延迟对应于该值与最大延迟值Dmax两者之间较小的值,并且输出经过延迟的信号。
可变延迟单元505的示例性配置如图6所示。在与图4中示出的可变延迟单元305的示例性配置进行比较时,其与可变延迟单元305的区别在于,控制单元412被控制单元612替代,而且将最大延迟值Dmax提供给控制单元612。由于除了这些元件之外的其它组成部分与可变延迟单元305是相同的,这里将相同的标记分配给相同的组成部分,并将省略描述。
控制单元612使用被提供的信号计算可变延迟单元505应该延迟的样本数量,并且将该数量与作为最大延迟值的Dmax进行比较。当计算出的延迟小于Dmax时,控制单元612将计算出的延迟提供给选择单元411,当计算出的延迟大于Dmax时,将Dmax提供给选择单元411。
可变延迟单元505限制了从输入端201到输出端206的路径的延迟量的上限值。因此,能够减小输出端206处的增强后的信号的延迟量。
根据该示例性实施例,通过上述的配置,即使在无法在噪声源附近捕获参考信号并且针对噪声源的延迟量未知时,噪声消除设备500也能够通过估计与从噪声源到输入端202的路径相对应的延迟并保持增强后的信号的延迟量很小而实现足够的噪声消除。
(第五示例性实施例)
将使用图7和图8对作为根据本发明的信号处理设备的第五示例性实施例的噪声消除设备700进行描述。在与第三示例性实施例进行比较时,根据该示例性实施例的噪声消除设备700与第三示例性实施例的区别在于,具有可变延迟单元705,而非可变延迟单元305,并进一步具有控制单元707。由于除了这些元件之外的其它组成部分与第三示例性实施例是相同的,这里将相同的标记分配给相同的组成部分,并将省略描述。
可变延迟单元705的示例性配置如图8所示。可变延迟单元705具有的配置是,从图4所示的可变延迟单元305中删除了控制单元412。由控制单元412提供的用于选择单元411的控制信号从外部直接提供。位于可变延迟单元705外部的控制单元707实现了控制单元412的功能。控制单元707接收来自自适应滤波器704的滤波器系数矢量W(k),获得最合适的延迟样本数量D,并将其提供给可变延迟单元705。
接下来,将要描述控制单元707使用滤波器系数矢量W(k)来确定延迟样本数量D(k)的过程。为了便于描述,假设滤波器系数矢量W(k)的抽头(tap)数与噪声路径293上的脉冲响应的抽头(tap)数相等。
当可变延迟单元705给出的延迟样本数量D等于与噪声路径294相对应的延迟样本数量时,自适应滤波器704的系数值与噪声路径293上的脉冲响应一致。进一步地,当D大于与噪声路径294相对应的延迟样本数量时,自适应滤波器704的系数值在头部中(对应于具有很小延迟的输入信号样本的部分)为零。同时,噪声路径293上的脉冲响应的尾部没有在自适应滤波器704中实现。进一步地,当D小于与噪声路径294相对应的延迟样本数量时,自适应滤波器的系数值与噪声路径293上的脉冲响应除头部之外的部分一致。也就是,噪声路径293上的脉冲响应的头部没有在自适应滤波器704中实现。因此,当自适应滤波器704的抽头的数量与噪声路径293上脉冲响应的抽头的数量相等时,在减法单元203的输出中消除的噪声量在由可变延迟单元705给出的延迟样本数量等于与噪声路径294相对应的延迟样本数量时变为最大。换言之,实现了完美的噪声消除。
因此,当可变延迟单元705增加D的值时,与该增加相对应,由自适应滤波器704覆盖(cover)的噪声路径293上的脉冲响应的一部分向左移位(朝着延迟减少的方向)。相反地,当D的值减少时,与该减少相对应,由自适应滤波器704覆盖的噪声路径293上的脉冲响应的一部分向右移位(朝着延迟增加的方向)。
当D的值增加时,代替到目前为止已经被自适应滤波器704覆盖的噪声路径293上脉冲响应的尾部的系数,在相同脉冲响应的头部左侧的相邻的系数将会被自适应滤波器704覆盖。在输入信号样本值相同时,每一个系数的噪声消除量与系数绝对值成比例。也就是说,当头部左侧的相邻的系数绝对值大于尾部的系数绝对值时,噪声消除量会增加,当小于时,噪声消除量会减小。
类似地,当D的值减小时,代替目前为止已经被自适应滤波器704覆盖的噪声路径293上脉冲响应的头部的系数,在相同脉冲响应的尾部右侧的相邻的系数将会被自适应滤波器704覆盖。也就是说,当尾部右侧的相邻的系数绝对值大于头部的系数绝对值时,噪声消除量会增加,当小于时,噪声消除量会减小。
通过总结这些可以发现以下内容。控制单元707将自适应滤波器704将不再覆盖的系数的绝对值与依赖于D的增加或者减少而将新被覆盖的系数的绝对值进行比较,并通过自适应滤波器704覆盖对应于较大系数绝对值的系数而使噪声消除量最大。
通过应用这种思路,在该示例性实施例中控制单元707确定延迟样本的数量D(k)。如已经描述的,实质上,控制单元707应该将自适应滤波器704将不再覆盖的系数绝对值与将新被覆盖的系数绝对值进行比较。然而,在确定延迟样本的数量时,后者的值是未知的。由于这种原因,控制单元707将自适应滤波器704头部的系数值以及尾部的系数值替换为这些值的估计值。具体地,控制单元707,将自适应滤波器704的尾部系数值和头部系数值通过这些值的绝对值来进行比较,并判定较大的值更加重要并且对噪声消除的贡献大。已知噪声路径293上的脉冲响应的包络和与之近似的自适应滤波器704的系数绝对值平滑地衰减。因此,当自适应滤波器704的头部系数值大于尾部系数值时,可以预期,头部左侧(脉冲响应中小延迟的一侧)的系数值大于尾部右侧(脉冲响应中大延迟的一侧)的系数值。因此,控制单元707评估自适应滤波器704的头部系数值和尾部系数值的大小,并判断新的系数应该放在哪一侧。
总之,在该示例性实施例中,控制单元707评估自适应滤波器704的头部系数与尾部系数对噪声消除的贡献(=重要性),并控制可变延迟单元705以便在头部更加重要时将使D(k)增加,当尾部重要时将使D(k)减小。作为这种重要性的指标,可以使用系数绝对值、系数平方值、这些值的时间平均值,进一步地,空间平均值、相邻的系数值(自适应滤波器当前所覆盖范围外的系数),或者这些的组合。
到目前为止,为了描述的方便,通过假设滤波器系数矢量W(k)的抽头的数量M与噪声路径293上脉冲响应的抽头的数量相等而对该示例性实施例进行了描述。当这样的假设不成立并且自适应滤波器704具有超过M的抽头数量Mo(Mo>M),M个抽头之外的系数值收敛于零。进一步地,当仅具有低于M的抽头数量Mu(Mu<M)时,自适应滤波器704的头部和尾部的系数绝对值将为零值或更多。在后一种情况下,由于自适应滤波器704的系数不够,通过有限数量的系数实现的最大噪声消除量会成为问题。在任何情况下,类似于自适应滤波器704的抽头的数量等于噪声路径293上的脉冲响应的抽头数量的情况,控制单元707评估自适应滤波器704的头部系数值和尾部系数值的大小,并判断新的系数应该放在哪一侧。
[头部系数和尾部系数大小的比较,以及延迟的计算:通过系数平方值或绝对值求和比较的方法]
对于特定的关于多个自适应滤波器的部分系数的大小比较的方法,可以参考日本专利申请公开No.1994-318885。日本专利申请公开No.1994-318885公开了一种带分自适应滤波器中的方法,用于在两个带中的不同的自适应滤波器之间进行自适应滤波器尾部系数值的大小比较。在此方法中,代替两个自适应滤波器的尾部系数值,能够在本示例性实施例中对自适应滤波器704的头部系数值与尾部系数值进行大小比较。
具体地,控制单元707获得自适应滤波器704的头部滤波器系数和尾部滤波器系数的各自p个抽头的系数平方和,并对其进行比较。在这里,p为自然数。当p=1时,控制单元707比较头部系数的平方值与尾部系数的平方值。在对这些值进行比较时,可以使用系数绝对值替代系数平方值。随着p变得更大,对来自滤波器系数的包络的离差(dispersion)进行补偿的效果也变大,并且控制单元707能够进行稳定的比较。
进一步地,日本专利申请公开No.1994-318885也公开了一种在对上面提到的系数平方值的和取时间平均值之后进行比较的方法。通过应用取平均值的操作,能够减小由系数值的统计不确定性造成的影响,并且能够获得准确的延迟样本的数量D。
[头部系数和尾部系数大小的比较,以及延迟的计算:通过系数平方值或绝对值的包络斜率的方法]
到目前为止所描述的对延迟样本数量D的计算是使用自适应滤波器704的头部和尾部的系数值进行的。控制单元707还能够通过基于系数包络斜率估计将要新放置的系数值而进行延迟样本数量D的计算。该包络可以是系数绝对值的包络或者系数平方值的包络。当将系数包络斜率应用于自适应滤波器704的头部系数和尾部系数时,控制单元707能够获得头部左侧的相邻系数值以及尾部右侧的相邻系数值的估计值。
具体地,控制单元707从头部系数或者尾部系数的平方值或者绝对值中减去系数平方值或者系数绝对值的包络斜率(对应于一个抽头的系数平方值或者系数绝对值的变化的部分)。由此,控制单元707获得了头部左侧以及尾部右侧的相邻系数平方值或相邻系数绝对值的估计值。其中较大的估计值是根据延迟样本数量D的增加或减少而应该被新覆盖的系数。当系数处于自适应滤波器704头部侧时,D增加,当系数处于尾部侧时,D减少。
进一步地,当头部和尾部的任何新的系数估计值大于头部和尾部的任何当前系数值时,控制单元707确定D的值以便自适应滤波器704新覆盖较大的系数值。
在获得头部左侧的相邻系数值以及尾部右侧的相邻系数值的估计值时,除了包络斜率,控制单元707需要头部的系数值以及尾部的系数值。和那些值一样,还可以使用当时自适应滤波器704的头部以及尾部的系数平方值或者系数绝对值。进一步地,当考虑到系数值本身正在变化时,能够通过使用这些值的绝对值的时间平均值来使系数值的估计准确性提高。
控制单元707不仅仅取时间平均值而且取空间平均值(滤波器抽头方向上的平均值)同样是有效的。例如,控制单元707取头部和尾部的p个抽头的系数平方值或者系数绝对值的平均值,并且能够将这些值作为头部的系数值以及尾部的系数值的估计值。进一步地,因为这样的平均值代表位于作为计算主体的p个抽头的中部的系数值,在进一步使用系数包络斜率进行补偿之后,控制单元707能够将其用作头部系数值以及尾部系数值的估计值。使用斜率进行的特定的补偿能够通过接下来的过程进行。
控制单元707首先对p个抽头的系数平方值或者绝对值求平均,并获得位于p个抽头的中部的系数平方值或绝对值的估计值。控制单元707从该估计值中减去系数平方值或绝对值的包络斜率与p/2的乘积,并将其作为自适应滤波器704的头部和尾部的系数平方值或系数绝对值。当进一步从那些系数值中减去系数包络斜率时,控制单元707能够获得头部左侧的相邻系数值以及尾部右侧的相邻系数值的估计值。
进一步地,在获得头部系数值以及尾部系数值的估计值的过程中,代替减去系数平方值或绝对值的包络斜率与p/2的乘积,控制单元707可以减去斜率与p/2+1的乘积。通过使用这个减法结果,控制单元707能够直接地获得头部左侧的相邻系数值以及尾部右侧的相邻系数值的估计值,并且能够实现运算数量的减少。
[系数包络的估计方法]
系数平方值或系数绝对值的包络能够通过接下来的过程获得。首先,控制单元707获得与自适应滤波器704的头部和尾部的系数平方值或系数绝对值有关的p个抽头的平均。控制单元707进一步对相邻的p个抽头进行相同的计算。控制单元707分别针对头部侧和尾部侧获得两个平均值之间的差,并且通过将其除以p,能够获得头部侧和尾部侧的系数平方值或系数绝对值的包络。
或者,控制单元707针对那p个抽头获得对应于系数平方值或系数绝对值的回归曲线,并能够将该回归曲线作为包络。尽管回归曲线的阶数能够被设置为众多的值中的一个值,通过对回归曲线进行初级近似所获得的线的斜率将是要得到的包络斜率。
进一步地,在对回归曲线的计算中,控制单元707还有可能通过单独地预先处理从正系数值获得的系数平方值或系数绝对值的集合以及从负系数值获得的集合而获得回归曲线,并且将通过积分或者选择而获得的回归曲线作为包络。
进一步地,控制单元707还能够通过用p除当在自适应滤波器704的头部和尾部选择时选中的p个抽头两端的系数平方值或系数绝对值之间的差而获得包络。控制单元707能够通过使用这两端的系数平方值或系数绝对值的时间平均值来排除系数值的统计不确定性的影响。这种方法的特点在于其是运算量少的、最容易的计算方法。
[初始延迟值与更快的收敛]
当开始估计延迟样本数量D时,优选地选取自适应滤波器704所具有的抽头数量的一半,也就是说,M/2作为初始值。这是即使自适应滤波器704所覆盖的范围由于D的改变而向右移动或者向左移动时都能够同样进行应对的初始值。当事先获得了D的值的估计值时,优选的是将该估计值作为初始值。进一步地,当给定最大延迟值Dmax时,优选的是取0和Dmax的中间的Dmax/2作为初始值。
延迟样本数量D从初始值开始到达到最优值所需的时间(收敛时间)尽可能的短是期望的。关于收敛时间的减少,日本专利申请公开No.1996-079137以及日本专利申请公开No.1999-355182公开了在带分自适应滤波器中分配最适合的抽头数量的问题。同样地,在该示例性实施例中,日本专利申请公开No.1996-079137以及日本专利申请公开No.1999-355182所公开的方法能够照原样地应用于自适应滤波器704的头部以及尾部的系数。
日本专利申请公开No.1996-079137公开了一种方法,其使用被分配了系数的带分自适应滤波器(带)的偏差来控制要同时被重分配的系数的数量(重分配的数量)。当系数被相继地分配给特定的自适应滤波器(带)时,重分配的数量增加,而当被分配了系数的自适应滤波器(带)的数量在平均值上变化时,要重分配的系数的数量减少。
根据该示例性实施例,当延迟样本的数量D持续地增加或减少时,D的变化量增加,并且,相反地,当D增加或者减少但却并非在一个方向上持续变化时,D的变化量减少。D的变化量的最小值为1,最大值能够被设置为任意值。进一步地,替代观测连续的变化,控制单元707能够评估在一个方向上变化的可能性。例如,在连续的10次变化中,如果D增加7次或更多(0.7或者更大的可能性),控制单元707增加变化量,而在7次或更少时减少变化量。
日本专利申请公开No.1999-355182公开了一种方法,用于获得系数值的包络,使用该包络斜率估计最合适的系数数量,并且将其作为临时的最合适的系数数量。该包络可以是系数绝对值包络或者系数平方值包络。通过使用临时的最合适的系数数量作为初始值而使系数的数量得以进一步优化。在获得临时的最合适的系数数量之前,使用另一个初始值并且进行系数的分配。
该示例性实施例的噪声消除设备700获得自适应滤波器704的头部和尾部的系数的包络,并使用该包络斜率来估计额外需要的系数数量。噪声消除设备700能够从包络与零相交的位置获得额外需要的系数数量。噪声消除设备700通过该方式获得头部和尾部额外需要的系数的数量。通过该方式获得的两个值的平均值将是延迟样本数量D的最佳值。因此,噪声消除设备700将其设为初始值,并再次对D进行优化。
进一步地,代替两者的平均值,噪声消除设备700还能够确定使对实际的噪声消除的贡献变得最大的D。在这种情况下,噪声消除设备700使用与头部和尾部相对应的额外需要的系数的数量来计算包络与水平轴所包围的面积,并且将该面积近似等于的值作为额外需要的新的系数的数量。噪声消除设备700求这些值的平均值,并使用该平均值作为延迟样本数量D的值来再次开始对D进行优化。
进一步地,在获得这里所描述的平均值的计算中,尾部额外需要的系数的数量被用作负值,而头部额外需要的系数的数量用作正值。这是因为,自适应滤波器704所覆盖的脉冲响应,在D的值增加时向头部的左侧移动,在D的值减少时向尾部的右侧移动。
正如已经在第三示例性实施例中描述的,当语音的功率足够小时,噪声消除设备700可以限制用于控制可变延迟单元705以及在该情况内的自适应滤波器204的定时。噪声消除设备700能够通过向可变延迟单元705以及自适应滤波器704应用这样的选择性控制而进行更加准确的延迟控制以及自适应滤波器系数的更新。
进一步地,噪声消除设备700还能够选择性地应用收敛加速。例如,当加速被应用并且D的变化量变小时,噪声消除设备700将D的变化量固定为1。通过该方式,噪声消除设备700能够通过只在早期阶段应用加速而在短时间内稳定地进行延迟估计。
(第六示例性实施例)
将使用图9至图11对作为根据本发明的信号处理设备的第六示例性实施例的噪声消除设备900进行描述。在与第五示例性实施例进行比较时,根据该示例性实施例的噪声消除设备900与第五示例性实施例的不同在于,具有控制单元907而并非控制单元707,具有自适应滤波器904而并非自适应滤波器704。由于除了这些元件之外的其它组成部分与第五示例性实施例是相同的,这里将相同的标记分配给相同的组成部分,并将省略描述。
控制单元907接收来自自适应滤波器904的滤波器系数矢量W(k)并获得最适合的延迟样本数量D,并将其提供给可变延迟单元705。进一步地,控制单元907获得新获得的延迟样本数量D(k)与之前刚刚获得的延迟样本数量D(k-1)之间的差ΔD(k),并向自适应滤波器904反馈。也就是,如下的(公式8)成立。
ΔD(k)=D(k)-D(k-1)……(公式8)
自适应滤波器904使用从控制单元907提供的ΔD(k)来对系数值移位。自适应滤波器904中系数移位的状态如图10和图11所示。图10表示当延迟D(k)减少时(ΔD(k)=-1)时的系数移位的状态,而图11表示分别与延迟D(k)增加(ΔD(k)=+1)的情况相对应的系数移位的状态。
在图10中,移位单元1001将之前为w(k 0)、w(k 1)、……、w(k,M-1)的系数值移位为w(k 1)、……、w(k,M-1)、0。这些系数值由乘法单元1002分别乘以XR(k)到XR(k-M+1)。加法单元1003对这些乘积求和并作为n1(k)输出。
在图11中,移位单元1001将之前为w(k 0)、w(k 1)、……、w(k,M-1)的系数值移位为0、w(k 0)、w(k 1)、……、w(k,M-2)。这些系数值由乘法单元1002分别乘以XR(k)到XR(k-M+1)。加法单元1003对这些乘积求和并作为n1(k)输出。
在图10和图11中,尽管已经描述了|ΔD(k)|=1的情况,但本发明并不局限与此,移位单元1001的移位量|ΔD(k)|可以为2或者更多。例如,当延迟D(k)减少了d(ΔD(k)=-d)时,移位之前为w(k 0)、w(k1)、……、w(k,M-1)的系数值在移位之后将为w(k,d)、……、w(k,M-1)、0、……、0。另一方面,当延迟D(k)增加了d(ΔD(k)=+d)时,移位之前为w(k 0)、w(k 1)、……、w(k,M-1)的系数值在移位之后将为0、……、0、w(k 0)、……、w(k,M-d-1)。
(第七示例性实施例)
将使用图12对作为根据本发明的信号处理设备的第七示例性实施例的噪声消除设备1200进行描述。在与第六示例性实施例进行比较时,根据该示例性实施例的噪声消除设备1200与第六示例性实施例的不同在于,具有控制单元1207而并非控制单元907。由于除了这些元件之外的其它组成部分与第六示例性实施例是相同的,这里将相同的标记分配给相同的组成部分,并将省略描述。
能够从外部设置的最大延迟值Dmax被提供给控制单元1207。控制单元1207使用与从自适应滤波器904提供的系数有关的信息来计算延迟样本数量D(k),并将该数量与最大延迟值Dmax进行比较。当延迟样本数量D(k)小于Dmax时,D(k)被提供给可变延迟单元705,当D(k)大于Dmax时,Dmax被提供给可变延迟单元705。可变延迟单元705限制从输入端201到输出端206的路径上的最大延迟量。因此,能够使输出端206中经过增强的信号的延迟量较小。
根据该示例性实施例,通过上述的配置,即使在无法在噪声源附近捕获参考信号并且针对噪声源的延迟量未知时,与从噪声源到输入端202的路径相对应的延迟也能得到估计,并且能够在保持增强后的信号的延迟量较小的同时实现足够的噪声消除。
(第八示例性实施例)
将使用图13对作为根据本发明的信号处理设备的第八示例性实施例的噪声消除设备1300进行描述。在与第六示例性实施例进行比较时,根据该示例性实施例的噪声消除设备1300与第六示例性实施例的不同在于,具有控制单元1307而并非控制单元907,具有自适应滤波器1304而并非自适应滤波器904。由于除了这些元件之外的其它组成部分与第六示例性实施例是相同的,这里将相同的标记分配给相同的组成部分,并将省略描述。
控制单元1307接收来自输入端202的参考信号,接收来自自适应滤波器1304的系数矢量W(k),获得最适合的延迟样本数量D(k),并将其提供给可变延迟单元705。进一步地,控制单元1307获得新获得的延迟样本数量D(k)与之前刚刚获得的延迟样本数量D(k-1)之间的差ΔD(k),并向自适应滤波器1304反馈。进一步地,控制单元1307获得使用参考信号、系数矢量W(k)和ΔD(k)而被新设置给头部或尾部的系数值的初始值,并将其提供给自适应滤波器1304。
自适应滤波器1304使用从控制单元1307提供的ΔD(k)对系数值进行移位。进一步地,自适应滤波器1304将从控制单元1307提供的值设置为初始系数值,该初始系数值被新设置给没有通过系数值的移位而获得该初始值的头部或尾部。
[头部和尾部的系数值的初始值设置]
根据上述的第六示例性实施例,在图10和图11中,在延迟样本数量D(k)已经进行了改变之后,针对头部和尾部的每个系数值的系数更新以取0作为初始值开始。相反地,根据该示例性实施例,系数更新在已经像其他系数那样为这些系数的初始值设置了适当的值之后开始。由此,能够实现更快的系数收敛以及延迟样本数量的收敛时间的减少。
控制单元1307能够使用系数平方值或绝对值的包络确定系数的初始值,其相当于向自适应滤波器1304的头部或尾部新添加的一个系数。因为,近似地认为与新添加的系数相当的这些系数同样遵循包络是有可能的。
当控制单元1307推断通过第五示例性实施例中描述的方法获得的包络的一个抽头的一部分时,该值将会是与新添加的系数相当的系数的期望值(估计值)。当包络近似为直线时,控制单元1307可以从自适应滤波器1304的头部或尾部的系数值(平方值或绝对值)中减去该直线的斜率。
需要注意的是,已经通过该方法获得的与重新加入的系数相当的系数的期望值持续为平方值或绝对值。控制单元1307能够在平方值、平方根以及绝对值的情况下使用原(intact)值与符号合并而得到的值作为该系数值的初始值。接下来,将描述如何获得新的系数的符号。
[如何获得新的系数的符号]
自适应滤波器1304的当前输出以及减法单元203的输出被表示在(公式9)和(公式10)中。 n 1 ( k ) = Σ j = k k - M + 1 x R ( j ) w ( k , k - j ) ……(公式9)
e1(k)=xP(k)-n1(k)……(公式10)
<ΔD(k)=+1的情况,延迟增加,系数值向右移位(数量为+1)>
自适应滤波器1304输出和减法单元203的输出被表示在(公式11)和(公式12)中。
n 1 + ( k ) = &Sigma; j = k k - M + 1 x R ( j ) w ( k , k - j - 1 ) = x R ( k ) w ( k , - 1 ) + &Sigma; j = k - 1 k - M + 1 x R ( j ) w ( k , k - j - 1 )
……(公式11)
e1+(k)=xP(k)-n1+(k)……(公式12)
因为必须通过控制延迟D(k)来减少错误,(公式13)成立。
|e1+(k)|<|e1(k)|……(公式13)
相当于,(公式14)成立。
e1+ 2(k)<e1 2(k)……(公式14)
当将(公式11)和(公式12)应用到(公式14)时,获得了如下的(公式15)。 { x P ( j ) - &Sigma; j = k - 1 k - M + 1 x R ( j ) w ( k , k - j - 1 ) - x R ( k ) w ( k , - 1 ) } 2 ……(公式15)
(公式15)的右侧为已知的值,左侧除了第三项也是已知的。进一步地,因为已知XR(k)包括符号并且能够使用w(k,-1)的估计值,控制单元1307能够根据(公式15)确定w(k,-1)的符号。
<ΔD(k)=-1的情况,延迟减少,系数值向左移位(数量为-1)>
自适应滤波器1304输出和减法单元203的输出被表示在(公式16)和(公式17)中。
n 1 - ( k ) = &Sigma; j = k k - M + 1 x R ( j ) w ( k , k - j + 1 ) = &Sigma; j = k k - M + 2 x R ( j ) w ( k , k - j + 1 ) + x R ( k - M + 1 ) w ( k , M )
……(公式16)
e1-(k)=xP(k)-n1-(k)……(公式17)
因为必须通过控制延迟D(k)来减少错误,(公式18)成立。
|e1-(k)|<|e1(k)|……(公式18)
相当于,(公式19)成立。
e1- 2(k)<e1 2(k)……(公式19)
当将(公式16)和(公式17)应用到(公式19)时,获得了如下的(公式20)。
{ x P ( j ) - &Sigma; j = k k - M + 2 x R ( j ) w ( k , k - j + 1 ) - x R ( k - M + 1 ) w ( k , M ) } 2 < e 1 2 ( k )
……(公式20)
(公式20)的右侧为已知的值,左侧除了第三项也是已知的。进一步地,因为已知XR(k-M+1)包括符号并且能够使用w(k,M)的估计值,控制单元1307能够根据(公式20)确定w(k,M)的符号。
进一步地,控制单元1307将负和正两种符号均应用于w(k,-1)和w(k,M),通过两种方式计算公式(12)或公式(17)的e1+(k)或e1-(k),对其进行比较,并将与较小者对应的符号作为w(k,-1)和w(k,M)的符号。
[计算公式(11)和(公式16)时的运算量减少]
在一个采样周期之前自适应滤波器1304的输出,n1(k-1),由公式(21)给出。
n 1 ( k - 1 ) = &Sigma; j = k - 1 k - M x R ( j ) w ( k - 1 , k - j - 1 ) = &Sigma; j = k - 1 k - M + 1 x R ( j ) w ( k - 1 , k - j - 1 ) + x R ( k - M ) w ( k - 1 , M - 1 )
……(公式21)
当将(公式21)应用于公式(11)时,(公式22)给出了n1+(k)。
n1+(k)=xR(k)w(k,-1)+n1(k-1)-xR(k-M)w(k,M-1)……(公式22)
然而,假设系数更新步长足够小,k变化1时系数值的变化能够忽略。也就是,w(k-1,j)=w(k,j),j=-1、0、1、……、M。由于(公式22)右侧第二项是过去获得的已知的值,控制单元1307能够通过新计算右侧第三项来针对w(k,-1)的每个不同符号评估|e1+(k)|或e1+ 2(k)的值。
通过同样的方式,自适应滤波器1304在一个采样周期之后的输出,n1(k+1),由公式(23)给出。
n 1 ( k + 1 ) = &Sigma; j = k + 1 k - M + 2 x R ( j ) w ( k + 1 , k - j + 1 ) = x R ( k + 1 ) w ( k + 1,0 ) + &Sigma; j = k k - M + 2 x R ( j ) w ( k + 1 , k - j + 1 )
……(公式23)
当将(公式23)应用于公式(16)时,(公式24)给出了n1-(k)。
n1-(k)=n1(k+1)-xR(k+1)w(k 0)+xR(k-M+1)w(k,M)……(公式24)
然而,类似于(公式22),假设w(k,j)=w(k+1,j),j=-1、0、1、……、M。
(公式24)右侧第一项是一个采样周期之后获得的值。因此,控制单元1307能够通过将延迟样本数量D(k)的计算延迟一个采样周期来使用n1(k+1)。同时,控制单元1307能够仅通过新计算(公式24)右侧第二项来针对w(k,M)的每个不同符号评估|e1-(k)|或e1- 2(k)的值。
正如第三示例性实施例中已经描述的,可变延迟单元705以及自适应滤波器1304被控制的定时优选被限制在语音功率足够小的时间内。通过将这种选择性控制施加于可变延迟单元705以及自适应滤波器1304,更准确的延迟控制以及自适应滤波器系数的更新得以进行。
根据该示例性实施例,通过上述的配置,即使在无法在噪声源附近捕获参考信号并且针对噪声源的延迟量未知时,与从噪声源到输入端202的路径相对应的延迟也能通过较小的运算量得到估计,并且能够实现足够的噪声消除。
(第九示例性实施例)
将使用图14对作为根据本发明的信号处理设备的第九示例性实施例的噪声消除设备1400进行描述。在与第八示例性实施例进行比较时,根据该示例性实施例的噪声消除设备1400的不同在于,具有控制单元1407而并非控制单元1307。由于除了这些元件之外的其它组成部分与第八示例性实施例是相同的,这里将相同的标记分配给相同的组成部分,并将省略描述。
能够从外部设置的最大延迟值Dmax被提供给控制单元1407。控制单元1407接收来自输入端202的参考信号以及来自自适应滤波器1304的系数矢量W(k),获得最适合的延迟样本数量D(k),并将该数量与最大延迟值Dmax进行比较。当延迟样本数量D(k)小于Dmax时,控制单元1407将D(k)提供给可变延迟单元705,当D(k)大于Dmax时,将Dmax提供给可变延迟单元705。可变延迟单元705限制在从输入端201到输出端206的路径上的最大延迟量。因此,能够使输出端206中经过增强的信号的延迟量较小。
根据该示例性实施例,通过上述的配置,即使在无法在噪声源附近捕获参考信号并且针对噪声源的延迟量未知时,与从噪声源到输入端202的路径相对应的延迟也能通过较小的运算量得到估计,并且能够在保持增强后的信号的延迟量较小的同时实现足够的噪声消除。
(第十示例性实施例)
将使用图15对作为根据本发明的信号处理设备的第十示例性实施例的噪声消除设备1500进行描述。在与第三示例性实施例进行比较时,根据该示例性实施例的噪声消除设备1500与第三示例性实施例的不同在于,具有自适应滤波器1505而并非自适应滤波器305。由于除了这些元件之外的其它组成部分与第三示例性实施例是相同的,这里将相同的标记分配给相同的组成部分,并将省略描述。
从输入端201向自适应滤波器1505提供主信号。自适应滤波器1505对主信号和系数进行卷积,并将结果提供给减法单元203。减法单元203从作为自适应滤波器1505的输出的经过滤波的主信号中减去作为自适应滤波器204的输出的伪噪声,并将结果传送给输出端206作为输出,同时向自适应滤波器204和1505反馈。
自适应滤波器1505使用从输入端201提供的主信号以及从减法单元203反馈的输出来更新各个系数以便使得减法单元203的输出功率最小。作为系数更新算法,自适应滤波器1505可以应用与自适应滤波器204的系数更新算法完全相同的算法,或者可以应用不同的算法。
根据该示例性实施例,自适应滤波器204模拟噪声路径293,自适应滤波器1505模拟噪声路径294。也就是,自适应滤波器1505的脉冲响应收敛于噪声路径294上的噪声响应。
正如第三示例性实施例中已经描述的,自适应滤波器204和1505的系数更新的时间优选被限制在语音功率足够小的时间内。通过将这种选择性系数更新控制应用于自适应滤波器204和1505,更准确的延迟控制以及自适应滤波器系数的更新得以进行。
根据该示例性实施例,通过上述的配置,即使在无法在噪声源附近捕获参考信号并且针对噪声源的传输特性未知时,与从噪声源到输入端202的路径相对应的传输特性也能得到估计,并且能够实现足够的噪声消除。
(第十一示例性实施例)
将使用图16对作为根据本发明的信号处理设备的第十一示例性实施例的噪声消除设备1600进行描述。在与第十示例性实施例进行比较时,根据该示例性实施例的噪声消除设备1600与第十示例性实施例的不同在于,具有自适应滤波器1604和1605而并非自适应滤波器204和1505,并进一步具有控制单元1607。由于除了这些元件之外的其它组成部分与第十示例性实施例是相同的,这里将相同的标记分配给相同的组成部分,并将省略描述。
自适应滤波器1604向控制单元1607提供与系数有关的信息,并接收第一系数更新控制信号。自适应滤波器1605向控制单元1607提供与系数有关的信息,并接收第二系数更新控制信号。基于从自适应滤波器1604和1605提供的与系数有关的信息,控制单元1607评估其收敛程度,并且产生第一和第二系数更新控制信号。控制单元1607向自适应滤波器1604提供第一系数更新控制信号,向自适应滤波器1605提供第二系数更新控制信号。自适应滤波器1604和1605接收第二系数更新控制信号以及第一系数更新控制信号,并且分别根据这些信号控制系数更新。
控制单元1607产生第一系数更新控制信号以及第二系数更新控制信号,从而两者不同时进行系数更新。例如,控制单元1607能够产生第一系数更新控制信号以及第二系数更新控制信号以便使自适应滤波器1604首先收敛,而自适应滤波器1605随后收敛。为此,控制单元1607需要评估自适应滤波器1604的收敛程度。这能够由控制单元1607使用与自适应滤波器1604的系数有关的信息进行。
关于使用与系数有关的信息进行自适应滤波器的收敛程度评估的特定方法由日本专利申请公开No.1993-268105公开。这里所公开的方法是,假设当系数的平方值的和或者绝对值的和的变化量变小时这些系数已经收敛。当使用部分和代替该和时,同样能获得类似的效果。
类似地,控制单元1607还能够评估自适应滤波器1605的收敛程度。因此,控制单元1607能够使自适应滤波器1605首先收敛,然后使自适应滤波器1604收敛。进一步地,控制单元1607还能够被配置为不仅在使得一个自适应滤波器收敛的过程中保持另一自适应滤波器不收敛,而且能够为两者的系数更新量设置小于通常量的任意值。通过该功能,控制单元1607还能够被配置为用通常量的70%的系数更新量对自适应滤波器1604进行系数更新,而用通常量的30%的系数更新量对自适应滤波器1605进行系数更新。控制单元1607可以通过添加将两者的系数更新比例设置为100%,或者不进行设置。
上面,在该示例性实施例中,已经描述了使用自适应滤波器1604和1605的系数值评估各自的收敛程度并使用该收敛程度来控制系数更新的方法。关于这些自适应滤波器1604和1605的收敛程度的评估方法,除使用系数值的方法之外的各种方法同样是已知的。这些收敛程度估计方法中的任何一种都能够应用于该示例性实施例。
根据该示例性实施例,通过上述的配置,即使在无法在噪声源附近捕获参考信号并且针对噪声源的传输特性未知时,与从噪声源到输入端的路径相对应的传输特性也能得到估计,并且能够实现足够的噪声消除。
(其它示例性实施例)
虽然前面已经详细地解释了根据本发明的信号处理设备的多个示例性实施例,各个示例性实施例中所包括的单独的特征组合而得到的那些系统或设备,无论其怎样组合,同样包含在本发明的范畴内。
进一步地,本发明可以被应用于包括多个装备的系统,或者可以应用于单独的设备。
进一步地,本发明还能够被应用于下述情况,其中实现上述示例性实施例的功能的信息处理程序被直接地或者远程地提供给系统或设备。因此,为了通过计算机来实现本发明的功能,要安装在计算机中的程序或者存储该程序的介质,以及允许程序下载的WWW(万维网)服务器也包括在本发明的范畴内。
基于上面所描述的本发明的信号处理设备能够通过软件实现。也就是说,有可能通过将上面提到的每个示例性实施例的信号处理设备中每个单元的处理操作编制成软件中的步骤或过程而将程序配置为用于信号处理。这样的程序由处理器执行,比如包括在信号处理设备或噪声消除设备中的DSP(数字信号处理器)或类似处理器。
而且,包括这样程序的程序产品或存储这样程序的存储介质同样包括在本发明的范畴内。
图17是使用信号处理程序来配置第一示例性实施例的情况下执行信号处理程序的计算机1700的配置图。该计算机1700包括输入单元1701、CPU 1702、输出单元1703以及存储器1704。
通过读取存储在存储器1704中的信号处理程序,CPU 1702控制计算机1700的操作。也就是说,在步骤S1711中,已经执行该信号处理程序的CPU 1702获得主信号和参考信号。接下来,在步骤S1713中,CPU 1702基于从第二信号源的第二信号直到参考信号被输入的传输距离来以一延迟量延迟主信号以产生延迟的主信号。进一步地,在步骤S1715中,CPU 1702使用基于估计的第一信号更新的系数进行自适应滤波器的滤波处理,并获得伪第二信号。进一步地,在步骤S1721中,CPU 1702从经过延迟的第一混合信号中减去估计被混合在主信号中的伪第二信号,并输出估计的期望信号(=误差)。由此,能够获得与第一示例性实施例相同的效果。
[示例性实施例的其它表述]
上面所公开的各个示例性实施例中的全部或部分能够被描述为下面的补充性说明,但并不局限于此。
(补充性说明1)
一种信号处理设备,特征在于包括:
第一输入装置,用于获得第一信号;
第二输入装置,用于获得第二混合信号,在所述第二混合信号中以与所述第一混合信号不同的比率混合了第一信号和第二信号;
延迟装置,用于通过基于从所述第二信号的产生源到所述第二输入装置的传输距离而以一延迟量延迟所述第一混合信号来产生延迟的第一混合信号;
减法装置,用于输出所述第一混合信号;以及
自适应滤波器,所述自适应滤波器使用基于估计的第一信号而更新的系数来产生与所述第二混合信号相关的伪第二信号。
(补充性说明2)
根据补充性说明1所述的信号处理设备,特征在于:
所述延迟装置控制所述估计的第一信号的所述延迟量。
(补充性说明3)
根据补充性说明1或2所述的信号处理设备,特征在于:
使用所述自适应滤波器的系数对所述延迟装置的所述第一混合信号的所述延迟量进行控制。
(补充性说明4)
根据补充性说明2或3所述的信号处理设备,特征在于:
将所述延迟量控制在不超过预定的上限值的范围中。
(补充性说明5)
根据补充性说明1至4中任意一项所述的信号处理设备,特征在于:
所述自适应滤波器根据所述延迟量的变化来改变所述系数。
(补充性说明6)
一种信号处理方法,特征在于包括:
获得第一信号;
通过基于从第二信号的产生源直到第二混合信号被输入的传输距离而以一延迟量延迟第一混合信号来产生延迟的第一混合信号;
产生估计被混合在所述第二混合信号中的伪第二信号;以及
输出所述伪第二信号。
(补充性说明7)
根据补充性说明6所述的信号处理方法,特征在于包括:
使用估计的第一信号来控制所述第一混合信号的所述延迟量。
(补充性说明8)
根据补充性说明6或7所述的信号处理方法,特征在于包括:
使用自适应滤波器的系数来控制所述第一混合信号的所述延迟量。
(补充性说明9)
根据补充性说明7或8所述的信号处理方法,其特征在于包括:
将所述延迟量控制在不超过预定的上限值的范围中。
(补充性说明10)
根据补充性说明6至9中任意一项所述的信号处理方法,特征在于包括:
根据所述延迟量来改变自适应滤波器的系数。
(补充性说明11)
一种信号处理程序,特征在于使计算机执行:
用于获得第一信号的步骤;
用于获得第二混合信号的步骤,在所述第二混合信号中以与第一混合信号不同的比率混合了第一信号和第二信号;
用于通过基于从所述第二信号的产生源直到第二混合信号被输入的传输距离而以一延迟量延迟所述第一混合信号来产生延迟的第一混合信号的步骤;
用于产生估计被混合在所述第二混合信号中的伪第二信号的步骤;以及
用于输出所述伪第二信号的步骤。
尽管已经参考示例性实施例对本发明进行了描述,本发明并不局限于上面所述的示例性实施例。在不背离本发明的实质和范围的前提下,能够进行各种本领域技术人员能够理解的对本发明的形式以及细节的改变。
本申请要求2010年10月12日提交的日本专利申请No.2010-230062的优先权,该申请的内容通过引用整体合并于此。
附图标记说明
101  第一输入单元
102  第二输入单元
103  减法单元
105  延迟单元
201、202  输入端
203  减法单元
104、204、704、904、1304、1505、1604、1605  自适应滤波器
205  固定延迟单元
206  输出端
305、505、705  可变延迟单元
412、612、707、907、1207、1307、1407、1607  控制单元

Claims (10)

1.一种信号处理设备,包括:
第一输入装置,用于获得第一混合信号,在所述第一混合信号中混合了第一信号和第二信号;
第二输入装置,用于获得第二混合信号,在所述第二混合信号中以与所述第一混合信号不同的比率混合了所述第一信号和所述第二信号;
延迟装置,用于通过基于从所述第二信号的产生源到所述第二输入装置的传输距离而以一延迟量延迟所述第一混合信号,来产生延迟的第一混合信号;
减法装置,用于输出估计的第一信号,在所述估计的第一信号中从所述延迟的第一混合信号中减去了伪第二信号;以及
自适应滤波装置,用于将基于所述估计的第一信号而更新的系数应用于所述第二混合信号来产生所述伪第二信号。
2.根据权利要求1所述的信号处理设备,其中
所述延迟装置使用所述估计的第一信号来控制所述第一混合信号的所述延迟量。
3.根据权利要求1或2所述的信号处理设备,其中
所述延迟装置使用所述自适应滤波装置的所述系数来控制所述第一混合信号的所述延迟量。
4.根据权利要求2或3所述的信号处理设备,其中
所述延迟装置将所述延迟量控制在不超过预定上限值的范围中。
5.根据权利要求1至4中任意一项所述的信号处理设备,其中
所述自适应滤波装置根据所述延迟量的变化来改变所述系数。
6.一种信号处理方法,包括:
获得第一混合信号,在所述第一混合信号中混合了第一信号和第二信号;
获得第二混合信号,在所述第二混合信号中以与所述第一混合信号不同的比率混合了所述第一信号和所述第二信号;
通过基于从所述第二信号的产生源直到所述第二混合信号被输入的传输距离而以一延迟量延迟所述第一混合信号,来产生延迟的第一混合信号;
输出估计的第一信号,在所述估计的第一信号中已经从所述延迟的第一混合信号中减去了伪第二信号;以及
将基于所述估计的第一信号而更新的系数应用于所述第二混合信号来产生所述伪第二信号。
7.根据权利要求6所述的信号处理方法,包括:
使用所述估计的第一信号来控制所述第一混合信号的所述延迟量。
8.根据权利要求6或7所述的信号处理方法,包括:
使用自适应滤波装置的所述系数来控制所述第一混合信号的所述延迟量。
9.根据权利要求6至8中任意一项所述的信号处理方法,包括:
根据所述延迟量来改变自适应滤波装置的所述系数。
10.一种信号处理程序,所述信号处理程序使计算机执行步骤,所述步骤包括:
用于获得第一混合信号的步骤,在所述第一混合信号中混合了第一信号和第二信号;
用于获得第二混合信号的步骤,在所述第二混合信号中以与所述第一混合信号不同的比率混合了所述第一信号和所述第二信号;
用于通过基于从所述第二信号的产生源直到所述第二混合信号被输入的传输距离而以一延迟量延迟所述第一混合信号,来产生延迟的第一混合信号的步骤;
用于输出估计的第一信号的步骤,在所述估计的第一信号中已经从所述延迟的第一混合信号中减去了伪第二信号;以及
用于将基于所述估计的第一信号而更新的系数应用于所述第二混合信号来产生所述伪第二信号的步骤。
CN201180056020.5A 2010-10-12 2011-09-26 信号处理设备、信号处理方法 Active CN103229237B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-230062 2010-10-12
JP2010230062 2010-10-12
PCT/JP2011/072689 WO2012049986A1 (ja) 2010-10-12 2011-09-26 信号処理装置、信号処理方法、並びに信号処理プログラム

Publications (2)

Publication Number Publication Date
CN103229237A true CN103229237A (zh) 2013-07-31
CN103229237B CN103229237B (zh) 2016-05-18

Family

ID=45938216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180056020.5A Active CN103229237B (zh) 2010-10-12 2011-09-26 信号处理设备、信号处理方法

Country Status (4)

Country Link
US (1) US9613632B2 (zh)
JP (1) JP5958341B2 (zh)
CN (1) CN103229237B (zh)
WO (1) WO2012049986A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107545901A (zh) * 2016-06-28 2018-01-05 瑞昱半导体股份有限公司 信号处理装置与信号处理方法
CN109451195A (zh) * 2018-09-18 2019-03-08 北京佳讯飞鸿电气股份有限公司 一种自适应双端检测的回声消除方法及系统
CN112385247A (zh) * 2018-07-12 2021-02-19 美高森美半导体无限责任公司 声学延迟估计

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963077B2 (ja) * 2012-04-20 2016-08-03 パナソニックIpマネジメント株式会社 通話装置
CN102820036B (zh) * 2012-09-07 2014-04-16 歌尔声学股份有限公司 一种自适应消除噪声的方法和装置
FR3014621B1 (fr) * 2013-12-11 2016-01-01 Thales Sa Methode iterative de synthese de filtres numeriques de mise en forme d'un signal
JP6314573B2 (ja) * 2014-03-20 2018-04-25 日本電気株式会社 信号分離装置、信号分離方法、信号分離プログラム
WO2015145920A1 (ja) * 2014-03-27 2015-10-01 日本電気株式会社 信号分離装置及び信号分離方法
US10181315B2 (en) * 2014-06-13 2019-01-15 Cirrus Logic, Inc. Systems and methods for selectively enabling and disabling adaptation of an adaptive noise cancellation system
JP6206365B2 (ja) * 2014-09-05 2017-10-04 株式会社Jvcケンウッド 雑音抑圧装置
US9922637B2 (en) * 2016-07-11 2018-03-20 Microsoft Technology Licensing, Llc Microphone noise suppression for computing device
JP6635396B1 (ja) * 2019-04-08 2020-01-22 パナソニックIpマネジメント株式会社 音響ノイズ抑圧装置及び音響ノイズ抑圧方法
CN111736797B (zh) * 2020-05-21 2024-04-05 阿波罗智联(北京)科技有限公司 负延时时间的检测方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344011A (ja) * 1992-06-04 1993-12-24 Sony Corp 雑音低減方法及び装置
JP3132529B2 (ja) * 1992-09-07 2001-02-05 ソニー株式会社 音声入力装置
JP2004023404A (ja) * 2002-06-14 2004-01-22 Sony Corp 音響ノイズ低減装置及び低減方法
CN1602116A (zh) * 2003-08-01 2005-03-30 索尼株式会社 传声器设备、降噪方法和记录设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786195A (en) * 1971-08-13 1974-01-15 Dc Dt Liquidating Partnership Variable delay line signal processor for sound reproduction
JP2842026B2 (ja) * 1991-02-20 1998-12-24 日本電気株式会社 適応フィルタの係数制御方法及び装置
JP2702876B2 (ja) * 1993-09-08 1998-01-26 株式会社石川製作所 音響源検出装置
JP2760373B2 (ja) 1995-03-03 1998-05-28 日本電気株式会社 雑音消去装置
US5699437A (en) * 1995-08-29 1997-12-16 United Technologies Corporation Active noise control system using phased-array sensors
JPH11345000A (ja) * 1998-06-03 1999-12-14 Nec Corp 雑音消去方法及び雑音消去装置
US20040059571A1 (en) * 2002-09-24 2004-03-25 Marantz Japan, Inc. System for inputting speech, radio receiver and communication system
EP1667114B1 (en) * 2003-09-02 2013-06-19 NEC Corporation Signal processing method and apparatus
JP4218573B2 (ja) * 2004-04-12 2009-02-04 ソニー株式会社 ノイズ低減方法及び装置
JP4816221B2 (ja) * 2006-04-21 2011-11-16 ヤマハ株式会社 収音装置および音声会議装置
JP5034819B2 (ja) * 2007-09-21 2012-09-26 ヤマハ株式会社 放収音装置
US8396234B2 (en) * 2008-02-05 2013-03-12 Phonak Ag Method for reducing noise in an input signal of a hearing device as well as a hearing device
US8116467B2 (en) * 2008-05-15 2012-02-14 Fortemedia, Inc. Method for manufacturing array microphones and system for categorizing microphones
JP5332733B2 (ja) * 2009-03-03 2013-11-06 沖電気工業株式会社 エコーキャンセラ
US8996365B2 (en) * 2009-03-19 2015-03-31 Yugengaisya Cepstrum Howling canceller
EP2899996B1 (en) * 2009-05-18 2017-07-12 Oticon A/s Signal enhancement using wireless streaming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344011A (ja) * 1992-06-04 1993-12-24 Sony Corp 雑音低減方法及び装置
JP3132529B2 (ja) * 1992-09-07 2001-02-05 ソニー株式会社 音声入力装置
JP2004023404A (ja) * 2002-06-14 2004-01-22 Sony Corp 音響ノイズ低減装置及び低減方法
CN1602116A (zh) * 2003-08-01 2005-03-30 索尼株式会社 传声器设备、降噪方法和记录设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107545901A (zh) * 2016-06-28 2018-01-05 瑞昱半导体股份有限公司 信号处理装置与信号处理方法
CN107545901B (zh) * 2016-06-28 2021-06-25 瑞昱半导体股份有限公司 信号处理装置与信号处理方法
CN112385247A (zh) * 2018-07-12 2021-02-19 美高森美半导体无限责任公司 声学延迟估计
CN112385247B (zh) * 2018-07-12 2022-03-29 美高森美半导体无限责任公司 用于声学延迟估计的方法和装置
CN109451195A (zh) * 2018-09-18 2019-03-08 北京佳讯飞鸿电气股份有限公司 一种自适应双端检测的回声消除方法及系统

Also Published As

Publication number Publication date
US9613632B2 (en) 2017-04-04
CN103229237B (zh) 2016-05-18
JPWO2012049986A1 (ja) 2014-02-24
WO2012049986A1 (ja) 2012-04-19
JP5958341B2 (ja) 2016-07-27
US20130197905A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
CN103229237A (zh) 信号处理设备、信号处理方法以及信号处理程序
US7773692B2 (en) System and methods for digitally correcting a non-linear element using a digital filter for predistortion
US6449586B1 (en) Control method of adaptive array and adaptive array apparatus
US7299251B2 (en) Adaptive filter
EP3054590A1 (en) System linearization
US20080130788A1 (en) System and method for computing parameters for a digital predistorter
Bershad et al. Tracking characteristics of the LMS adaptive line enhancer-response to a linear chirp signal in noise
US9690750B2 (en) Arithmetic device, arithmetic method, and wireless communication device
CN101640555B (zh) 基于组合滤波器的直放站回波抵消器设计方法
Arezki et al. A new algorithm with low complexity for adaptive filtering
US9231561B2 (en) Multi-stage adaptive filter
EP3573233A2 (en) System identification device, system identification method, system identification program, and recording medium recording system identification program
US20210184347A1 (en) Method for decoupling signals in transceiver systems
US9679260B2 (en) System and method for adaptive filter
CN113872567A (zh) 一种基于核函数的复数仿射投影自适应信号处理方法
Elisei-Iliescu et al. An RLS algorithm for the identification of bilinear forms
CN101496001A (zh) 通过后向和前向误差预测平方的有限递归的减少复杂度的递归最小二乘格型结构自适应滤波器
CN1607740B (zh) 不稳定信号的改进型仿射投影算法
JP4110710B2 (ja) 適応整相システム
CN117040489B (zh) 一种稀疏约束的样条自适应滤波器
Paleologu et al. Recursive least-squares algorithm based on a third-order tensor decomposition for low-rank system identification
US20060288067A1 (en) Reduced complexity recursive least square lattice structure adaptive filter by means of approximating the forward error prediction squares using the backward error prediction squares
JP4569446B2 (ja) 適応フィルタおよび送受信装置
JP2010041450A (ja) 適応等化器、適応等化方法、及び、適応等化プログラム
Nandyala et al. Speech enhancement using kernel adaptive filtering method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant