CN103108853A - 从乙酸乙酯残余物物流回收醇的方法 - Google Patents

从乙酸乙酯残余物物流回收醇的方法 Download PDF

Info

Publication number
CN103108853A
CN103108853A CN2011800444083A CN201180044408A CN103108853A CN 103108853 A CN103108853 A CN 103108853A CN 2011800444083 A CN2011800444083 A CN 2011800444083A CN 201180044408 A CN201180044408 A CN 201180044408A CN 103108853 A CN103108853 A CN 103108853A
Authority
CN
China
Prior art keywords
ethanol
resistates
acetic acid
ethyl acetate
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800444083A
Other languages
English (en)
Other versions
CN103108853B (zh
Inventor
D·李
F·R·奥尔森
A·奥罗斯科
N·鲍威尔
M·萨拉多
L·萨拉戈
R·J·沃纳
R·耶夫蒂奇
V·J·约翰斯顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese International Corp
Original Assignee
Celanese International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese International Corp filed Critical Celanese International Corp
Publication of CN103108853A publication Critical patent/CN103108853A/zh
Application granted granted Critical
Publication of CN103108853B publication Critical patent/CN103108853B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

使用低能量方法来回收来自由乙酸加氢获得的粗乙醇产物的乙醇。在塔中将该粗乙醇产物分离以产生包含乙醛的馏出物物流和包含乙醇,乙酸,乙酸乙酯和水的残余物物流。从该残余物物流回收乙醇产品。

Description

从乙酸乙酯残余物物流回收醇的方法
相关申请的交叉引用
本申请要求2011年4月26日提交的美国临时申请号13/094,588的优先权,本文通过引用将其全部内容并入本文。
技术领域
本发明总体上涉及用于生产醇的方法,且特别地涉及用于从乙酸乙酯残余物物流回收乙醇的方法。
背景技术
用于工业用途的乙醇常规地由石油化工原料例如油、天然气或煤生产,由原料中间体例如合成气生产,或者由淀粉质材料或纤维素材料例如玉米(corn)和甘蔗生产。由石油化工原料以及由纤维素材料生产乙醇的常规方法包括乙烯的酸催化水合、甲醇同系化、直接醇合成和费-托合成。石油化工原料价格的不稳定性促使常规生产的乙醇成本波动,在原料价格升高时使对乙醇生产的替代来源的需要比以往更大。淀粉质材料以及纤维素材料通过发酵转化为乙醇。然而,发酵通常用于乙醇的消费性生产,其适合于燃料或人类消费。此外,淀粉质或纤维素材料的发酵与食品来源构成竞争并且对用于工业用途所可生产的乙醇的量施加了限制。
通过链烷酸和/或其它含羰基化合物的还原生产乙醇得到广泛研究,在文献中提及了催化剂、载体和操作条件的各种组合。在链烷酸例如乙酸还原期间,其它化合物与乙醇一起形成或在副反应中形成。这些杂质限制了从这样的反应混合物生产和回收乙醇。例如,在加氢期间,产生的酯与乙醇和/或水一起形成难以分离的共沸物。此外,当转化不完全时,未反应的酸保留在粗乙醇产物中,为回收乙醇需将其除去。
EP02060553描述了将烃转化为乙醇的方法,该方法包括将烃转化为乙酸和将乙酸加氢得到乙醇。将来自加氢反应器的物流进行分离以获得乙醇物流以及乙酸和乙酸乙酯的物流,将所述乙酸和乙酸乙酯的物流再循环到加氢反应器。
仍需要改善从使链烷酸例如乙酸和/或其它含羰基化合物还原获得的粗产物回收乙醇的方法。
发明内容
在第一实施方案中,本发明涉及用于生产乙醇的方法,该方法包括以下步骤:使乙酸和/或其酯在反应器中于催化剂存在下加氢以形成粗乙醇产物;将部分粗乙醇产物在第一蒸馏塔中分离以获得包含乙醛的第一馏出物和包含乙醇,乙酸,乙酸乙酯和水的第一残余物;将部分第一残余物在第二蒸馏塔中分离以获得包含乙酸和水的第二残余物和包含乙醇,和乙酸乙酯的第二馏出物;和将至少部分第二馏出物分离以获得包含乙酸乙酯的第三馏出物和包含乙醇的第三残余物。
在第二实施方案中,本发明涉及用于生产乙醇的方法,该方法包括以下步骤:提供包含乙醇,乙酸,乙酸乙酯,乙醛,和水的粗乙醇产物物流;将部分粗乙醇产物在第一蒸馏塔中分离以获得包含乙醛的第一馏出物和包含乙醇,乙酸,乙酸乙酯和水的第一残余物,将部分第一残余物在第二蒸馏塔中分离以获得包含乙酸和水的第二残余物和包含乙醇和乙酸乙酯的第二馏出物,和将至少部分第二馏出物分离以获得包含乙酸乙酯的第三馏出物和包含乙醇的第三残余物。
在第三实施方案中,本发明涉及用于生产乙醇的方法,该方法包括以下步骤:提供包含乙醇,乙酸乙酯,乙醛,和水的粗乙醇产物物流;将至少部分粗乙醇产物物流在第一蒸馏塔中分离以形成包含乙醛的第一馏出物和包含乙醇,乙酸乙酯和水的第一残余物;将至少部分第一残余物分离以形成包含乙酸乙酯和乙醇的有机物物流和包含水的含水物流;和将有机物物流在第二蒸馏塔中分离以形成包含乙酸乙酯的第二馏出物和包含乙醇的第二残余物。
在第四实施方案中,本发明涉及用于生产乙醇的方法,该方法包括以下步骤:使乙酸和/或其酯在反应器中于催化剂存在下加氢以形成粗乙醇产物物流;将部分粗乙醇产物在第一蒸馏塔中分离以获得包含乙醛的第一馏出物和包含乙醇,乙酸,乙酸乙酯和水的第一残余物;将部分第一残余物在第二蒸馏塔中分离以获得包含乙酸的第二残余物和包含乙醇,乙酸乙酯和水的第二馏出物;从至少部分第二馏出物移出水以获得具有比至少部分第二馏出物的水含量低的乙醇产物物流;和将至少部分乙醇产物物流在第三蒸馏塔中分离以获得包含乙酸乙酯的第三馏出物和包含乙醇和小于3wt.%水的第三残余物。
在第五实施方案中,本发明涉及用于生产乙醇的方法,该方法包括以下步骤:使乙酸和/或其酯在反应器中于催化剂存在下加氢以形成粗乙醇产物;将部分粗乙醇产物在第一蒸馏塔中分离以获得包含乙醛的第一馏出物和包含乙醇,乙酸,乙酸乙酯和水的第一残余物;将部分第一残余物在第二蒸馏塔中分离以获得包含乙酸和水的第二残余物和包含乙醇,和乙酸乙酯的第二馏出物;将至少部分第二馏出物分离以获得包含乙酸乙酯的第三馏出物和包含乙醇的第三残余物;和将至少部分第三馏出物返回到第一蒸馏塔。
在第六实施方案中,本发明涉及用于生产乙醇的方法,该方法包括以下步骤:使乙酸和/或其酯在反应器中于催化剂存在下加氢以形成粗乙醇产物;将部分粗乙醇产物在第一蒸馏塔中分离以获得包含乙醛的第一馏出物和包含乙醇,乙酸和/或乙酸乙酯的第一残余物;将部分第一残余物在第二蒸馏塔中分离以获得包含高沸点组分的第二残余物和包含乙醇和乙酸乙酯的第二馏出物;和将至少部分第二馏出物分离以获得包含乙酸乙酯的第三馏出物和包含乙醇的第三残余物。
附图说明
考虑与附图相关的本发明各种实施方案的以下详细描述可更充分理解本发明,其中相同的数字指示类似的部分。
图1是根据本发明一个实施方案的具有回收乙醇的多个蒸馏塔、包括酸分离塔的乙醇生产系统示意图。
图2是根据本发明一个实施方案的具有回收乙醇的多个蒸馏塔、包括之间的水移出的乙醇生产系统示意图。
发明详述
本发明涉及用于回收使乙酸在催化剂存在下加氢所产生的乙醇的方法。加氢反应产生包含乙醇,水,乙酸乙酯,乙醛,乙酸,和其它杂质的粗乙醇产物。本发明方法包括将粗乙醇产物在第一塔中分离为包含乙醇,水,乙酸乙酯和乙酸的残余物物流和包含乙醛的馏出物物流。第一塔主要移出轻有机物于馏出物中和将这些有机物返回用于随后的加氢。之后,将乙醇从残余物物流移出以获得乙醇产物。有利地,该分离方法导致从粗乙醇产物回收乙醇的降低的能量需求。
在回收乙醇时,本发明方法使用一个或多个蒸馏塔。在优选实施方案中,残余物物流包含来自粗乙醇产物的大部分乙醇,乙酸乙酯,水和乙酸。残余物物流,例如,可包含来自粗乙醇产物的至少50%和更优选至少70%的乙醇。就范围而言,残余物物流可包含50%-97.5%和更优选70%-97.5%的来自粗乙醇产物的乙醇。来自于粗乙醇的、回收于残余物中的乙醇的量可大于97.5%,例如至多99.9%。在一些实施方案中,取决于乙酸乙酯的浓度,在残余物中取出过多的乙醇可导致乙酸乙酯在残余物中的泄露(leakage)。本发明允许取出一些乙酸乙酯于残余物中,而不是操作塔以减少残余物中乙酸乙酯浓度。在一个实施方案中,残余物可包含至少50wppm的乙酸乙酯。由于残余物中乙酸和乙醇的原位酯化,可形成另外的乙酸乙酯和因此需要将乙酸乙酯移出以生产合格的乙醇产品。因此,乙酸乙酯,包括原位形成的乙酸乙酯,当以至少50wppm的量存在时,可随后进一步与乙醇分离。
在优选实施方案中,残余物物流包含来自粗乙醇产物的大部分水和乙酸。残余物物流可包含来自粗乙醇产物的至少80%和更优选至少90%的水。就范围而言,残余物物流优选包含来自粗乙醇产物的80%-100%和更优选90%-99.4%的水。残余物物流可包含来自粗乙醇产物的至少85%,例如,至少90%和更优选约100%的乙酸。就范围而言,残余物物流优选包含来自粗乙醇产物的85%-100%和更优选90%-100%的乙酸。在一个实施方案中,将基本上所有的乙酸回收于残余物物流中。除了大部分的乙酸和水,乙酸乙酯也可存在于残余物物流中。
可将包含乙醇,乙酸乙酯,水,和乙酸的残余物物流进一步分离以回收乙醇。由于这些化合物可能不处于平衡,通过乙醇和乙酸的酯化可产生另外的乙酸乙酯。在一个优选的实施方案中,可将水和乙酸在单独的蒸馏塔中作为另一残余物物流而移出。
在示例性的实施方案中,根据本发明方法中的初始塔的能量需求可小于5.5MMBtu/吨精制乙醇,例如,小于4.5MMBtu/吨精制乙醇或小于3.5MMBtu/吨精制乙醇。
来自初始塔的馏出物包含轻有机物,例如乙醛。其它轻有机物可包括乙缩醛(diethyl acetal),丙酮,和乙酸乙酯。此外,少量的乙醇和水可存在于馏出物中。在初始塔中从粗乙醇产物移出该组分提供用于移出乙醛的有效措施。此外,当使用多个塔时,乙醛,乙缩醛,和丙酮没有随着乙醇而被携带出来,因此减少了来自乙醛,乙缩醛,和丙酮的副产物的生成。特别地,可将乙醛和/或乙酸乙酯返回到反应器,并转化为另外的乙醇。在另一个实施方案中,吹扫可从系统将这些轻有机物除去。
来自初始塔的残余物包含乙酸乙酯。虽然也将乙酸乙酯部分地取出至第一馏出物中,第一残余物中较高浓度的乙酸乙酯导致第一残余物中增加的乙醇浓度和第一馏出物中减少的乙醇浓度。因此可增加整体的乙醇回收。在接近纯化工艺结束时,可在单独的塔中将乙酸乙酯与乙醇分离。在移出乙酸乙酯时,也可移出另外的轻有机物和因此通过减少杂质而改进乙醇产品的质量。优选地,在乙酸乙酯/乙醇分离之前可将水和/或乙酸移出。
在一个实施方案中,在乙酸乙酯与乙醇分离后,将乙酸乙酯返回到初始塔和给进到该塔的顶部附近。这允许回收与乙酸乙酯一起移出的任何乙醇和进一步减少待循环到反应器的乙醇的量。减少至反应器的乙醇循环可降低反应器资本和改进回收乙醇的效率。优选地,将乙酸乙酯移出于第一塔的馏出物中且将其与乙醛返回到反应器。
本发明方法可用于生产乙醇的任何加氢方法。下面进一步描述可在乙酸加氢中使用的材料,催化剂,反应条件,和分离方法。
有关本发明方法所使用的原料、乙酸和氢气可以衍生自任何合适的来源,包括天然气、石油、煤、生物质等。作为实例,可以通过甲醇羰基化、乙醛氧化、乙烯氧化、氧化发酵和厌氧发酵生产乙酸。适合于乙酸生产的甲醇羰基化方法描述于美国专利号7,208,624、7,115,772、7,005,541、6,657,078、6,627,770、6,143,930、5,599,976、5,144,068、5,026,908、5,001,259和4,994,608中,它们的全部公开内容通过引用并入本文。任选地,可以将乙醇生产与这种甲醇羰基化方法进行整合。
由于石油和天然气价格波动,或多或少变得昂贵,所以由替代碳源生产乙酸和中间体例如甲醇和一氧化碳的方法已逐渐引起关注。特别地,当石油相对昂贵时,由衍生自可较多获得的碳源的合成气体(“合成气”)生产乙酸可能变得有利。例如,美国专利号6,232,352(通过引用将其全文并入本文)教导了改造甲醇装置用以制造乙酸的方法。通过改造甲醇装置,对于新的乙酸装置,与CO产生有关的大量资金费用得到显著降低或在很大程度上消除。使所有或部分合成气从甲醇合成环路进行分流并供给到分离器装置以回收CO,然后将其用于生产乙酸。以类似方式,用于加氢步骤的氢气可以由合成气供给。
在一些实施方案中,用于上述乙酸加氢方法的一些或所有原料可以部分或全部衍生自合成气。例如,乙酸可以由甲醇和一氧化碳形成,甲醇和一氧化碳均可以衍生自合成气。合成气可以通过部分氧化重整或蒸汽重整形成,并且可以将一氧化碳从合成气分离出。类似地,可以将用于乙酸加氢形成粗乙醇产物步骤的氢气从合成气分离出。进而,合成气可以衍生自多种碳源。碳源例如可以选自天然气、油、石油、煤、生物质和它们的组合。合成气或氢气还可以得自生物衍生的甲烷气体,例如由填埋废物或农业废物产生的生物衍生的甲烷气体。
在另一个实施方案中,用于加氢步骤的乙酸可以由生物质发酵形成。发酵方法优选利用产乙酸(acetogenic)方法或同型的产乙酸微生物使糖类发酵得到乙酸并产生很少(如果有的话)二氧化碳作为副产物。与通常具有约67%碳效率的常规酵母法相比,所述发酵方法的碳效率优选大于70%、大于80%或大于90%。任选地,发酵过程中使用的微生物为选自如下的属:梭菌属(Clostridium)、乳杆菌属(Lactobacillus)、穆尔氏菌属(Moorella)、热厌氧杆菌属(Thermoanaerobacter)、丙酸杆菌属(Propionibacterium)、丙酸螺菌属(Propionispera)、厌氧螺菌属(Anaerobiospirillum)和拟杆菌属(Bacteriodes),特别是选自如下的物质:蚁酸醋酸梭菌(Clostridiumformicoaceticum)、丁酸梭菌(Clostridium butyricum)、热醋穆尔氏菌(Moorella thermoacetica)、凯伍热厌氧菌(Thermoanaerobacter kivui)、德氏乳杆菌(Lactobacillus delbrukii)、产丙酸丙酸杆菌(Propionibacterium acidipropionici)、栖树丙酸螺菌(Propionisperaarboris)、产琥珀酸厌氧螺菌(Anaerobiospirillum succinicproducens)、嗜淀粉拟杆菌(Bacteriodes amylophilus)和栖瘤胃拟杆菌(Bacteriodesruminicola)。任选地,在该过程中,可以将全部或部分的来自生物质的未发酵残余物例如木脂体气化以形成可用于本发明加氢步骤的氢气。用于形成乙酸的示例性发酵方法公开于美国专利号6,509,180;6,927,048;7,074,603;7,507,562;7,351,559;7,601,865;7,682,812;和7,888,082中,通过引用将它们全文并入本文。还参见美国公布号2008/0193989和2009/0281354,通过引用将它们全文并入本文。
生物质的实例包括但不限于农业废弃物、林业产品、草和其它纤维素材料、木材采伐剩余物、软木材碎片、硬木材碎片、树枝、树根、叶子、树皮、锯屑、不合格纸浆、玉米(corn)、玉米秸秆、麦秸秆、稻杆、甘蔗渣、软枝草、芒草、动物粪便、市政垃圾、市政污泥(municipalsewage)、商业废物、葡萄皮渣、杏核壳、山核桃壳、椰壳、咖啡渣、草粒、干草粒、木质颗粒、纸板、纸、塑料和布。参见例如美国专利号7,884,253,通过引用将其全文并入本文。另一种生物质源是黑液,稠的暗色液体,其为将木材转变成纸浆、然后将纸浆干燥来制造纸的Kraft方法的副产物。黑液是木质素残余物、半纤维素和无机化学物质的水溶液。
美国专利号RE35,377(也通过引用并入本文)提供了一种通过使碳质材料例如油、煤、天然气和生物质材料转化生产甲醇的方法。该方法包括使固体和/或液体碳质材料加氢气化以获得工艺气体,用另外的天然气将该工艺气体蒸汽热解以形成合成气。将该合成气转化为可以羰基化为乙酸的甲醇。该方法同样地可产生氢,该氢可在如上所述的与本发明相关的加氢系统中使用。美国专利号5,821,111公开了一种将废生物质通过气化转化为合成气的方法,以及美国专利号6,685,754公开了生产含氢气体组合物例如包含氢气和一氧化碳的合成气的方法,通过引用将它们全文并入本文。
给进到加氢反应器的乙酸进料物流也可以包含其它羧酸和酸酐,以及乙醛和丙酮。优选地,合适的乙酸进料物流包含一种或多种选自乙酸、乙酸酐、乙醛、乙酸乙酯和它们的混合物的化合物。在本发明的方法中还可以将这些其它化合物加氢。在一些实施方案中,在丙醇生产中一些羧酸例如丙酸或其酸酐的存在会是有益的。水也可存在于乙酸进料中。
替代地,可将以蒸气形式的乙酸作为粗产物直接从在美国专利号6,657,078(本文将其全部内容引用并入)中描述的一类甲醇羰基化装置的闪蒸容器取出。可将粗蒸气产物例如,直接给进到本发明的乙醇合成反应区而不需要冷凝乙酸和轻馏分或移出水从而节省整体的加工成本。
可以使乙酸在反应温度下气化,然后可以将气化的乙酸随同未稀释状态或用相对惰性的载气例如氮气、氩气、氦气、二氧化碳和类似物稀释的氢气一起给进。为使反应在气相中运行,应控制系统中的温度使得其不下降到低于乙酸的露点。在一个实施方案中,可以在特定压力下使乙酸在乙酸沸点气化,然后可以将气化的乙酸进一步加热到反应器入口温度。在另一个实施方案中,将乙酸在气化前与其它气体混合,接着将混合蒸气一直加热到反应器入口温度。优选地,通过使氢气和/或循环气穿过处于或低于125℃的温度下的乙酸而使乙酸转变为蒸气状态,接着将合并的气态物流加热到反应器入口温度。
在乙酸加氢形成乙醇的本发明方法的一些实施方案可以包括使用固定床反应器或流化床反应器的各种构造。在本发明的许多实施方案中,可以使用“绝热”反应器;即,具有很少或不需要穿过反应区的内部管道装置(plumbing)来加入或除去热。在其它实施方案中,可以使用径向流动的一个反应器或多个反应器作为反应器,或者可以使用具有或不具有热交换、急冷或引入另外进料物质的系列反应器。或者,可以使用配设有热传递介质的壳管式反应器。在许多情形中,反应区可以容纳在单个容器中或之间具有换热器的系列容器中。
在优选的实施方案中,催化剂在例如管道或导管形状的固定床反应器中使用,其中典型地为蒸气形式的反应物穿过或通过所述催化剂。可使用其它反应器,例如流化床或沸腾床反应器。在一些情形中,加氢催化剂可以与惰性材料结合使用以调节反应物物流通过催化剂床的压降和反应物化合物与催化剂颗粒的接触时间。
反应器中的加氢可以在液相或气相中进行。优选地,在气相中于如下条件下进行该反应。反应温度可以为125℃-350℃,例如200℃-325℃、225℃-300℃或250℃-300℃。压力可以为10kPa-3000kPa,例如50kPa-2300kPa或100kPa-1500kPa。可以将反应物以大于500hr-1,例如大于1000hr-1、大于2500hr-1或甚至大于5000hr-1的气时空速(GHSV)给进到反应器。就范围而言,GHSV可以为50hr-1-50,000hr-1,例如500hr-1-30,000hr-1、1000hr-1-10,000hr-1或1000hr-1-6500hr-1
任选在刚刚足以克服穿过催化剂床的压降的压力下以所选择的GHSV进行加氢,尽管不限制使用较高的压力,但应理解,在高的空速例如5000hr-1或6,500hr-1下可能经历通过反应器床的相当大的压降。
虽然该反应每摩尔乙酸消耗2摩尔氢气从而产生1摩尔乙醇,但进料物流中氢气与乙酸的实际摩尔比可以为约100:1-1:100,例如50:1-1:50、20:1-1:2或12:1-1:1。最优选地,氢气与乙酸的摩尔比大于2:1,例如大于4:1或大于8:1。
接触或停留时间也可以宽泛地变化,这些取决于如乙酸的量、催化剂、反应器、温度和压力的变量。当使用除固定床外的催化剂系统时,典型的接触时间为几分之一秒到大于若干小时,至少对于气相反应,优选的接触时间为0.1-100秒,例如0.3-80秒或0.4-30秒。
优选在加氢催化剂存在下进行乙酸的加氢形成乙醇。合适的加氢催化剂包括任选在催化剂载体上包含第一金属并任选包含第二金属、第三金属或任意数目的另外金属中的一种或多种的催化剂。第一与可选的第二和第三金属可以选自:IB、ΠB、IIIB、IVB、VB、VIB、VIIB、VIII族过渡金属,镧系金属,锕系金属或者选自IIIA、IVA、VA和VIA族中任意族的金属。就一些示例性催化剂组合物而言的优选金属组合包括铂/锡、铂/钌、铂/铼、钯/钌、钯/铼、钴/钯、钴/铂、钴/铬、钴/钌、钴/锡、银/钯、铜/钯、铜/锌、镍/钯,金/钯、钌/铼和钌/铁。示例性的催化剂还描述于美国专利号7,608,744和美国公布号2010/0029995中,通过引用将它们全文并入本文。在另一个实施方案中,催化剂包括美国公布号2009/0069609中所述类型的Co/Mo/S催化剂,通过引用将其全文并入本文。
在一个实施方案中,该催化剂包含选自铜、铁、钴、镍、钌、铑、钯、锇、铱、铂、钛、锌、铬、铼、钼和钨的第一金属。优选地,第一金属选自铂、钯、钴、镍和钌。更优选地,第一金属选自铂和钯。在第一金属包含铂的本发明实施方案中,由于对铂的高商业需求,催化剂优选包含小于5wt.%例如小于3wt.%或小于1wt.%的量的铂。
如上所示,在一些实施方案中,催化剂还包含第二金属,该第二金属典型地可起促进剂的作用。如果存在,第二金属优选选自铜、钼、锡、铬、铁、钴、钒、钨、钯、铂、镧、铈、锰、钌、铼、金和镍。更优选地,第二金属选自铜、锡、钴、铼和镍。更优选地,第二金属选自锡和铼。
在催化剂包含两种或更多种金属,例如第一金属和第二金属的某些实施方案中,第一金属以0.1-10wt.%,例如0.1-5wt.%或0.1-3wt.%的量存在于催化剂中。第二金属优选以0.1-20wt.%,例如0.1-10wt.%或0.1-5wt.%的量存在。对于包含两种或更多种金属的催化剂,所述两种或更多种金属可以彼此合金化或者可以包含非合金化金属溶液或混合物。
优选的金属比率可以取决于催化剂中所用的金属而变动。在一些示例性实施方案中,第一金属与第二金属的摩尔比为10:1-1:10,例如4:1-1:4、2:1-1:2、1.5:1-1:1.5或1.1:1-1:1.1。
该催化剂还可以包含第三金属,该第三金属选自上文关于第一或第二金属所列出的任意金属,只要该第三金属不同于第一和第二金属。在优选方面,第三金属选自钴、钯、钌、铜、锌、铂、锡和铼。更优选地,第三金属选自钴、钯和钌。当存在时,第三金属的总重量优选为0.05-4wt.%,例如0.1-3wt.%或0.1-2wt.%。
在本发明的一些实施方案中,除一种或多种金属外,催化剂还包含载体或改性载体。如本文所使用的,术语“改性载体”是指包括载体材料和载体改性剂的载体,所述载体改性剂调节载体材料的酸度。
载体或改性载体的总重量基于该催化剂总重量计优选为75-99.9wt.%,例如78-97wt.%或80-95wt.%。在利用改性载体的优选实施方案中,载体改性剂以基于催化剂总重量计0.1-50wt.%,例如0.2-25wt.%、0.5-15wt.%或1-8wt.%的量存在。催化剂的金属可以分散遍及整个载体,在整个载体中分层,涂覆在载体的外表面上(即蛋壳)或修饰(decorate)在载体表面上。
本领域技术人员可意识到,对载体材料进行选择使得催化剂体系在用于生成乙醇的工艺条件下具有合适的活性、选择性和稳健性(robust)。
合适的载体材料可以包括例如稳定的金属氧化物基载体或陶瓷基载体。优选的载体包括硅质载体,例如二氧化硅、二氧化硅/氧化铝、IIA族硅酸盐如偏硅酸钙、热解二氧化硅、高纯度二氧化硅和它们的混合物。其它载体可以包括但不限于铁氧化物(iron oxide)、氧化铝、二氧化钛、氧化锆、氧化镁、碳、石墨、高表面积石墨化碳、活性炭和它们的混合物。
如所示,催化剂载体可以用载体改性剂进行改性。在一些实施方案中,载体改性剂可以是增加催化剂酸度的酸性改性剂。合适的酸性改性剂可以选自IVB族金属的氧化物、VB族金属的氧化物、VIB族金属的氧化物、VIIB族金属的氧化物、VIIIB族金属的氧化物、铝氧化物和它们的混合物。酸性载体改性剂包括选自TiO2、ZrO2、Nb2O5、Ta2O5、Al2O3、B2O3、P2O5和Sb2O3的那些。优选的酸性载体改性剂包括选自TiO2、ZrO2、Nb2O5、Ta2O5和Al2O3的那些。酸性改性剂还可以包括选自WO3、MoO3、Fe2O3、Cr2O3、V2O5、MnO2、CuO、Co2O3、Bi2O3的那些。
在另一个实施方案中,载体改性剂可以是具有低挥发性或无挥发性的碱性改性剂。这样的碱性改性剂例如可以选自:(i)碱土金属氧化物、(ii)碱金属氧化物、(iii)碱土金属偏硅酸盐、(iv)碱金属偏硅酸盐、(v)IIB族金属氧化物、(vi)IIB族金属偏硅酸盐、(vii)IIIB族金属氧化物、(viii)IIIB族金属偏硅酸盐和它们的混合物。除氧化物和偏硅酸盐之外,可以使用包括硝酸盐、亚硝酸盐、乙酸盐和乳酸盐在内的其它类型的改性剂。优选地,载体改性剂选自钠、钾、镁、钙、钪、钇和锌中任意元素的氧化物和偏硅酸盐,以及前述的任意混合物。更优选地,碱性载体改性剂是硅酸钙,更优选偏硅酸钙(CaSiO3)。如果碱性载体改性剂包含偏硅酸钙,则优选地至少部分偏硅酸钙为结晶形式。
优选的二氧化硅载体材料是来自Saint-Gobain NorPro的SS61138高表面积(HSA)二氧化硅催化剂载体。Saint-Gobain NorPro SS61138二氧化硅表现出如下性质:含有约95wt.%的高表面积二氧化硅;约250m2/g的表面积;约12nm的中值孔径;通过压汞孔隙测量法测量的约1.0cm3/g的平均孔体积和约0.352g/cm3(22lb/ft3)的堆积密度。
优选的二氧化硅/氧化铝载体材料是来自Sud Chemie的KA-160二氧化硅球,其具有约5mm的标称直径,约0.562g/ml的密度,约0.583g H2O/g载体的吸收率,约160-175m2/g的表面积和约0.68ml/g的孔体积。
适用于本发明的催化剂组合物优选通过改性载体的金属浸渍形成,尽管还可以使用其它方法例如化学气相沉积。这样的浸渍技术描述于上文提及的美国专利号7,608,744和7,863,489以及美国公布号2010/0197485中,通过引用将它们全文并入本文。
特别地,乙酸的加氢可获得乙酸的有利转化率以及对乙醇的有利选择性和产率。就本发明而言,术语“转化率”是指进料中转化为除乙酸外的化合物的乙酸的量。转化率按基于进料中乙酸的摩尔百分数表示。转化率可为至少10%,例如,至少20%,至少40%,至少50%,至少60%,至少70%或至少80%。虽然具有高转化率的催化剂例如至少80%或至少90%是期望的,但是在一些实施方案中,在高的乙醇选择性时,可接受低转化率。当然,应充分理解在许多情况下,可能通过适合的循环物流或使用较大反应器来补偿转化率,但是补偿差的选择性是更困难的。
选择性按基于转化的乙酸的摩尔百分数表示。应理解由乙酸转化的每种化合物具有独立的选择性并且该选择性不依赖于转化率。例如,如果所转化的乙酸的60摩尔%转化为乙醇,则乙醇选择性为60%。优选地,催化剂对乙氧基化合物的选择性为至少60%,例如至少70%或至少80%。如本文所使用的,术语“乙氧基化合物”具体是指化合物乙醇、乙醛和乙酸乙酯。优选地,在反应器中,乙醇的选择性为至少80%,例如至少85%或至少88%。该加氢方法的优选实施方案还具有对不期望的产物例如甲烷、乙烷和二氧化碳的低选择性。对这些不期望的产物的选择性优选小于4%,例如小于2%或小于1%。更优选地,这些不期望的产物以检测不到的量存在。烷烃的形成可以是低的,理想地,穿过催化剂的乙酸小于2%、小于1%或小于0.5%转化为烷烃,该烷烃除作为燃料外具有很小价值。
如本文中所使用的术语“产率”是指加氢期间基于所用催化剂的千克计每小时所形成的规定产物例如乙醇的克数。优选的产率为每千克催化剂每小时至少100克乙醇,例如每千克催化剂每小时至少400克乙醇为或每千克催化剂每小时至少600克乙醇。就范围而言,所述产率优选为每千克催化剂每小时100-3,000克乙醇,例如400-2,500克乙醇每千克催化剂每小时或600-2,000克乙醇每千克催化剂每小时。
在本发明条件下操作可以大约产生至少0.1吨乙醇/小时,例如至少1吨乙醇/小时、至少5吨乙醇/小时或至少10吨乙醇/小时的乙醇产率。较大规模的乙醇工业生产(取决于规模)通常应为至少1吨乙醇/小时,例如至少15吨乙醇/小时或至少30吨乙醇/小时。就范围而言,对于大规模的乙醇工业生产,本发明的方法可以产生0.1-160吨乙醇/小时,例如15-160吨乙醇/小时或30-80吨乙醇/小时。由发酵生产乙醇,由于规模经济,通常不允许单一设备来进行可通过使用本发明实施方案实现的乙醇生产。
在本发明的各种实施方案中,由加氢方法产生的粗乙醇混合物,在任何随后处理例如纯化和分离之前,将典型地包含未反应的乙酸、乙醇和水。在表1中提供了粗乙醇混合物的示例性组成范围。表1中所确定的“其它”可以包括例如酯、醚、醛、酮、烷烃和二氧化碳。
Figure BDA00002920455600141
在一个实施方案中,粗乙醇混合物可以包含小于20wt.%,例如小于15wt.%、小于10wt.%或小于5wt.%的量的乙酸。就范围而言,表1的乙酸浓度可以为0.1wt.%-20wt.%,例如0.2wt.%-15wt.%、0.5wt.%-10wt.%或1wt.%-5wt.%。在具有较低的乙酸量的实施方案中,乙酸的转化率优选大于75%,例如大于85%或大于90%。此外,乙醇选择性也优选是高的,大于75%,例如大于85%或大于90%。
图1和2中显示根据本发明实施方案的示例性乙醇回收系统。根据本发明实施方案,各加氢系统100提供适合的加氢反应器和用于从粗反应混合物分离乙醇的方法。系统100包括反应区101和分离区102。反应区101包括反应器103,氢进料管线104和乙酸进料管线105。分离区102包括分离器106和一个或多个蒸馏塔。
如图1和2中所示,至反应器103的进料包含乙酸。在其它实施方案中,进料可包含乙酸和乙酸乙酯,或乙酸乙酯。当单独使用乙酸乙酯作为进料时,粗乙醇产物可基本不含水和/或乙酸。可存在高沸点组分,例如具有大于2个碳原子的醇,例如,正-丙醇,异丙醇,正-丁醇,2-丁醇,和它们的混合物。高沸点组分指沸点大于乙醇沸点的化合物。如本文所述可将高沸点组分在第二塔中作为第二残余物移出于第二残余物中。
将氢和乙酸分别通过管线104和105给进到蒸发器109以在导向反应器103的管线110中产生蒸气进料物流。在一个实施方案中,管线104和105可组合并共同给进到蒸发器109。管线110中蒸气进料物流的温度优选为100℃-350℃,例如,120℃-310℃或150℃-300℃。将未蒸发的任何进料从蒸发器109移出和可循环或废弃。此外,虽然显示管线110导向反应器103的顶部,但是管线110可导向反应器103的侧部,上部或底部。下面描述对反应区101和分离区102的进一步修改和另外的组成部分。
反应器103含有在羧酸、优选乙酸加氢中使用的催化剂。在一个实施方案中,可以在反应器的上游,任选地蒸发器109上游使用一个或多个保护床(未示出),以保护催化剂免于遭受进料或返回/再循环物流中所含的有毒物质或不期望的杂质。这类保护床可以在蒸气物流或液体物流中使用。合适的保护床材料可以包括例如碳、二氧化硅、氧化铝、陶瓷或树脂。在一方面,保护床介质是功能化的,例如银功能化的,以捕集特殊物质例如硫或卤素。在加氢过程期间,通过管线111将粗乙醇产物物流优选连续地从反应器103取出。
可以将粗乙醇产物物流冷凝并且给进到分离器106,这进而提供了蒸气物流112和液体物流113。在一些实施方案中,分离器106可包括闪蒸器或气液分离罐。分离器106可以在20℃-250℃,例如30℃-225℃或60℃-200℃的温度下操作。分离器106的压力可以为50kPa-2000kPa,例如75kPa-1500kPa或100kPa-1000kPa。任选地,可以使管线111中的粗乙醇产物穿过一个或多个膜以分离氢气和/或其它不凝性气体。
离开分离器106的蒸气物流112可以包含氢气和烃,并且可以将其进行清洗和/或返回到反应区101。如所示,可以将蒸气物流112与氢气进料104合并并且共同给进到蒸发器109。在一些实施方案中,返回的蒸气物流112在与氢气进料104合并之前可以进行压缩。
将来自分离器106的液体物流113取出并且作为进料组合物导向第一蒸馏塔107(也称作“乙醛脱除塔”)的侧部。在一个实施方案中,液体物流113的内容物基本上类似于从反应器获得的粗乙醇产物,不同之处在于该组合物贫含氢气、二氧化碳、甲烷或乙烷,它们通过分离器106被去除。因此,液体物流113还可以称作粗乙醇产物。表2中提供了液体物流113的示例性组分。应理解的是,液体物流113可以含有表2中未列出的其它组分。
Figure BDA00002920455600161
在整个本说明书的表中小于(<)所示的量是优选不存在并且如果存在则可以按痕量或以大于0.0001wt.%的量存在。
表2中的“其它酯”可以包括但不限于丙酸乙酯、乙酸甲酯、乙酸异丙酯、乙酸正丙酯、乙酸正丁酯或它们的混合物。表2中的“其它醚”可以包括但不限于二乙醚、甲基乙基醚、异丁基乙基醚或它们的混合物。表2中的“其它醇”可以包括但不限于甲醇、异丙醇、正丙醇、正丁醇或它们的混合物。在一个实施方案中,液体物流113可以包含以0.001-0.1wt.%、0.001-0.05wt.%或0.001-0.03wt.%的量的丙醇如异丙醇和/或正丙醇。应理解,这些其它组分可以载带在本文所描述的任何馏出物物流或残余物物流中,并且除非另外说明,本文将不作进一步描述。
任选地,还可以将管线111中或液体物流113中的粗乙醇产物给进到酯化反应器、氢解反应器或它们的组合。酯化反应器可以用于消耗粗乙醇产物中存在的乙酸以进一步减少待移出的乙酸的量。氢解可以用于将粗乙醇产物中的乙酸乙酯转化为乙醇。
在图1中所示的实施方案中,将液体物流113引入第一塔107的上部,例如上半部或上三分之一。在一个实施方案中,没有向第一塔107加入夹带剂。在第一塔107中,将大部分重量的乙醇,水,乙酸从液体物流113移出并优选连续地作为管线114中的残余物取出。此外,乙酸乙酯也可存在于管线114中的第一残余物中。第一塔107还形成塔顶馏出物,将其在管线115中取出,且可将其冷凝和例如以30:1-1:30,例如,10:1-1:10或1:5-5:1的比率进行回流。物流115中的塔顶馏出物优选包含来自液体物流113的大部分重量的乙醛。
当塔107在约170kPa操作时,在管线114中离开的残余物的温度优选为70℃-155℃,例如,90℃-130℃或100℃-110℃。通过取出包含乙醇,乙酸乙酯,水,和乙酸的残余物物流可使塔107的基底维持在相对低的温度,因此提供能量有效优势。来自优选处于170kPa的塔107的管线115中离开的馏出物的温度为75℃-100℃,例如,75℃-83℃或81℃-84℃。在一些实施方案中,第一塔107的压力可为0.1kPa-510kPa,例如,1kPa-475kPa或1kPa-375kPa。下表3中提供了第一塔107的馏出物和残余物组合物的示例性组分。应理解馏出物和残余物也可包含表3中未列出的其它组分。为方便,第一塔的馏出物和残余物也可称作“第一馏出物”或“第一残余物”。为将它们与彼此区分其它塔的馏出物或残余物也可用相同的数字修饰语(第二,第三,等)提及,但是这样的修饰语不应理解为需要任何特殊的分离顺序。
Figure BDA00002920455600181
在本发明实施方案中,塔107可在其中将大部分水,乙醇,乙酸乙酯和乙酸从残余物物流移出和由于形成二元和三元共沸物将仅少量乙醇和水收集在馏出物物流中的温度下操作。管线114中残余物中的水和管线115中馏出物中的水的重量比可大于1:1,例如,大于2:1。残余物中的乙醇与馏出物中的乙醇的重量比可大于1:1,例如,大于2:1。
第一残余物中乙酸的量可变动,这主要取决于反应器103中的转化率。在一个实施方案中,当转化率高,例如,大于90%时,第一残余物中乙酸的量可小于10wt.%,例如,小于5wt.%或小于2wt.%。在其它实施方案中,当转化率低,例如,小于90%时,第一残余物中乙酸的量可大于10wt.%。
在一些实施方案中,第一塔107中的分离可在没有添加共沸剂或抽提剂的情况下进行。
馏出物优选基本不含乙酸,例如,包含小于1000wppm,小于500wppm或小于100wppm的乙酸。可将馏出物从系统进行吹扫或全部或部分循环至反应器103。在一些实施方案中,当馏出物包含乙酸乙酯和乙醛时,可将馏出物例如在蒸馏塔(未示出)中进一步分离为乙醛物流和乙酸乙酯物流。可将这些物流的任一返回到反应器103或作为单独的产物从系统100分离出。
一些物质,例如缩醛,可在第一塔107中分解使得非常低量或甚至检测不到量的缩醛保留在馏出物或残余物中。
此外,乙酸/乙醇和乙酸乙酯之间的平衡反应可在粗乙醇产物离开反应器103后在其中发生。取决于粗乙醇产物中乙酸的浓度,可驱动该平衡朝向生成乙酸乙酯。使用停留时间和/或粗乙醇产物的温度可调节该反应。
图1-2中所示的塔可以包括能够进行所需分离和/或纯化的任何蒸馏塔。各塔优选是具有1-150个塔板,例如10-100个塔板、20-95个塔板或30-75个塔板的板式塔。塔板可以是筛板、固定浮阀塔板、移动浮阀塔板或本领域已知的任何其它合适的设计。在其它实施方案中,可以使用填料塔。对于填料塔,可以使用规整填料或无规填料。可以将所述塔板或填料按一种连续塔进行排列或者可以将它们按两个或更多个塔进行排列使得来自第一段的蒸气进入第二段并同时使来自第二段的液体进入第一段,等等。
可以与各个蒸馏塔一起使用的有关冷凝器和液体分离容器可以具有任何常规设计并且在图中加以简化。可以将热供给到各个塔的底部或者通过换热器或再沸器供给到循环塔底物流。还可以使用其它类型的再沸器,例如内部再沸器。提供给再沸器的热可以得自于与所述再沸器整合的过程期间所产生的任何热或者得自于外部来源例如另一种产生热的化学方法或锅炉。虽然在图中显示了一个反应器和一个闪蒸器,但是在本发明的各种实施方案中可以使用附加的反应器、闪蒸器、冷凝器、加热元件和其它部件。如本领域技术人员所可认识到的,还可以将通常用于进行化学方法的各种冷凝器、泵、压缩机、再沸器、转鼓、阀、连接器、分离容器等进行组合并且用于本发明的方法中。
塔中所用的温度和压力可以变动。虽然在一些实施方案中可采用低于大气压力或高于大气压力的压力,但是作为实际情况,在这些区域中通常采用10kPa-3000kPa的压力。各个区域内的温度将通常在作为馏出物被除去的组合物的沸点和作为残余物被除去的组合物的沸点之间的范围内。本领域技术人员将认识到,运行的蒸馏塔中给定位置的温度取决于在该位置处的物料组成和塔的压力。此外,进料速率可以取决于生产工艺规模而变化,如果进行描述,则可以一般是指按照进料重量比。
在一个实施方案中,由于管线114中第一残余物的组成,平衡可能有利于产生乙酸乙酯的酯化。无论在液相或气相中,在酯化可消耗乙醇时,酯化也可减少需要从该方法移出的乙酸的量。原位形成的乙酸乙酯可与在反应器103中形成的乙酸乙酯一起取出并进入管线114中的第一残余物中。使管线114中的部分第一残余物通过酯化反应器可进一步促进酯化。酯化反应器可以是或液相或气相反应器并且可包含酸性催化剂。酸催化酯化反应可用于本发明的一些实施方案。催化剂在反应温度时应该是热稳定的。适合的催化剂可以是固体酸催化剂,该催化剂包括离子交换树脂,沸石,路易斯酸,金属氧化物,无机盐和它们的水合物,以及杂多酸和它们的盐。硅胶,氧化铝,和磷酸铝也是适合的催化剂。酸催化剂包括但不限于,硫酸,和对甲基苯磺酸。此外,路易斯酸也可用作酯化催化剂,例如三氟甲磺酸钪(III)或镧系元素(III)的三氟甲磺酸盐,铪(IV)或锆(IV)盐,和芳烃磺酸二芳基铵(diarylammonium arenesulfonate)。催化剂也可包括磺化的(磺酸)离子交换树脂(例如,凝胶类别和大孔的磺化的苯乙烯-二乙烯基苯IER),磺化的聚硅氧烷树脂,磺化的全氟化(例如,磺化的聚-全氟乙烯),或磺化的氧化锆。
为回收乙醇,取决于乙酸和/或乙酸乙酯的浓度,可将管线114中的第一残余物进一步分离。在本发明的大部分实施方案中,将管线114中的残余物在第二塔108中进一步分离。在图1和2中,因为第二残余物117包含乙酸和水,所以该第二塔称作“酸分离塔”。当第一残余物中的乙酸浓度大于50wppm,例如,大于0.1wt.%,1wt.%,例如,大于5wt.%时,可使用酸分离塔。
在图1和2中,将管线114中的第一残余物引入到第二塔108,例如,酸分离塔,优选在塔108的上部,例如,上半部或上三分之一。第二塔108产生管线117中包含乙酸和水的第二残余物,和管线118中包含乙醇的第二馏出物。第二塔108可以是板式塔或填料塔。在一个实施方案中,第二塔108是具有5-150个塔板,例如,15-50个塔板或20-45个塔板的板式塔。虽然第二塔108的温度和压力可变化,当在大气压力时,从第二塔108的管线117中离开的第二残余物的温度优选为95℃-130℃,例如,100℃-125℃或110℃-120℃。从第二塔108的管线118中离开的第二馏出物的温度优选为60℃-105℃,例如,75℃-100℃或80℃-100℃。第二塔108的压力可以为0.1kPa-510kPa,例如,1kPa-475kPa或1kPa-375kPa。下表4中提供了第二塔108的馏出物和残余物组合物的示例性组分。应理解馏出物和残余物也可包含表4中未列出的其它组分。
Figure BDA00002920455600211
管线118中第二馏出物中的乙醇与管线117中第二残余物中的乙醇的重量比优选为至少35:1。在一个实施方案中,第二残余物117中的水与第二馏出物118中的水的重量比大于2:1,例如,大于4:1或大于6:1。此外,第二残余物117中的乙酸与第二馏出物118中的乙酸的重量比优选大于10:1,例如,大于15:1或大于20:1。优选地,管线118中的第二馏出物基本不含乙酸和可仅包含(如果存在的话)痕量乙酸。管线118中减少的乙酸浓度有利地提供也不具有乙酸或具有痕量乙酸的乙醇产品。
在一些任选的实施方案中,当使用乙酸乙酯单独作为进料时,表4中示例的第二残余物可包含高沸点组分。优选地,这些高沸点组分包括具有大于两个碳原子的醇。
在一个实施方案中,给进到第二塔108的乙酸乙酯可浓缩于管线118的第二馏出物中。因此,优选地没有将乙酸乙酯取出于管线117中的第二残余物中。这有利地允许随后回收大部分乙酸乙酯而不必进一步处理管线117中的第二残余物。
如图1中所示,第三塔125,称作“轻馏分”塔,用于从管线118中的第二馏出物移出乙酸乙酯和产生管线127中的乙醇产物。可将管线128中的第三馏出物从系统清洗出,可进行冷凝和回流回到第三塔125或可全部或部分循环至塔107。来自第三塔125的管线127中的第三残余物可包含乙醇和任选地任何残余的水。可对该第三残余物进一步处理以回收乙醇和期望数量的水,例如,可使用另外的蒸馏塔,吸附装置,膜或它们的组合以进一步根据需要从管线127中的第三残余物脱除水。第三塔125优选为如上所述的板式塔和优选在大气压力下操作。从第三塔125离开的第三残余物的温度优选为60℃-110℃,例如,70℃-100℃或75℃-95℃。当该塔在大气压力下操作时,从第三塔125离开的第三馏出物的温度优选为70℃-115℃,例如,80℃-110℃或85℃-105℃。
可在本发明另一实施方案中将来自管线118中第二馏出物的剩余的水移出。取决于水浓度,乙醇产品可来自管线118中的第二馏出物。一些应用,例如工业乙醇应用,可容许乙醇产品中的水,而其它应用例如燃料应用,可能需要无水乙醇。管线118的馏出物中的水量可较接近于水的共沸量,例如,至少4wt.%,优选小于20wt.%,例如,小于12wt.%或小于7.5wt.%。使用数种不同的分离技术可将水从管线118中的第二馏出物移出。特别优选的技术包括使用蒸馏塔,膜,吸附装置和它们的组合。
在一个实施方案中,在轻馏分塔125之前可移出水。如在图2中所示,管线118中的第二馏出物可在管线131中给进到至水分离器132以使第二馏出物脱水。水分离器132可以是吸附装置,膜,分子筛,抽提塔蒸馏装置,或它们的组合。任选地,可将管线118中的一些馏出物,优选管线130中的冷凝部分,直接给进到第三蒸馏塔125,如在管线136中所示。
在优选实施方案中,水分离器132为变压吸附(PSA)装置。PSA装置任选地在30℃-160℃,例如,80℃-140℃的温度,和0.01kPa-550kPa,例如,1kPa-150kPa的压力操作。PSA装置可包括2-5个床。水分离器132可从管线131中的第二馏出物移出至少95%水,和更优选移出来自第二馏出物的99%-99.99%的水于水物流133中。可将所有或部分水物流133在管线134中返回到塔108。作为替代或补充,可对所有或部分水物流133进行清洗。第二馏出物131的剩余部分作为乙醇混合物物流135离开水分离器132。可将管线118中的部分第二馏出物冷凝和例如,以10:1-1:100,例如,2:1-1:50或1:1-1:10的比值在管线130中回流至第二塔108,如所示。应理解回流比可随着分级数,进料位置,塔效率和/或进料组成而变化。由于可能需要更多能量操作第一塔108,所以用大于3:1的回流比进行操作是不那么优选的。
在一个实施方案中,管线127中的第三残余物可包含75-96wt.%的乙醇和小于12wt.%的水,更优选小于3wt.%的水。取决于期望的乙醇应用和第三馏出物中有机物的浓度,可从系统取出所得的管线127中的第三残余物作为成品乙醇产品。对于一些乙醇应用,可能期望从管线127中的第三残余物脱除残余的水。残余水的脱除可例如使用一个或多个吸附装置,膜,分子筛,抽提蒸馏装置,或它们的组合而完成。适合的吸附装置包括变压吸附系统和变温吸附装置。
取决于包含在第二塔108的第二残余物中水和乙酸的量,可以下列方法的一种或多种对管线117进行处理。当残余物包含大部分例如,大于70wt.%的乙酸时,可将残余物循环到反应器而没有任何的水的分离。在一个实施方案中,当残余物包含大部分例如,大于50wt.%的乙酸时可将残余物分离为乙酸物流和水物流。在一些实施方案中,也可将乙酸从具有较低乙酸浓度的第一残余物回收。通过蒸馏塔或一个或多个膜将残余物分离为乙酸和水物流。如果使用膜或膜阵列以将乙酸和水分离,膜或膜阵列可选自任何能够移出渗透水物流的适合的耐酸膜。任选地,可将所得的乙酸物流返回到反应器103。所得的水物流可用作抽提剂或在水解装置中用于水解含酯物流。
在其它实施方案中,例如,当管线117中的第二残余物包含小于50wt.%的乙酸时,可能的选择包括以下中的一种或多种:(i)将部分残余物返回到反应器103;(ii)将乙酸中和,(iii)使乙酸与醇反应或(iv)在废水处理设备中处置残余物。还可以使用可向其中加入溶剂(任选充当共沸剂)的弱酸回收蒸馏塔来分离包含小于50wt.%乙酸的残余物。可适合该目的的示例性溶剂包括乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、乙酸乙烯酯、二异丙基醚、二硫化碳、四氢呋喃、异丙醇、乙醇和C3-C12烷烃。当中和乙酸时,管线113中的残余物优选包含小于10wt.%乙酸。乙酸可以用任何合适的碱或碱土金属碱,例如氢氧化钠或氢氧化钾中和。当使乙酸与醇反应时,所述残余物优选包含小于50wt.%乙酸。所述醇可以是任何合适的醇,例如甲醇、乙醇、丙醇、丁醇或它们的混合物。反应形成酯,可以将其与其它系统,例如羰基化生产工艺或酯生产工艺进行整合。优选地,所述醇包含乙醇,所得酯包含乙酸乙酯。任选地,可以将所得酯给进到加氢反应器。
在一些实施方案中,当残余物包含非常少量例如,小于5wt.%的乙酸时,可将残余物处理至废水处理设备而不进行进一步处理。残余物的有机物含量,例如,乙酸含量可有利地适合于供养在废水处理设备中使用的微生物。
由本发明方法生产的乙醇产品可以是工业级乙醇,其包含基于乙醇产品的总重量计75-96wt.%乙醇,例如,80-96wt.%或85-96wt.%乙醇。下面表5提供了示例性成品乙醇组合物的范围。
Figure BDA00002920455600251
本发明的成品乙醇组合物优选含有非常低量,例如小于0.5wt.%的其它醇,例如甲醇、丁醇、异丁醇、异戊醇和其它C4-C20醇。在一个实施方案中,成品乙醇组合物中异丙醇的量为80-1,000wppm,例如95-1,000wppm、100-700wppm或150-500wppm。在一个实施方案中,成品乙醇组合物基本上不含乙醛,任选包含小于8wppm,例如小于5wppm或小于1wppm的乙醛。
在一些实施方案中,当使用进一步的水分离时,如上所述,可将乙醇产品作为来自水分离装置的物流而取出。在这样的实施方案中,乙醇产品的乙醇浓度可高于表7中所示,和优选地大于97wt.%,例如,大于98wt.%或大于99.5wt.%乙醇。在该方面,乙醇产品优选包含小于3wt.%,例如,小于2wt.%或小于0.5wt.%的水。
由本发明实施方案生产的成品乙醇组合物可以用于各种应用,包括燃料、溶剂、化学原料、药物产品、清洁剂、消毒杀菌剂、加氢转化或消费。在燃料应用中,可以使该成品乙醇组合物与汽油调合用于机动车辆例如汽车、船只和小型活塞发动机飞机。在非燃料应用中,该成品乙醇组合物可以用作化妆品和化妆品制剂的溶剂、清净剂、消毒剂、涂料、油墨和药品。该成品乙醇组合物还可以在药用产品、食品制剂、染料、光化学和乳胶处理的制造过程中用作处理溶剂。
该成品乙醇组合物还可以用作化学原料以制备其它化学品例如醋、丙烯酸乙酯、乙酸乙酯、乙烯、二醇醚、乙胺、乙苯、醛、丁二烯和高级醇,特别是丁醇。在乙酸乙酯的制备中,可以将该成品乙醇组合物用乙酸酯化。在另一个应用中,可以使该成品乙醇组合物脱水以生产乙烯。可使用任何已知的脱水催化剂使乙醇脱水,所述脱水催化剂例如在共同未决的美国公开号2010/0030002和2010/0030001中所描述的那些,在此通过引用将它们的全部内容和公开内容并入本文。例如,沸石催化剂可以用作脱水催化剂。优选地,所述沸石具有至少约0.6nm的孔径,优选的沸石包括选自丝光沸石、ZSM-5、沸石X和沸石Y的脱水催化剂。例如沸石X描述于美国专利号2,882,244中,沸石Y描述于美国专利号3,130,007中,在此通过引用将它们全文并入本文。
虽然详细描述了本发明,但在本发明的精神和范围内的各种修改对于本领域技术人员而言将是显而易见的。此外,应理解在本文和/或在所附权利要求书中引述的本发明的各个方面以及多个实施方案和多个特征的各个部分可以部分或全部地进行组合或者互换。在前述各个实施方案的描述中,如本领域技术人员所可认识到的,引用另一个实施方案的那些实施方案可以与一个或多个其它实施方案适当地组合。此外,本领域技术人员将认识到前述描述仅仅是举例方式,并且不意欲限制本发明。

Claims (23)

1.用于生产乙醇的方法,所述方法包括:
使乙酸和/或其酯在反应器中于催化剂存在下加氢以形成粗乙醇产物;
将部分粗乙醇产物在第一蒸馏塔中分离以获得包含乙醛的第一馏出物和包含乙醇,乙酸,乙酸乙酯和水的第一残余物;
将部分第一残余物在第二蒸馏塔中分离以获得包含乙酸和水的第二残余物和包含乙醇,和乙酸乙酯的第二馏出物;和
将至少部分第二馏出物分离以获得包含乙酸乙酯的第三馏出物和包含乙醇的第三残余物。
2.权利要求1的方法,其中将粗乙醇产物中至少90%的乙醇取出至第一残余物物流中。
3.权利要求1的方法,其中所述第一残余物包含大于50wppm的乙酸乙酯。
4.权利要求1的方法,其中所述第一馏出物包含小于1wt.%的乙醇。
5.权利要求1的方法,其中所述第一馏出物包含小于5wt.%的水。
6.权利要求1的方法,还包括将至少部分第三馏出物返回至第一蒸馏塔。
7.权利要求1的方法,还包括将至少部分第一馏出物返回至反应器。
8.权利要求1的方法,其中所述第一馏出物包含乙酸乙酯。
9.权利要求1的方法,还包括从第二残余物回收乙酸和将至少部分回收的乙酸返回至反应器。
10.权利要求1的方法,还将至少部分第二残余物导向废水处理设备以供养在废水处理设备中使用的微生物。
11.权利要求1的方法,其中所述第二残余物包含0.1-10wt.%的乙酸,所述方法还包括使来自第二残余物的乙酸中和或反应的步骤。
12.权利要求1的方法,其中所述第二馏出物基本不含乙酸。
13.权利要求1的方法,还包括使用吸附装置,膜,抽提塔蒸馏装置,分子筛,或它们的组合从至少部分第二馏出物移出水以获得比至少部分第二馏出物的水含量低的乙醇产物物流。
14.权利要求13的方法,其中所述第三残余物包含小于3wt.%的水。
15.权利要求1的方法,其中使第一残余物中的至少一些乙酸与乙醇反应以形成第一残余物中或第二塔中的富酯物流。
16.权利要求1的方法,其中将所述第一残余物给进到包含酸性催化剂的酯化反应器。
17.权利要求1的方法,其中所述乙酸由甲醇和一氧化碳形成,其中各甲醇,一氧化碳,和用于加氢步骤的氢衍生自合成气,和其中合成气衍生自选自天然气,油,石油,煤,生物质和它们的组合的碳源。
18.用于生产乙醇的方法,所述方法包括:
提供包含乙醇,乙酸,乙酸乙酯,乙醛,和水的粗乙醇产物物流;
将部分粗乙醇产物在第一蒸馏塔中分离以获得包含乙醛的第一馏出物和包含乙醇,乙酸,乙酸乙酯和水的第一残余物;
将部分第一残余物在第二蒸馏塔中分离以获得包含乙酸和水的第二残余物和包含乙醇和乙酸乙酯的第二馏出物;和
将至少部分第二馏出物分离以获得包含乙酸乙酯的第三馏出物和包含乙醇的第三残余物。
19.用于生产乙醇的方法,所述方法包括:
提供包含乙醇,乙酸乙酯,乙醛,和水的粗乙醇产物物流;
将至少部分粗乙醇产物物流在第一蒸馏塔中分离以形成包含乙醛的第一馏出物和包含乙醇,乙酸乙酯和水的第一残余物;
将至少部分第一残余物分离以形成包含乙酸乙酯和乙醇的有机物物流和包含水的含水物流;和
将有机物物流在第二蒸馏塔中分离以形成包含乙酸乙酯的第二馏出物和包含乙醇的第二残余物。
20.用于生产乙醇的方法,所述方法包括:
使乙酸和/或其酯在反应器中于催化剂存在下加氢以形成粗乙醇产物物流;
将部分粗乙醇产物在第一蒸馏塔中分离以获得包含乙醛的第一馏出物和包含乙醇,乙酸,乙酸乙酯和水的第一残余物;
将部分第一残余物在第二蒸馏塔中分离以获得包含乙酸的第二残余物和包含乙醇,乙酸乙酯和水的第二馏出物;
从至少部分第二馏出物移出水以获得比至少部分第二馏出物的水含量低的乙醇产物物流;和
将至少部分乙醇产物物流在第三蒸馏塔中分离以获得包含乙酸乙酯的第三馏出物和包含乙醇和小于3wt.%水的第三残余物。
21.权利要求20的方法,其中使用吸附装置,膜,抽提塔蒸馏装置,分子筛,或它们的组合移出水。
22.用于生产乙醇的方法,所述方法包括:
使乙酸和/或其酯在反应器中于催化剂存在下加氢以形成粗乙醇产物;
将部分粗乙醇产物在第一蒸馏塔中分离以获得包含乙醛的第一馏出物和包含乙醇,乙酸和/或乙酸乙酯的第一残余物;
将部分第一残余物在第二蒸馏塔中分离以获得包含高沸点组分的第二残余物和包含乙醇和乙酸乙酯的第二馏出物;和
将至少部分第二馏出物分离以获得包含乙酸乙酯的第三馏出物和包含乙醇的第三残余物。
23.权利要求22的方法,其中所述高沸点组分选自乙酸,水,具有大于两个碳原子的醇,和它们的混合物。
CN201180044408.3A 2011-04-26 2011-11-09 从乙酸乙酯残余物物流回收醇的方法 Expired - Fee Related CN103108853B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/094,588 US8686200B2 (en) 2011-04-26 2011-04-26 Process to recover alcohol from an acidic residue stream
US13/094,588 2011-04-26
PCT/US2011/060014 WO2012148463A1 (en) 2011-04-26 2011-11-09 Process to recover alcohol from an ethyl acetate residue stream

Publications (2)

Publication Number Publication Date
CN103108853A true CN103108853A (zh) 2013-05-15
CN103108853B CN103108853B (zh) 2016-07-20

Family

ID=45217638

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2011800406274A Pending CN103068783A (zh) 2011-04-26 2011-11-09 从酸性残余物料流回收醇的方法
CN201180044408.3A Expired - Fee Related CN103108853B (zh) 2011-04-26 2011-11-09 从乙酸乙酯残余物物流回收醇的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2011800406274A Pending CN103068783A (zh) 2011-04-26 2011-11-09 从酸性残余物料流回收醇的方法

Country Status (7)

Country Link
US (1) US8686200B2 (zh)
EP (1) EP2702021A1 (zh)
CN (2) CN103068783A (zh)
AR (1) AR086057A1 (zh)
MX (1) MX2013012535A (zh)
TW (1) TW201247607A (zh)
WO (2) WO2012148458A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104211569A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 醋酸直接加氢生产乙醇的方法
CN104211570A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 由乙酸直接加氢生产无水乙醇的方法
CN104211576A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 乙酸加氢生产乙醇的方法
CN104211575A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 乙酸直接加氢制乙醇的方法
CN104211573A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 由醋酸加氢生产无水乙醇的方法
CN104211574A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 乙酸直接加氢生产乙醇的方法
CN104211571A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 乙酸加氢生产无水乙醇的方法
CN105418372A (zh) * 2014-09-18 2016-03-23 中国石油化工股份有限公司 一种醋酸加氢生产乙醇的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8927784B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process to recover alcohol from an ethyl acetate residue stream
US9353034B2 (en) 2012-02-07 2016-05-31 Celanese International Corporation Hydrogenation process with reduced residence time for vapor phase reactants
US9850512B2 (en) 2013-03-15 2017-12-26 The Research Foundation For The State University Of New York Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield
US9951363B2 (en) 2014-03-14 2018-04-24 The Research Foundation for the State University of New York College of Environmental Science and Forestry Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects
CN105481649B (zh) * 2014-09-18 2017-08-25 中国石油化工股份有限公司 一种乙酸加氢制备乙醇的方法
DE102015102627A1 (de) * 2015-02-24 2016-08-25 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Anlage und Verfahren zur Herstellung von aufgereinigtem Methanol
CN109534954B (zh) * 2017-09-21 2022-02-08 中国石油化工股份有限公司 一种联产环己醇和乙醇的方法及装置
CA3163619C (en) * 2020-03-11 2023-04-11 Ralph Gillespie Methods and apparatuses for recovering and separating ethanol from a fermentation broth
CN114685246B (zh) * 2020-12-29 2023-07-11 国投生物科技投资有限公司 燃料乙醇和普酒乙醇联产的系统和方法
CN113368539A (zh) * 2021-06-11 2021-09-10 西安石油大学 基于分子筛膜的润滑油脱水净化装置及其方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110082322A1 (en) * 2008-07-31 2011-04-07 Radmila Jevtic Process for Making Ethanol From Acetic Acid Using Acidic Catalysts

Family Cites Families (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2607807A (en) 1950-02-24 1952-08-19 Du Pont Preparation of alcohols from carboxylic acids
US2649407A (en) 1952-03-14 1953-08-18 Gulf Research Development Co Separation of ethyl acetate and ethanol by azeotropic distillation with methanol
US2702783A (en) 1952-03-14 1955-02-22 Gulf Research Development Co Process of separating mixtures of organic compounds
US2882244A (en) 1953-12-24 1959-04-14 Union Carbide Corp Molecular sieve adsorbents
US2801209A (en) 1954-11-16 1957-07-30 Nat Petro Chem Alcohol purification process
US3102150A (en) 1960-02-19 1963-08-27 Exxon Research Engineering Co Process for hydrogenating carbonyl compounds
US3130007A (en) 1961-05-12 1964-04-21 Union Carbide Corp Crystalline zeolite y
DE1235879B (de) 1964-03-17 1967-03-09 Basf Ag Verfahren zur Herstellung von Alkoholen durch katalytische Hydrierung von Carbonsaeuren
US3408267A (en) 1966-01-17 1968-10-29 Nat Distillers Chem Corp Extractive distillation of ethanol followed by activated carbon treatment
US3445345A (en) 1968-05-08 1969-05-20 Raphael Katzen Associates Extractive distillation of c1 to c3 alcohols and subsequent distillation of purge streams
US3769329A (en) 1970-03-12 1973-10-30 Monsanto Co Production of carboxylic acids and esters
US3990952A (en) 1974-10-10 1976-11-09 Raphael Katzen Associates International, Inc. Alcohol distillation process
GB1592949A (en) 1976-12-22 1981-07-15 Ici Ltd Methanol
US4126539A (en) 1977-12-05 1978-11-21 Mobil Oil Corporation Method and arrangement of apparatus for hydrogenating hydrocarbons
FR2426037A1 (fr) 1978-05-17 1979-12-14 Rhone Poulenc Ind Procede de preparation de l'acetate d'ethyle
US4317918A (en) 1979-11-05 1982-03-02 Sumitomo Chemical Co., Ltd. Process for preparing alcohols
US4352940A (en) 1980-04-28 1982-10-05 E. I. Du Pont De Nemours And Company Hydrolysis of methyl acetate
NL8003405A (nl) 1980-06-12 1982-01-04 Shell Int Research Werkwijze voor het bereiden van ethanol.
US4306942A (en) 1980-06-27 1981-12-22 Raphael Katzen Associates International, Inc. Hydrous alcohol distillation method and apparatus
EP0048173B1 (en) 1980-09-16 1985-01-16 Mitsubishi Gas Chemical Company, Inc. One step process for producing vinyl acetate
US4319058A (en) 1980-10-10 1982-03-09 Uop Inc. Process for the separation of ethanol from water
DE3101750A1 (de) 1981-01-21 1982-08-26 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von ethanol
US4886905A (en) 1981-01-30 1989-12-12 Eastman Kodak Company Preparation of ethyl acetate
US4422903A (en) 1981-02-17 1983-12-27 Raphael Katzen Associates International Inc. Anhydrous ethanol distillation method and apparatus
DE3107731A1 (de) 1981-02-28 1982-09-16 Basf Ag, 6700 Ludwigshafen Verfahren zur abtrennung organischer jod-verbindungen von carbonylierungsprodukten des methanols, methylacetates und dimethylethers
US4465854A (en) 1981-03-17 1984-08-14 Eastman Kodak Company Preparation of ethyl acetate
US4471136A (en) 1981-03-17 1984-09-11 Eastman Kodak Company Preparation of ethyl acetate
US4398039A (en) 1981-05-18 1983-08-09 The Standard Oil Company Hydrogenation of carboxylic acids
US4443639A (en) 1981-05-18 1984-04-17 The Standard Oil Company (Indiana) Hydrogenation of carboxylic acids
DE3142518A1 (de) 1981-10-27 1983-05-05 Chemische Werke Hüls AG, 4370 Marl Destillationsverfahren zur herstellung von entwaessertem ethanol
DE3303571C2 (de) 1982-03-11 1984-07-26 Buckau-Walther AG, 4048 Grevenbroich Verfahren und Anlage zur Herstellung von Äthanol
ZA831987B (en) 1982-03-26 1984-04-25 Davy Mckee London Process for the production of ethanol
US4379028A (en) 1982-03-30 1983-04-05 Lloyd Berg Separation of ethyl acetate from ethanol and water by extractive distillation
US4520213A (en) 1982-05-03 1985-05-28 Institute Of Gas Technology Method for solvent recovery in solvent separation of ethanol from water
DE3221077A1 (de) 1982-06-04 1983-12-08 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von ethanol
US4421939A (en) 1982-10-15 1983-12-20 Union Carbide Corporation Production of ethanol from acetic acid
US4480115A (en) 1983-03-17 1984-10-30 Celanese Corporation Direct hydrogenation of carboxylic acids to alcohol and esters
DE3313530A1 (de) 1983-04-14 1984-10-18 Fried. Krupp Gmbh, 4300 Essen Verfahren zur abtrennung von aethanol aus einer athanolhaltigen loesung
US5124004A (en) 1983-08-22 1992-06-23 Trustees Of Dartmouth College Distillation process for ethanol
US4626321A (en) 1983-08-22 1986-12-02 Trustees Of Dartmouth College Distillation systems and methods
BR8404579A (pt) 1983-09-14 1985-08-06 Halcon Sd Group Inc Processo para tratamento de acido acetico aquoso diluido
US5001259A (en) 1984-05-03 1991-03-19 Hoechst Celanese Corporation Methanol carbonylation process
US5026908A (en) 1984-05-03 1991-06-25 Hoechst Celanese Corporation Methanol carbonylation process
US5144068A (en) 1984-05-03 1992-09-01 Hoechst Celanese Corporation Methanol carbonylation process
EP0167300A1 (en) 1984-06-06 1986-01-08 Humphreys &amp; Glasgow Limited Process for the production of alcohols
US4497967A (en) 1984-06-15 1985-02-05 The Halcon Sd Group, Inc. Process for the preparation of ethanol from methanol, carbon monoxide _and hydrogen
EP0175558A1 (en) 1984-09-17 1986-03-26 EASTMAN KODAK COMPANY (a New Jersey corporation) Process for the vapor phase hydrogenation of carboxylic acids to esters and alcohols
FR2577217B1 (fr) 1985-02-08 1987-02-20 Rhone Poulenc Chim Base Procede d'hydrogenation de l'acide acetique
GB8509530D0 (en) 1985-04-13 1985-05-15 Bp Chem Int Ltd Hydrogenation of carboxylic acids
US5215902A (en) 1985-08-12 1993-06-01 Georgia Tech Research Corporation Process for recovering alcohol with energy integration
GB8601081D0 (en) 1986-01-17 1986-02-19 Distillers Co Carbon Dioxide Removing water from ethanol
US4961826A (en) 1986-02-13 1990-10-09 Trustees Of Dartmouth College Distillation process for ethanol
CA1299195C (en) 1986-06-16 1992-04-21 G. Paull Torrence Addition of hydrogen to carbon monoxide feed gas in producing acetic acid by carbonylation of methanol
JPS6415136A (en) 1987-03-03 1989-01-19 Japan Tobacco Inc Catalyst for reducing carboxylic acid or its ester to alcohol compound
US5149680A (en) 1987-03-31 1992-09-22 The British Petroleum Company P.L.C. Platinum group metal alloy catalysts for hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
GB8707595D0 (en) 1987-03-31 1987-05-07 British Petroleum Co Plc Chemical process
US5250271A (en) 1987-07-24 1993-10-05 Minister Of International Trade & Industry Apparatus to concentrate and purify alcohol
US5198592A (en) 1987-12-11 1993-03-30 Engelhard De Meern B.V. Hydrogenolysis reaction and catalyst suitable therefor
GB8828616D0 (en) 1988-12-07 1989-01-11 Bp Chem Int Ltd Chemical process
FI80218C (fi) 1988-12-30 1990-05-10 Alko Ab Oy Foerfarande och anlaeggning foer rening av en tvaokomponentvaetskeblandning medelst destillering.
GB8917157D0 (en) 1989-07-27 1989-09-13 Bp Chem Int Ltd Chemical process
US5237108A (en) 1990-03-06 1993-08-17 Ausimont S.R.L. Perfluoropolyethers and processes for their preparation
US5035776A (en) 1990-03-29 1991-07-30 University Of Massachusetts Low energy extractive distillation process for producing anhydrous ethanol
JPH0635403B2 (ja) 1990-04-16 1994-05-11 通商産業省基礎産業局長 粗製エタノール水溶液中の不純物の分離方法
JPH0699337B2 (ja) 1990-12-27 1994-12-07 花王株式会社 アルコールの製造方法
US5070016A (en) 1991-03-28 1991-12-03 Revolution Fuels Of America, Inc. Integrated process for producing ethanol, methanol and butyl ethers
KR940009255B1 (ko) 1991-08-12 1994-10-06 한국과학기술연구원 헤테로폴리산 촉매와 폴리술폰막으로 구성된 촉매막 반응기
US5414161A (en) 1992-06-30 1995-05-09 Korea Institute Of Science And Technology Process for the preparation of ethanol from methanol
US5821111A (en) 1994-03-31 1998-10-13 Bioengineering Resources, Inc. Bioconversion of waste biomass to useful products
IT1256062B (it) 1992-11-20 1995-11-23 Snam Progetti Procedimento per l'ottenimento di correnti di metanolo, etanolo, n-propanolo,isobutanolo,utilizzabili soprattutto nella preparazione diprodotti alto ottanici, da miscele contenenti detti alcoli con acqua ed altri composti bassobollenti e altobollenti
USRE35377E (en) 1993-05-27 1996-11-12 Steinberg; Meyer Process and apparatus for the production of methanol from condensed carbonaceous material
JP3381804B2 (ja) 1993-07-27 2003-03-04 荒川化学工業株式会社 カルボン酸直接還元用触媒および該触媒の製造方法ならびにアルコール化合物の製造方法
US5348625A (en) 1994-01-14 1994-09-20 Lloyd Berg Separation of ethanol from isopropanol by extractive distillation
US5437770A (en) 1994-09-13 1995-08-01 Lloyd Berg Separation of ethanol from isopropanol by azeotropic distillation
US5445716A (en) 1994-10-18 1995-08-29 Lloyd Berg Separation of ethanol from isopropanol by extractive distillation
US5415741A (en) 1994-10-18 1995-05-16 Lloyd Berg Separation of ethanol from isopropanol by azeotropic distillation
KR960022419A (ko) 1994-12-29 1996-07-18 김준웅 반응증류를 이용하여 메틸아세테이트로부터 초산과 메탄올을 제조하는 방법 및 장치
US5502248A (en) 1995-02-27 1996-03-26 Uop Process for concurrent hydrolysis of esters and separation of products using a simulated moving bed
US5599976A (en) 1995-04-07 1997-02-04 Hoechst Celanese Corporation Recovery of acetic acid from dilute aqueous streams formed during a carbonylation process
EP0959064B1 (en) 1995-08-02 2001-12-12 BP Chemicals Limited Ester synthesis
GB9616573D0 (en) 1996-08-07 1996-09-25 Bp Chem Int Ltd Process
IN192600B (zh) 1996-10-18 2004-05-08 Hoechst Celanese Corp
CA2256626C (en) 1997-03-26 2006-08-22 Bp Chemicals Limited Ester co-production
US5762765A (en) 1997-04-14 1998-06-09 Berg; Lloyd Separation of ethanol, isopropanol and water mixtures by azeotropic distillation
US5800681A (en) 1997-04-21 1998-09-01 Berg; Lloyd Separation of ethanol, isopropanol and water mixtures by extractive distillation
US6121498A (en) 1998-04-30 2000-09-19 Eastman Chemical Company Method for producing acetaldehyde from acetic acid
US5993610A (en) 1998-05-04 1999-11-30 Berg; Lloyd Separation of ethyl acetate from ethanol by azeotropic distillation
US6294703B1 (en) 1998-06-22 2001-09-25 Mitsubishi Chemical Company Process for the manufacture of cycloalkyldimethanol
US5973193A (en) 1998-07-16 1999-10-26 Mobil Oil Corporation Ethyl acetate synthesis from ethylene and acetic acid using solid acid catalysts
GB9816385D0 (en) 1998-07-29 1998-09-23 Bp Chem Int Ltd Process
GB9819606D0 (en) 1998-09-08 1998-11-04 Bp Chem Int Ltd Carbonylation process
EP0990638A1 (en) 1998-10-01 2000-04-05 Kvaerner Process Technology Limited Process
EP0992482A1 (en) 1998-10-01 2000-04-12 Kvaerner Process Technology Limited Process
EP0992484A1 (en) 1998-10-01 2000-04-12 Kvaerner Process Technology Limited Process
DE69910962T2 (de) 1998-12-24 2004-07-22 Council Of Scientific & Industrial Research Verfahren zur Herstellung von Estern
US6375807B1 (en) 1999-01-28 2002-04-23 Izak Nieuwoudt Separation of ethanol mixtures by extractive distillation
PL207932B1 (pl) 1999-03-11 2011-02-28 Zeachem Inc Sposób wytwarzania etanolu
US7074603B2 (en) 1999-03-11 2006-07-11 Zeachem, Inc. Process for producing ethanol from corn dry milling
DE19920390C2 (de) 1999-05-04 2002-08-01 Celanese Chem Europe Gmbh Katalysator und Verfahren zur Herstellung von Vinylacetat
JP4282829B2 (ja) 1999-06-16 2009-06-24 株式会社クラレ カルボン酸及びアルコールの製造方法
JP2001046874A (ja) 1999-08-17 2001-02-20 Mitsubishi Chemicals Corp 水素化用触媒、及びこれを用いるカルボン酸類からのアルコール類の製造方法
DE19942895A1 (de) 1999-09-08 2001-03-15 Basf Ag Katalysator und Verfahren zur Hydrierung von Carbonylverbindungen
JP4193304B2 (ja) 1999-09-20 2008-12-10 井関農機株式会社 作業車両の操向制御装置
WO2001021306A1 (fr) 1999-09-21 2001-03-29 Asahi Kasei Kabushiki Kaisha Catalyseurs pour l'hydrogenation de l'acide carboxylique
CZ292620B6 (cs) 1999-10-14 2003-11-12 Sulzer Chemtech Ltd. Způsob výroby etylacetátu a zařízení k provádění tohoto způsobu
US6232352B1 (en) 1999-11-01 2001-05-15 Acetex Limited Methanol plant retrofit for acetic acid manufacture
US6723886B2 (en) 1999-11-17 2004-04-20 Conocophillips Company Use of catalytic distillation reactor for methanol synthesis
US6768021B2 (en) 1999-12-22 2004-07-27 Celanese International Corporation Process improvement for continuous ethyl acetate production
DE10009817A1 (de) 2000-03-01 2001-09-06 Basf Ag Verfahren zur Herstellung von Alkoholen an rheniumhaltigen Aktivkohle-Trägerkatalysatoren
US6627770B1 (en) 2000-08-24 2003-09-30 Celanese International Corporation Method and apparatus for sequesting entrained and volatile catalyst species in a carbonylation process
US6765110B2 (en) 2000-12-19 2004-07-20 Celanese International Corporation Process for the simultaneous coproduction and purification of ethyl acetate and isopropyl acetate
JP2004526686A (ja) 2000-12-23 2004-09-02 デグサ アクチエンゲゼルシャフト カルボニル化合物の水素化によるアルコールの製法
US6657078B2 (en) 2001-02-07 2003-12-02 Celanese International Corporation Low energy carbonylation process
US6685754B2 (en) 2001-03-06 2004-02-03 Alchemix Corporation Method for the production of hydrogen-containing gaseous mixtures
US7297236B1 (en) 2001-06-30 2007-11-20 Icm, Inc. Ethanol distillation process
US7115772B2 (en) 2002-01-11 2006-10-03 Celanese International Corporation Integrated process for producing carbonylation acetic acid, acetic anhydride, or coproduction of each from a methyl acetate by-product stream
US6755975B2 (en) 2002-06-12 2004-06-29 Membrane Technology And Research, Inc. Separation process using pervaporation and dephlegmation
US7005541B2 (en) 2002-12-23 2006-02-28 Celanese International Corporation Low water methanol carbonylation process for high acetic acid production and for water balance control
CA2523099C (en) 2003-04-25 2012-01-17 2S-Sophisticated Systems Limited Distillation method
WO2005073161A1 (en) 2004-01-29 2005-08-11 Zeachem Inc. Recovery of organic acids
US7208624B2 (en) 2004-03-02 2007-04-24 Celanese International Corporation Process for producing acetic acid
US7223886B2 (en) 2004-03-02 2007-05-29 Celanese International Corporation Removal of permanganate reducing compounds from methanol carbonylation process stream
US7700801B2 (en) 2004-11-15 2010-04-20 Celanese International Corporation Co-production of vinyl acetate and ethyl acetate
US20080135396A1 (en) 2005-04-12 2008-06-12 White Fox Technologies Limited Separation Method
WO2006123158A2 (en) 2005-05-20 2006-11-23 Bp Chemicals Limited Process for the conversion of synthesis gas to oxygenates
EP1741692A1 (en) 2005-07-06 2007-01-10 BP Chemicals Limited Process for the conversion of hydrocarbons to C2-oxygenates
US20080207953A1 (en) 2005-07-13 2008-08-28 Basf Aktiengesellschaft Catalyst and Method for Hyrogenating Carbonyl Compounds
US7732173B2 (en) 2005-08-03 2010-06-08 Membrane Technology And Research, Inc. Ethanol recovery process
US7226886B2 (en) 2005-09-15 2007-06-05 Chevron Phillips Chemical Company, L.P. Polymerization catalysts and process for producing bimodal polymers in a single reactor
KR101364812B1 (ko) 2005-12-21 2014-02-19 비피 케미칼즈 리미티드 카르보닐화 공정
DE102006003492A1 (de) 2006-01-25 2007-07-26 Oxeno Olefinchemie Gmbh Verfahren zur Entwässerung von Ethanol
CA2682778C (en) 2006-04-05 2017-03-07 Woodland Biofuels Inc. System and method for converting biomass to ethanol via syngas
EP2054366B1 (en) 2006-04-14 2017-08-09 Celanese International Corporation Process for the reduction of aldehyde concentration in a target stream
EP1923380A1 (en) 2006-10-20 2008-05-21 BP Chemicals Limited Process for the conversion of hydrocarbons to alcohols
NZ578813A (en) 2007-02-09 2012-04-27 Zeachem Inc Energy efficient methods to produce alcohols and carboxylic acids
US7700814B2 (en) 2007-03-27 2010-04-20 Exxonmobil Chemical Patents Inc. Manufacture of alcohols
US8080684B2 (en) 2007-06-27 2011-12-20 H R D Corporation Method of producing ethyl acetate
US8002953B2 (en) 2007-07-13 2011-08-23 Amt International Inc. Low-energy extractive distillation process for dehydration of aqueous ethanol
US7923405B2 (en) 2007-09-07 2011-04-12 Range Fuels, Inc. Cobalt-molybdenum sulfide catalyst materials and methods for ethanol production from syngas
CN103787831B (zh) 2007-11-14 2016-08-17 英国石油有限公司 由碳质原料生产醇的改进的方法
SG185947A1 (en) 2007-11-14 2012-12-28 Bp Plc Process for the production of alcohol from a carbonaceous feedstock
EP2060553A1 (en) 2007-11-14 2009-05-20 BP p.l.c. Process for the conversion of hydrocarbons into alcohol
EP2072492A1 (en) 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of hydrocarbons to ethanol
EP2072488A1 (en) 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of hydrocarbon to ethanol
EP2072489A1 (en) 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of hydrocarbons into ethanol
EP2072487A1 (en) 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of hydrocarbons to ethanol
US20090166172A1 (en) 2007-12-28 2009-07-02 Leonard Ray Casey Ethanol plant process
US20090221725A1 (en) 2008-02-28 2009-09-03 Enerkem, Inc. Production of ethanol from methanol
US8080693B2 (en) 2008-02-28 2011-12-20 Enerkem, Inc. Production of ethanol from methanol
TR201108313T3 (tr) 2008-04-29 2011-09-21 Celanese Int Corp Çoklu çözücü seçeneklerine sahip emici içeren metanol karbonilleme sistemi.
US8143444B2 (en) 2008-05-07 2012-03-27 Zeachem, Inc. Recovery of organic acids
US20100030002A1 (en) 2008-07-31 2010-02-04 Johnston Victor J Ethylene production from acetic acid utilizing dual reaction zone process
US7820852B2 (en) 2008-07-31 2010-10-26 Celanese International Corporation Direct and selective production of ethyl acetate from acetic acid utilizing a bimetal supported catalyst
US20100030001A1 (en) 2008-07-31 2010-02-04 Laiyuan Chen Process for catalytically producing ethylene directly from acetic acid in a single reaction zone
US7608744B1 (en) 2008-07-31 2009-10-27 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US7863489B2 (en) 2008-07-31 2011-01-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
US8309772B2 (en) 2008-07-31 2012-11-13 Celanese International Corporation Tunable catalyst gas phase hydrogenation of carboxylic acids
US8309773B2 (en) 2010-02-02 2012-11-13 Calanese International Corporation Process for recovering ethanol
US8471075B2 (en) 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
EP2186787A1 (en) 2008-11-13 2010-05-19 BP p.l.c. Hydrogenation of ethanoic acid to produce ethanol
US7884253B2 (en) 2008-12-11 2011-02-08 Range Fuels, Inc. Methods and apparatus for selectively producing ethanol from synthesis gas
US8394985B2 (en) 2010-02-02 2013-03-12 Celanese International Corporation Process for producing an ester feed stream for esters production and co-production of ethanol
US8318988B2 (en) 2010-05-07 2012-11-27 Celanese International Corporation Process for purifying a crude ethanol product
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US20120010445A1 (en) 2010-07-09 2012-01-12 Celanese International Corporation Low Energy Alcohol Recovery Processes
US8884080B2 (en) 2010-07-09 2014-11-11 Celanese International Corporation Reduced energy alcohol separation process
US8846988B2 (en) 2010-07-09 2014-09-30 Celanese International Corporation Liquid esterification for the production of alcohols
CN201768393U (zh) 2010-08-02 2011-03-23 江阴市润玛电子材料有限公司 超净高纯级无水乙醇提取装置
CN102229520B (zh) 2011-04-25 2013-12-11 江苏索普(集团)有限公司 一种由醋酸气相加氢制备乙醇的方法
CN102228831A (zh) 2011-04-25 2011-11-02 中国科学院大连化学物理研究所 一种乙酸气相加氢制取乙醇的催化剂

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110082322A1 (en) * 2008-07-31 2011-04-07 Radmila Jevtic Process for Making Ethanol From Acetic Acid Using Acidic Catalysts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. CONSTANTIN ET AL.: "influence of C-sources on the denitrification rate of a high-nitrate concentrated industrial wastewater", 《WAT. RES.》, vol. 31, no. 3, 31 December 1997 (1997-12-31), pages 583 - 589, XP004055038, DOI: doi:10.1016/S0043-1354(96)00268-0 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104211569A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 醋酸直接加氢生产乙醇的方法
CN104211570A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 由乙酸直接加氢生产无水乙醇的方法
CN104211576A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 乙酸加氢生产乙醇的方法
CN104211575A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 乙酸直接加氢制乙醇的方法
CN104211573A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 由醋酸加氢生产无水乙醇的方法
CN104211574A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 乙酸直接加氢生产乙醇的方法
CN104211571A (zh) * 2013-06-05 2014-12-17 中国石油化工股份有限公司 乙酸加氢生产无水乙醇的方法
CN104211573B (zh) * 2013-06-05 2016-03-30 中国石油化工股份有限公司 由醋酸加氢生产无水乙醇的方法
CN104211570B (zh) * 2013-06-05 2016-08-17 中国石油化工股份有限公司 由乙酸直接加氢生产无水乙醇的方法
CN105418372A (zh) * 2014-09-18 2016-03-23 中国石油化工股份有限公司 一种醋酸加氢生产乙醇的方法
CN105418372B (zh) * 2014-09-18 2017-09-29 中国石油化工股份有限公司 一种醋酸加氢生产乙醇的方法

Also Published As

Publication number Publication date
US8686200B2 (en) 2014-04-01
CN103108853B (zh) 2016-07-20
EP2702021A1 (en) 2014-03-05
WO2012148458A1 (en) 2012-11-01
AR086057A1 (es) 2013-11-13
CN103068783A (zh) 2013-04-24
WO2012148463A1 (en) 2012-11-01
TW201247607A (en) 2012-12-01
MX2013012535A (es) 2013-12-02
US20120277485A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
CN102958883B (zh) 能量降低的醇分离方法
CN103068782B (zh) 从乙醇混合物移出水的方法
CN103619791B (zh) 纯化乙醇产物的方法
CN102918012B (zh) 生产乙醇的方法
CN103108853A (zh) 从乙酸乙酯残余物物流回收醇的方法
CN103221367B (zh) 粗醇产物的提取蒸馏
CN102762526B (zh) 在侧线抽出蒸馏塔中回收乙醇以调节c3+醇浓度的方法
CN103119011B (zh) 从酸塔塔顶馏出物回收具有减少的水的乙醇的方法
CN103003225B (zh) 乙醇分离工艺的弱酸回收系统
CN102791664A (zh) 用于醇生产的液体酯化
CN103038199B (zh) 气相粗醇产物的分离
CN102906057A (zh) 回收含水乙酸加氢产生的乙醇的方法
CN103080050A (zh) 使用夹带剂蒸馏粗醇产物
CN103080053A (zh) 使用叠置床反应器生产乙醇的方法
CN103080051A (zh) 用于生产乙酸和醇的整合方法
CN103080054A (zh) 使用分别具有不同催化剂的多个床生产乙醇的方法
CN103025690A (zh) 在醇的生产中气相粗产物的酯化
CN103080052B (zh) 通过还原乙酸和蒸馏生产乙醇的方法
CN103068784A (zh) 从粗乙醇分离水
CN102906058A (zh) 将来自乙酸加氢的气体进行再循环的方法
CN103140460A (zh) 减少循环至乙酸加氢反应器的乙醇的方法
CN103930392A (zh) 用于通过酯污染物的水解改善乙醇生产的方法
CN103119009A (zh) 降低乙醇生产工艺的再循环料流中乙酸乙酯浓度的方法
CN103097326A (zh) 用使酸酯化的次级反应器回收醇的方法
CN102918013A (zh) 纯化乙醇的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160720

Termination date: 20171109