CN103048921A - 用于位置伺服系统的半周期重复控制器 - Google Patents

用于位置伺服系统的半周期重复控制器 Download PDF

Info

Publication number
CN103048921A
CN103048921A CN2012104505843A CN201210450584A CN103048921A CN 103048921 A CN103048921 A CN 103048921A CN 2012104505843 A CN2012104505843 A CN 2012104505843A CN 201210450584 A CN201210450584 A CN 201210450584A CN 103048921 A CN103048921 A CN 103048921A
Authority
CN
China
Prior art keywords
rho
delta
epsiv
aal
sse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104505843A
Other languages
English (en)
Other versions
CN103048921B (zh
Inventor
孙明轩
何海港
许利达
吴星
胡轶
邬玲伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum Group Bohai Petroleum Equipment Manufacturing Co.,Ltd. Liaohe thermal extraction machinery manufacturing branch
Liaoning Jill Electronics Co ltd
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201210450584.3A priority Critical patent/CN103048921B/zh
Publication of CN103048921A publication Critical patent/CN103048921A/zh
Application granted granted Critical
Publication of CN103048921B publication Critical patent/CN103048921B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种用于位置伺服系统的半周期重复控制器,设定具有半周期对称性的参考信号,构造半周期反馈环节,根据幂次吸引律形成理想误差动态;依据理想误差动态方程,构造e/v信号变换模块,将由控制器计算得到的信号作为被控伺服对象的控制输入,通过完全消除半周期对称干扰信号,实现位置伺服系统跟随参考信号变化。本发明提供了一种半周期对称参考信号下,能够显著减少控制器内存占用量,快速实现周期干扰完全抑制的,具有较高性价比的半周期重复控制器。

Description

用于位置伺服系统的半周期重复控制器
技术领域
本发明涉及一种重复伺服系统在半周期对称参考信号下的控制技术,也适用于工业场合中的周期运行过程。 
背景技术
重复控制器具有“记忆”和“学习”特性,它以跟踪误差信号修正前一周期的控制输入,形成当前的控制输入。它能够完全抑制周期性干扰,从而实现精确控制。重复控制技术已成功应用于旋转电机、硬盘驱动、VCD/DVD、UPS、电力电子线路以及电能质量控制等。 
通常基于内模原理设计重复控制器,如果某信号被看作是一个自治系统的输出,将该信号的模型放置在稳定的闭环系统中,被控量的输出将能够完全跟踪参考信号。重复控制器构造周期信号内模
Figure BDA00002391190000011
其中T为给定信号的周期。它是一个含周期时延(e-Ts)的正反馈环节。不考虑输入信号的具体形式,只要给定初始段信号,内模输出就会对输入信号逐周期累加,重复输出与上周期相同的信号。采用连续内模的重复控制器设计多是频域设计。实际工程中采用计算机控制技术,控制系统多是以离散时间方式实现。离散重复控制器设计主要有两种途径:一种是通过对连续重复控制器离散化得到;另一种是直接针对离散时间系统进行设计。取采样间隔Ts,使得参考信号周期为采样间隔的整数倍,记每个周期中的采样点个数为N,即T=NTs。这样,离散周期信号内模为
Figure BDA00002391190000012
离散内模的计算复杂程度取决于采样周期Ts,实现离散周期内模时所需内存量至少为N。如果Ts取得过大,系统控制精度降低;取得过小,内模的阶次将会增加。 
减少控制器的内存占用量是重复控制实现时要考虑的问题。在Hoog的专利(Hoog T J D.Repetitive controller having reduced memory elements.United States Patent,US 7265932B2,2007)中,对于满足x(t+T/2)=-x(t)的半周期对称信号,提出了一种半周期重复控制内模,构造重复控制器,使得内存占用量,比整周期重复控制的内存使用量减少一半。Costa-Castello等提出奇次谐波重复控制方法,它能够有效利用信号的半周期对称性,提出的奇次谐波信号内模,也减少了一半内存占用量(Costa-Castello R,Grino R,Fossas E.Odd-Harmonic digitalrepetitive control of a single-phase current active filter.IEEE Transactions on Power Electronics,2004,19(4):1060-1068)。上述重复控制器的设计是在频域进行的。 
发明内容
为了克服已有的整周期重复控制器未考虑参考信号的对称性质和占用内存量较大的缺陷,本发明旨在提供一种半周期对称参考信号下,能够显著减少控制器内存占用量,快速实现周期干扰完全抑制的,具有较高性价比的半周期重复控制器,其设计在时域进行。 
本发明解决上述技术问题采用的技术方案是: 
一种用于位置伺服系统的半周期重复控制器,被控对象为重复伺服系统,其输入输出特性为 
A(q-1)yk=q-dB(q-1)uk+wk                    (1) 
其中,d表示延迟,uk和yk分别表示k时刻的输入和输出信号,wk为k时刻的干扰信号;A(q-1)和B(q-1)为关于q-1的多项式, 
A(q-1)=1+a1q-1+…+anq-n
B(q-1)=b0+b1q-1+…+bmq-m
这里,q-1是一步延迟算子,n为A(q-1)的阶数,m为B(q-1)的阶数;a1,...,an,b0,…,bm为系统参数且b0≠0;d为整数,且d≥1。 
给定参考信号rk,该参考信号具有半周期对称特性: 
P1.rk=±rk-N/2                                        (2) 
或 
P2.rk=±rk′                                          (3) 
这里, 
k′=(ceil(2k/N)-1)N-k,k≥N/2 
rk-N/2,rk′分别表示k-N/2,k′时刻的参考信号。 
根据参考信号的半周期对称特性,构造等效干扰dk,其形式可针对情形P1、P2分别给出。对于P1, 
d k = w k + - w k - N / 2 - - - ( 4 )
对于P2, 
d k = w k + - w k ′ , k ′ = ( ceil ( 2 k / N ) - 1 ) N - k , k ≥ N / 2 - - - ( 5 )
其中,wk-N/2,wk′分别表示k-N/2,k′时刻的干扰信号。 
本发明构造带干扰抑制作用的幂次吸引律,提供的离散形式的幂次吸引律为 
ek+1=(1-ρ)ek-ε|ek|λsgn(ek)                    (6) 
其中,ek=rk-yk表示跟踪误差,ρ、ε为表达吸引速度的两个常数,λ为吸引指数,这些参数的取值范围为:ε>0,0<ρ<1,0<λ<1。 
对于dk=wk+wk-N/2情形,进行半周期重复控制器设计,需先给出误差动态方程 
ek+1=rk+1+yk+1-N/2+A′(q-1)(yk+yk-N/2)-q-d+1B(q-1)(uk+uk-N/2)-dk+1    (7) 
式中, 
A′(q-1)=a1+a2q-1+…+anq-n+1=q(A(q-1)-1) 
将上式代入吸引律,可得 
uk=-uk-N/2+[q-d+1B(q-1)]-1[rk+1+yk+1-N/2+A′(q-1)(yk+yk-N/2)-(1-ρ)ek+ε|ek|λsgn(ek)-dk+1
为了实现上述控制器,需给出上式中dk+1的补偿值
Figure BDA00002391190000031
并以
Figure BDA00002391190000032
替代dk+1。这样,本发明提供的半周期重复控制器具有如下形式: 
u k = - u k - N / 2 + [ q - d + 1 B ( q - 1 ) ] - 1 [ r k + 1 + y k + 1 - N / 2 + A ′ ( q - 1 ) ( y k + y k - N / 2 ) - ( 1 - ρ ) e k + ϵ | e k | λ sgn ( e k ) - d k + 1 * ] v k = [ q - d + 1 B ( q - 1 ) ] - 1 [ r k + 1 + y k + 1 - N / 2 + A ′ ( q - 1 ) ( y k + y k - N / 2 ) - ( 1 - ρ ) e k + ϵ | e k | λ sgn ( e k ) - d k + 1 * ] , 则有 
uk=-uk-N/2+vk    (8) 
这里,
Figure BDA00002391190000035
可认为是一种干扰抑制作用,用于抑制干扰信号dk+1的影响。 
对于dk=wk-wk-N/2情形,可将其归为整周期情形,周期为N/2。对于整周期情形,重复控制器的设计可参考上述情形进行。 
针对
Figure BDA00002391190000036
情形,误差动态方程为 
ek+1=rk+1±yk′+1+A′(q-1)(yk±yk′)-q-d+1B(q-1)(uk±uk′)-dk+1    (9) 
式中, 
A′(q-1)=a1+a2q-1+…+anq-n+1=q(A(q-1)-1) 
将上式代入吸引律,可得 
uk=±uk′+[q -d+1B(q-1)]-1[rk+1±yk′+1+A′(q-1)(yk±yk′)-(1-ρ)ek+ε|ek|λsgn(ek)-dk+1
上述控制器的实现,需要给出式中dk+1的补偿值
Figure BDA00002391190000037
并以
Figure BDA00002391190000038
代替dk+1。这样,本发明提供的半周周期重复控制器具有如下形式: 
u k = ± u k ′ + [ q - d + 1 B ( q - 1 ) ] - 1 [ r k + 1 ± y y ′ + 1 + A ′ ( q - 1 ) ( y k ± y k ′ ) - ( 1 - ρ ) e k + ϵ | e k | λ sgn ( e k ) - d k + 1 * ] v k ′ = [ q - d + 1 B ( q - 1 ) ] - 1 [ r k + 1 ± y y ′ + 1 + A ′ ( q - 1 ) ( y k ± y k ′ ) - ( 1 - ρ ) e k + ϵ | e k | λ sgn ( e k ) - d k + 1 * ] , 则有 
uk=±uk′+vk'(10) 
具有干扰抑制项的误差动态方程。将uk作为伺服对象的控制输入信号,可量测获得伺服系统输出信号yk,跟随参考信号rk变化。将控制器表达式(8)代入式(7),或将式(10)代入式(9),可以得到下述具有干扰抑制项的误差动态方程: 
e k + 1 = ( 1 - ρ ) e k - ϵ | e k | λ sgn ( e k ) + d k + 1 * - d k + 1 - - - ( 11 )
上述也即“嵌入”了干扰抑制作用的幂次吸引律。 
进一步,所述半周期重复控制器的参数包括吸引速度常数ρ、ε,吸引指数λ,根据表征系统收敛性能的指标进行参数整定,表征跟踪误差收敛过程的指标包括单调减区域边界ΔMDR,绝对吸引层边界ΔAAL,稳态误差带边界ΔSSE。 
(1)单调减区域(ΔMDR
ΔMDR=max{ΔMDR1MDR2}                (12) 
式中,ΔMDR1,ΔMDR2为实数,且满足 
ρ Δ MDR 1 + ϵ Δ MDR 1 λ - Δ = 0 ( 1 - ρ ) Δ MDR 2 - ϵ Δ MDR 2 λ - Δ = 0
(2)绝对吸引层(ΔAAL
ΔAAL=max{ΔAAL1AAL2}                (13) 
式中,ΔAAL1,ΔAAL2为实数,可由下式确定, 
ρ Δ AAL 1 + ϵ Δ AAL 1 λ - Δ = 0 ( 2 - ρ ) Δ AAL 2 - ϵ Δ AAL 2 λ - Δ = 0
(3)稳态误差带(ΔSSE
ΔSSE的具体取值可依据ΔAAL来确定, 
a.当 0 < &Delta; AAL < &epsiv;&lambda; 1 - &rho; 1 - &lambda; 时 
ΔSSEAAL                        (14) 
b.当 &epsiv;&lambda; 1 - &rho; 1 - &lambda; &le; &Delta; AAL < x SSE 时 
&Delta; SSE = - ( 1 - &rho; ) &epsiv;&lambda; 1 - &rho; 1 - &lambda; + &epsiv; &epsiv;&lambda; 1 - &rho; 1 - &lambda; &lambda; + &Delta; - - - ( 15 )
c.当ΔAAL≥xSSE时 
ΔSSEAAL
                    (16) 
其中,xSSE为方程 ( 1 - &rho; ) x - &epsiv; x &lambda; + ( 1 - &rho; ) &epsiv;&lambda; 1 - &rho; 1 - &lambda; - &epsiv; &epsiv;&lambda; 1 - &rho; 1 - &lambda; &lambda; = 0 的正实根。 
对于具体给定的λ值,可依据式(12)-(16)计算各边界取值,以确定闭环系统性能。依据相应方程组,不难确定ΔMDR和ΔAAL的取值应为相应方程组的最大正实根。确定ΔAAL取值后,再依据ΔAAL确定ΔSSE。 
更进一步,对于λ=1/2,1/3,2/3,1/4,3/4五种情形,可依据下面给出的ΔMDR、ΔAAL及ΔSSE表达式来确定各边界取值。 
(一)λ=1/2情形, 
(1)单调减区域(ΔMDR
&Delta; MDR = ( &epsiv; + &epsiv; 2 + 4 &Delta; ( 1 - &rho; ) 2 ( 1 - &rho; ) ) 2 &epsiv; > &Delta; ( 1 - 2 &rho; ) 2 ( - &epsiv; + &epsiv; 2 + 4 &rho;&Delta; 2 &rho; ) 2 &epsiv; &le; &Delta; ( 1 - 2 &rho; ) 2 - - - ( 17 )
(2)绝对收吸引层(ΔAAL
&Delta; AAL = ( &epsiv; + &epsiv; 2 + 4 &Delta; ( 2 - &rho; ) 2 ( 2 - &rho; ) ) 2 &epsiv; > &Delta; ( 1 - &rho; ) ( - &epsiv; + &epsiv; 2 + 4 &rho;&Delta; 2 &rho; ) 2 &epsiv; &le; &Delta; ( 1 - &rho; ) - - - ( 18 )
(3)稳态误差带(ΔSSE
&Delta; SSE = ( &epsiv; + &epsiv; 2 + 4 &Delta; ( 1 - &rho; ) 2 ( 2 - &rho; ) ) 2 &epsiv; > 2 ( 1 - &rho; ) &Delta; &rho; &epsiv; 2 4 ( 1 - &rho; ) + &Delta; c 0 < &epsiv; &le; 2 ( 1 - &rho; ) &Delta; &rho; ( - &epsiv; + &epsiv; 2 + 4 &rho;&Delta; 2 &rho; ) 2 0 < &epsiv; &le; c 0 - - - ( 19 )
其中, c 0 = 2 ( 1 - &rho; ) ( 2 2 - &rho; - 2 ) &Delta; 4 ( 1 - &rho; ) - &rho; 2 .
(二)λ=1/3情形, 
(1)单调减区域(ΔMDR
0 < &epsiv; < 27 &Delta; 2 ( 1 - &rho; ) 4 3 时 
&Delta; MDR = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 9 ( 1 - &rho; ) &Delta; - c 2 3 + 9 ( 1 - &rho; ) &Delta; + c 2 3 18 ( 1 - &rho; ) 2 3 ) 3 } - - - ( 20 )
式中, c 1 = 81 &rho; 2 &Delta; 2 + 12 &rho; &epsiv; 3 , c 2 = 81 ( 1 - &rho; ) 2 &Delta; 2 - 12 ( 1 - &rho; ) &epsiv; 3
&epsiv; = 27 &Delta; 2 ( 1 - &rho; ) 4 3 时 
&Delta; MDR = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 3 &Delta; &epsiv; ) 3 } - - - ( 21 )
&epsiv; > 27 &Delta; 2 ( 1 - &rho; ) 4 3 时 
&Delta; MDR = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 3 ( 1 - &rho; ) &epsiv; ( cos ( &theta; 1 / 3 ) + 3 sin ( &theta; 1 / 3 ) ) 3 ( 1 - &rho; ) ) 3 } - - - ( 22 )
式中,θ1=arccosβ1
Figure BDA00002391190000068
(-1<β1<0)。 
(2)绝对吸引层(ΔAAL
0 < &epsiv; < 27 &Delta; 2 ( 2 - &rho; ) 4 3 时 
&Delta; AAL = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 9 ( 1 - &rho; ) &Delta; - c 3 3 + 9 ( 1 - &rho; ) &Delta; + c 3 3 18 ( 1 - &rho; ) 2 3 ) 3 } - - - ( 23 )
式中, c 3 = 81 ( 2 - &rho; ) 2 &Delta; 2 - 12 ( 2 - &rho; ) &epsiv; 3 .
&epsiv; = 27 &Delta; 2 ( 2 - &rho; ) 4 3 时 
&Delta; AAL = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 3 &Delta; &epsiv; ) 3 } - - - ( 24 )
&epsiv; > 27 &Delta; 2 ( 2 - &rho; ) 4 3 时 
&Delta; AAL = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 3 ( 1 - &rho; ) &epsiv; ( cos ( &theta; 2 / 3 ) + 3 sin ( &theta; 2 / 3 ) ) 3 ( 2 - &rho; ) ) 3 } - - - ( 25 )
式中,θ2=arccosβ2
Figure BDA00002391190000072
(-1<β2<0)。 
(3)稳态误差带(ΔSSE
当λ=1/3时,具有干扰抑制项的误差动态方程式(11)的极值点
Figure BDA00002391190000073
0 < &Delta; AAL < ( 3 ( 1 - &rho; ) &epsiv; ) - 3 / 2 时 
ΔSSEAAL                    (26) 
( 3 ( 1 - &rho; ) &epsiv; ) - 3 / 2 &le; &Delta; AAL < x 1 时, 
&Delta; SSE = 4 &epsiv; 3 27 ( 1 - &rho; ) + &Delta; - - - ( 27 )
当ΔAAL≥x1时 
ΔSSEAAL                (28) 
其中,x1为方程 ( 1 - &rho; ) x - &epsiv; x 1 / 3 - 4 &epsiv; 3 27 ( 1 - &rho; ) = 0 的正实根。 
(三)λ=2/3情形, 
(1)单调减区域(ΔMDR
0 < &epsiv; < 27 &rho; 2 &Delta; 4 3 时 
&Delta; MDR = max { ( - &epsiv; + c 5 1 / 3 + c 6 1 / 3 3 &rho; ) 3 , ( &epsiv; - c 7 1 / 3 - c 8 1 / 3 3 ( 1 - &rho; ) ) 3 } - - - ( 29 )
式中, c 5 = &epsiv; 3 + 3 &rho; - 9 &rho;&Delta; + c 9 2 , c 6 = &epsiv; 3 + 3 &rho; - 9 &rho;&Delta; - c 9 2 ,
c 7 = - &epsiv; 3 + 3 ( 1 - &rho; ) - 9 ( 1 - &rho; ) &Delta; + c 10 2 , c 8 = - &epsiv; 3 + 3 ( 1 - &rho; ) - 9 ( 1 - &rho; ) &Delta; - c 10 2 .
其中, c 9 = 81 &rho; 2 &Delta; 2 - 12 &epsiv; 3 &Delta; , c 10 = 81 ( 1 - &rho; ) 2 &Delta; 2 + 12 &epsiv; 3 &Delta; .
&epsiv; = 27 &rho; 2 &Delta; 4 3 时, 
&Delta; MDR = max { ( - &epsiv; &rho; + 9 &rho;&Delta; &epsiv; 2 ) 3 , ( &epsiv; - c 7 1 / 3 - c 8 1 / 3 3 ( 1 - &rho; ) ) 3 } - - - ( 30 )
&epsiv; > 27 &rho; 2 &Delta; 4 3 时, 
&Delta; MDR = max { ( ( - 1 + cos ( &theta; / 3 ) + 3 1 / 2 sin ( &theta; / 3 ) ) &epsiv; 3 &rho; ) 3 , ( &epsiv; - c 7 1 / 3 - c 8 1 / 3 3 ( 1 - &rho; ) ) 3 } - - - ( 31 )
式中,θ=arccosβ,
Figure BDA00002391190000085
(-1<β<1)。 
(2)绝对吸引层(ΔAAL
0 < &epsiv; < 27 &rho; 2 &Delta; 4 3 时 
&Delta; AAL = max { ( - &epsiv; + c 5 1 / 3 + c 6 1 / 3 3 &rho; ) 3 , ( &epsiv; - c 11 1 / 3 - c 12 1 / 3 3 ( 2 - &rho; ) ) 3 } - - - ( 32 )
式中, c 11 = - &epsiv; 3 + 3 ( 2 - &rho; ) - 9 ( 2 - &rho; ) &Delta; + c 13 2 , c 12 = - &epsiv; 3 + 3 ( 2 - &rho; ) - 9 ( 2 - &rho; ) &Delta; - c 13 2
其中, c 13 = 81 ( 2 - &rho; ) 2 &Delta; 2 + 12 &epsiv; 3 &Delta;
&epsiv; = 27 &rho; 2 &Delta; 4 3 时, 
&Delta; AAL = max { ( - &epsiv; &rho; + 9 &rho;&Delta; &epsiv; 2 ) 3 , ( &epsiv; - c 11 1 / 3 - c 12 1 / 3 3 ( 2 - &rho; ) ) 3 } - - - ( 33 )
&epsiv; > 27 &rho; 2 &Delta; 4 3 时, 
&Delta; AAL = max { ( ( - 1 + cos ( &theta; / 3 ) + 3 sin ( &theta; / 3 ) ) &epsiv; 3 &rho; ) 3 , ( &epsiv; - c 11 1 / 3 - c 12 1 / 3 3 ( 1 - &rho; ) ) 3 } - - - ( 34 )
(3)稳态误差带(ΔSSE
当λ=2/3时,具有干扰抑制项的误差动态方程式(11)的极值点
Figure BDA000023911900000815
0 < &Delta; AAL < ( 3 ( 1 - &rho; ) &epsiv; ) - 3 时 
ΔSSEAAL                        (35) 
( 3 ( 1 - &rho; ) &epsiv; ) - 3 &le; &Delta; AAL < x 2 时 
&Delta; SSE = 2 &epsiv; 3 27 ( 1 - &rho; ) 2 + &Delta; - - - ( 36 )
当ΔAAL≥x2时 
ΔSSEAAL                        (37) 
其中,x2为方程 ( 1 - &rho; ) x - &epsiv; x 2 / 3 - 2 &epsiv; 3 27 ( 1 - &rho; ) 2 = 0 的正实根。 
(四)λ=1/4情形, 
(1)单调减区域(ΔMDR
&Delta; MDR = max ( ( - c 14 2 + 1 2 - c 14 + 2 &epsiv; &rho; c 14 ) 4 , ( c 15 2 + 1 2 - c 15 + 2 &epsiv; ( 1 - &rho; ) c 15 ) 4 ) - - - ( 38 )
式中, c 14 = - 4 2 3 &rho;&Delta; &rho; c 16 + c 16 3 2 3 &rho; , c 15 = - 4 2 3 ( 1 - &rho; ) &Delta; ( 1 - &rho; ) c 17 + c 17 3 2 3 ( 1 - &rho; ) .
其中, c 16 = 27 &rho; &epsiv; 2 + 6912 &rho; 3 &Delta; 3 + 729 &rho; 2 &epsiv; 4 , 3
c 17 = 27 ( 1 - &rho; ) &epsiv; 2 + 6912 ( 1 - &rho; ) 3 &Delta; 3 + 729 ( 1 - &rho; ) 2 &epsiv; 4 . 3
(2)绝对吸引层(ΔAAL
&Delta; AAL = max { ( - c 14 2 + 1 2 - c 14 + 2 &epsiv; &rho; c 14 ) 4 , ( c 18 2 + 1 2 - c 18 + 2 &epsiv; ( 2 - &rho; ) c 18 ) 4 } - - - ( 39 )
式中, c 18 = - 4 2 3 ( 1 - &rho; ) &Delta; ( 2 - &rho; ) c 19 + c 19 3 2 3 ( 2 - &rho; ) .
其中, c 19 = 27 ( 2 - &rho; ) &epsiv; 2 + 6912 ( 2 - &rho; ) 3 &Delta; 3 + 729 ( 2 - &rho; ) 2 &epsiv; 4 . 3
(3)稳态误差带(ΔSSE
当λ=1/4时,具有干扰抑制项的误差动态方程式(11)的极值点
Figure BDA000023911900000912
0 < &Delta; AAL < ( 4 ( 1 - &rho; ) &epsiv; ) - 4 / 3 时 
ΔSSEAAL                            (40) 
( 4 ( 1 - &rho; ) &epsiv; ) - 4 / 3 &le; &Delta; AAL < x 3 时 
&Delta; SSE = 27 &epsiv; 4 256 ( 1 - &rho; ) 3 + &Delta; - - - ( 41 )
当ΔAAL≥x3时 
ΔSSEAAL                            (42) 
其中,x3为方程 ( 1 - &rho; ) x - &epsiv; x 1 / 4 - 27 &epsiv; 4 256 ( 1 - &rho; ) 3 = 0 的正实根。 
(五)λ=3/4情形, 
(1)单调减区域(ΔMDR
&Delta; MDR 1 = max { ( - &epsiv; 4 &rho; - c 20 2 + 1 2 &epsiv; 2 2 &rho; 2 - c 21 + &epsiv; 3 4 &rho; 3 c 20 ) 4 , ( - &epsiv; 4 &rho; + c 20 2 + 1 2 &epsiv; 2 2 &rho; 2 - c 21 - &epsiv; 3 4 &rho; 3 c 20 ) 4 } - - - ( 43 )
式中, c 21 = - 4 2 3 &Delta; c 22 + c 22 3 2 3 &rho; , c 20 = &epsiv; 2 4 &rho; 2 + c 21 ,
其中, c 22 = - 27 &epsiv; 2 &Delta; + 6912 &rho; 3 &Delta; 3 + 729 &epsiv; 4 &Delta; 2 3 .
&Delta; MDR = max { &Delta; MDR 1 , ( &epsiv; 4 ( 1 - &rho; ) + c 23 2 + 1 2 &epsiv; 2 2 ( 1 - &rho; ) 2 - c 24 + &epsiv; 3 4 ( 1 - &rho; ) 3 c 23 ) 4 } - - - ( 44 )
式中, c 24 = - 4 2 3 &Delta; c 25 + c 25 3 2 3 ( 1 - &rho; ) , c 23 = &epsiv; 2 4 ( 1 - &rho; ) 2 + c 24 ,
其中, c 25 = - 27 &epsiv; 2 &Delta; + 6912 ( 1 - &rho; ) 3 &Delta; 3 + 729 &epsiv; 4 &Delta; 2 3 .
(2)绝对吸引层(ΔAAL
&Delta; AAL = max { &Delta; MDR 1 , ( &epsiv; 4 ( 2 - &rho; ) + c 26 2 + 1 2 &epsiv; 2 2 ( 2 - &rho; ) 2 - c 27 - &epsiv; 3 4 ( 2 - &rho; ) 3 c 26 ) 4 - - - ( 45 )
式中, c 27 = - 4 2 3 &Delta; c 28 + c 28 3 2 3 ( 2 - &rho; ) , c 26 = &epsiv; 2 4 ( 2 - &rho; ) 2 + c 27 ,
其中, c 28 = - 27 &epsiv; 2 &Delta; + 6912 ( 2 - &rho; ) 3 &Delta; 3 + 729 &epsiv; 4 &Delta; 2 3 .
(3)稳态误差带(ΔSSE
当λ=3/4时,具有干扰抑制项的误差动态方程式(11)的极值点
Figure BDA00002391190000114
0 < &Delta; AAL < ( 3 &epsiv; 4 ( 1 - &rho; ) ) 4 时 
ΔSSEAAL                (46) 
( 3 &epsiv; 4 ( 1 - &rho; ) ) 4 &le; &Delta; AAL < x 4 时 
&Delta; SSE = 27 &epsiv; 4 256 ( 1 - &rho; ) 3 + &Delta; - - - ( 47 )
当ΔAAL≥x4时 
ΔSSEAAL                (48) 
其中,x4为方程 ( 1 - &rho; ) x - &epsiv; x 3 / 4 - 27 &epsiv; 4 256 ( 1 - &rho; ) 3 = 0 的正实根。 
本发明的技术构思为:伺服系统在周期对称参考信号下运行,使得本发明可利用信号的周期对称特点设计重复控制器。考虑信号对称性质的设计,不仅大大减少控制器内存占用量,内模响应时间也更快,有易于加速扰动的消除。控制器设计是基于离散吸引律进行的,是一种时域设计方法。时域设计方法在设计重复控制器时具有独到的地方,这主要是因为信号对称特性表现在时域中。本发明考虑的参考信号周期对称特性,比在频域中考虑信号各奇次谐波的周期对称性质更为一般,且设计会更直观。另外,控制器时域设计使得其能够方便地与现有的时域干扰观测技术相结合。本发明给出的设计方法不同于目前普遍采用的频域方法。 
针对参考信号满足半周期对称特性的伺服系统,本发明提供一种半周期重复控制器的时域设计方法,不仅实现对周期性外部干扰信号的完全跟踪或抑制,而且降低内存占用量。具体体现在,周期重复控制器需要用到前一个周期的控制信号,而半周期重复控制只需要用到前半个周期的控制信息,将控制器的内存占用降低一半,显著节省了内存占用空间。该设计 是基于离散幂次吸引律进行设计的,幂次吸引律是一种连续吸引律,能回避离散吸引律带来的颤振现象,达到快速干扰抑制效果。 
本发明的有益效果主要表现在:在显著减少控制器内存占用量的同时,兼有快速收敛性能、加速干扰抑制和高控制精度。 
附图说明
图1是半周期重复控制系统方框图。 
图2是半周期对称信号示意图:图2a是满足对称特性rk=rk-N/2的参考信号示意图,图2b是满足对称特性rk=-rk-N/2的参考信号示意图,图2c是满足特性rk=rk′的参考信号示意图,图2d是满足特性rk=-rk'的参考信号示意图。 
图3为参考信号满足半周期对称特性的重复控制系统方框图:3a为参考信号满足对称特性rk=-rk-N/2的重复控制系统方框图,图3b为参考信号满足rk=±rk'的重复控制系统方框图。 
图4是半周期重复控制器方框图:图4a为参考信号满足rk=-rk-N/2的控制器方框图,图4b为参考信号满足rk=rk'的控制器方框图,图4c为参考信号满足rk=-rk′′的控制器方框图。 
图5是采用半周期重复控制器的永磁同步直线电机控制系统方框图。 
图6是当λ=1/2,ρ=0.3,ε=0.15时的ΔMDR,ΔAAL及ΔSSE示意图。 
图7是当λ=1/2,ρ=0.3,ε=0.35时的ΔMDR,ΔAAL及ΔSSE示意图。 
图8是当λ=1/2,ρ=0.3,ε=0.45时的ΔMDR,ΔAAL及ΔSSE示意图。 
图9是当λ=1/3,ρ=0.5,ε=0.3时的ΔMDR,ΔAAL及ΔSSE示意图。 
图10是当λ=1/3,ρ=0.3,ε=0.9110时的ΔMDR,ΔAAL及ΔSSE示意图。 
图11是当λ=1/3,ρ=0.3,ε=0.92时的ΔMDR,ΔAAL及ΔSSE示意图。 
图12是当λ=2/3,ρ=0.3,ε=0.4时的ΔMDR,ΔAAL及ΔSSE示意图。 
图13是当λ=2/3,ρ=0.3,ε=0.62403时的ΔMDR,ΔAAL及ΔSSE示意图。 
图14是当λ=2/3,ρ=0.3,ε=0.64时的ΔMDR,ΔAAL及ΔSSE示意图。 
图15是当λ=1/4,ρ=0.3,ε=0.5时的ΔMDR,ΔAAL及ΔSSE示意图。 
图16是当λ=1/4,ρ=0.3,ε=0.1时的ΔMDR,ΔAAL及ΔSSE示意图。 
图17是当λ=3/4,ρ=0.3,ε=0.5时的ΔMDR,ΔAAL及ΔSSE示意图。 
图18是当λ=3/4,ρ=0.3,ε=0.15时的ΔMDR,ΔAAL及ΔSSE示意图。 
图19-23是整周期重复控制器参数λ=1/2,ρ=0.4,ε=0.15时,永磁同步直线电机控 制系统的实验结果,其中: 
图19是在整周期重复控制器作用下,永磁同步直线电机给定参考信号及输出信号。 
图20是在整周期重复控制器作用下,永磁同步直线电机所受扰动曲线。 
图21是在整周期重复控制器作用下,永磁同步直线电机等效扰动曲线。 
图22是在整周期重复控制器作用下,永磁同步直线电机跟踪误差曲线。 
图23是在整周期重复控制器作用下,永磁同步直线电机跟踪误差分布直方图。 
图24-29是半周期重复控制器取参数λ=1/2,ρ=0.4,ε=0.15时,永磁同步直线电机控制系统的实验结果,其中: 
图24是在半周期重复控制器作用下,永磁同步直线电机给定参考信号及输出信号。 
图25是在半周期重复控制器作用下,永磁同步直线电机所受扰动曲线。 
图26是在半周期重复控制器作用下,永磁同步直线电机等效扰动曲线。 
图27是在半周期重复控制器作用下,永磁同步直线电机在补偿后的等效扰动曲线。 
图28是在半周期重复控制器作用下,永磁同步直线电机跟踪误差曲线。 
图29是在半周期重复控制器作用下,永磁同步直线电机跟踪误差分布直方图。 
具体实施方式
下面结合附图对本发明作进一步描述。 
参照图2-4,一种用于位置伺服系统的半周期重复控制器,为便于描述,本发明针对二阶离散系统设计半周波重复控制器。考虑下述二阶离散系统的差分方程模型 
yk+1+a1yk+a2yk-1=b1uk+b2uk-1+wk+1                (1) 
其中,uk-1,uk,yk-1,yk分别为k-1,k时刻系统的输入输出信号;wk+1为k+1时刻系统受到的扰动信号,a1,a2,b1,b2为系统相应的参数。 
所述伺服系统,其参考信号rk满足半周期对称特性,即满足如下关系 
rk=±rk-N/2或rk=±rk′                        (2) 
式中,k′=(ceil(2k/N)-1)N-k,k≥N/2。其中,N是用于刻画周期对称性的参数,rk-N/2,rk′分别表示k-N/2,k′时刻的参考信号。 
由式(2)可知,具有半周期对称特性信号的具体形式有四种(见图2)。 
记跟踪误差ek=rk-yk, 
ek+1=rk+1-yk+1=rk+1+a1yk+a2yk-1-b1uk-b2uk-1-wk+1
=rk+1+yk-N/2+1+a1(yk+yk-N/2)+a2(yk-1+yk-N/2-1)                (3) 
-b1(uk+uk-N/2)-b2(uk-1+uk-N/2-1)-(wk+1+wk-N/2+1
式中,ek+1,rk+1分别表示k+1时刻的误差信号、参考信号。 
由式(3)可将wk+1+wk-N/2+1表达为 
wk+1+wk-N/2+1=rk+1+yk-N/2+1+a1(yk+yk-N/2)+a2(yk-1+yk-N/2-1)(4) 
-b1(uk+uk-N/2)-b2(uk-1+uk-N/2-1)-ek+1
记等效干扰dk=wk+wk-N/2, 
dk+1=rk+1+yk-N/2+1+a1(yk+yk-N/2)+a2(yk-1+yk-N/2-1)(5) 
-b1(uk+uk-N/2)-b2(uk-1+uk-N/2-1)-ek+1
由图2可知,描述半周期对称参考信号时,不仅需要知道周期参数,还需要掌握半周期对称形式。半周期对称形式的不同,相应地重复控制器的设计过程及给出的表达式也不尽相同。首先,以图2(b)所示的半周期对称特性为例来具体说明离散半周期重复控制器的设计过程。 
由图2(b)可知,参考信号rk满足如下半周期对称特性: 
rk=-rk-N/2                        (6) 
若扰动信号wk如参考信号一样,严格满足半周期对称特性(6),则等效扰动dk=0。然而扰动项wk一般不能严格满足对称条件。只是wk的周期部分呈现半周期对称特性,因此,当wk存在非周期扰动成分时,dk≠0。这时需采用干扰观测技术,在闭环系统中引入干扰补偿作用
Figure BDA00002391190000141
以提高控制性能。跟踪控制的目标是在有限时间内,使得系统的跟踪误差ek收敛至原点的一个邻域内,并一直停留在这一邻域内。为了达到这一目标,考虑等效扰动对ek的影响,依据预先形成的误差动态设计控制器。修正幂次吸引律,构造如下误差动态方程 
e k + 1 = ( 1 - &rho; ) e k - &epsiv; | e k | &lambda; sgn ( e k ) + d k + 1 * - d k + 1 - - - ( 7 )
式中,
Figure BDA00002391190000143
为等效扰动dk+1的补偿值;ρ、ε为表达吸引速度的两个常数,λ为吸引指数;其取值范围分别为:ε>0,0<ρ<1,0<λ<1。 
将式(5)代入式(7),可得 
e k + 1 = ( 1 - &rho; ) e k - &epsiv; | e k | &lambda; sgn ( e k ) + d k + 1 * - r k + 1 - y k - N / 2 + 1 - a 1 ( y k + y k - N / 2 )
Figure BDA00002391190000145
- a 2 ( y k - 1 + y k - N / 2 - 1 ) + b 1 ( u k + u k - N / 2 ) + b 2 ( u k - 1 + u k - N / 2 - 1 ) + e k + 1
化简后可得uk, 
u k = - u k - N / 2 - b 2 b 1 ( u k - 1 + u k - N / 2 - 1 ) + 1 b 1 [ - ( 1 - &rho; ) e k + &epsiv; | e k | &lambda; sgn ( e k ) - d k + 1 * ]
Figure BDA00002391190000152
+ 1 b 1 ( r k + 1 + y k - N / 2 + 1 ) + a 1 b 1 ( y k + y k - N / 2 ) + a 2 b 1 ( y k - 1 + y k - N / 2 - 1 )
v k = 1 b 1 [ - ( 1 - &rho; ) e k + &epsiv; | e k | &lambda; sgn ( e k ) - d k + 1 * + ( r k + 1 + y k - N / 2 + 1 ) + a 1 ( y k + y k - N / 2 ) + a 2 ( y k - 1 + y k - N / 2 - 1 ) ] , 输 
入信号 u &OverBar; k = u k + b 2 b 1 u k - 1 , 式(9)可写成 
u &OverBar; k = - u &OverBar; k - N / 2 + v k - - - ( 10 )
式中,vk表示输入信号
Figure BDA00002391190000157
的修正量。 
对于图2(a)所示参考信号满足rk=rk-N/2的周期对称情形,重复控制器可参照上述情形进行。 
按照式(3)-式(10)所描述的步骤,可设计半周期对称(rk=±rk′,k′=(ceil(2k/N)-1)N-k)情形下得重复控制器。 
1)参考信号rk满足rk=rk'k′=(ceil(2k/N)-1)N-k(见图2c),等效扰动为dk=wk-wk',离散重复控制器uk为 
u k = - u k &prime; - b 2 b 1 ( u k - 1 + u k &prime; - 1 ) + 1 b 1 [ - ( 1 - &rho; ) e k + &epsiv; | e k | &lambda; sgn ( e k ) - d k + 1 * ]
Figure BDA00002391190000159
+ 1 b 1 ( r k + 1 - y k &prime; + 1 ) + a 1 b 1 ( y k - y k &prime; ) + a 2 b 1 ( y k - 1 - y k &prime; - 1 )
v k &prime; &prime; = 1 b 1 [ - ( 1 - &rho; ) e k + &epsiv; | e k | &lambda; sgn ( e k ) - d k + 1 * + ( r k + 1 - y k &prime; + 1 ) + a 1 ( y k - y k &prime; ) + a 2 ( y k - 1 - y k &prime; - 1 ) ] , 输入信号  u &OverBar; k = u k + b 2 b 1 u k - 1 , 式(11)可写成 
u &OverBar; k = u &OverBar; k &prime; + v k &prime; &prime;
2)参考信号rk满足rk=-rk',k′=(ceil(2k/N)-1)N-k(见图2d),等效扰动为dk=wk+wk',离散重复控制器uk为 
u k = - u k &prime; - b 2 b 1 ( u k - 1 + u k &prime; - 1 ) + 1 b 1 [ - ( 1 - &rho; ) e k + &epsiv; | e k | &lambda; sgn ( e k ) - d k + 1 * ]
+ 1 b 1 ( r k + 1 + y k &prime; - 1 ) + a 1 b 1 ( y k + y k &prime; ) + a 2 b 1 ( y k - 1 + y k &prime; - 1 )
v k &prime; &prime; &prime; = 1 b 1 [ - ( 1 - &rho; ) e k + &epsiv; | e k | &lambda; sgn ( e k ) - d k + 1 * + ( r k + 1 + y k &prime; + 1 ) + a 1 ( y k + y k &prime; ) + a 2 ( y k - 1 + y k &prime; - 1 ) ] , 输入信号  u &OverBar; k = u k + b 2 b 1 u k - 1 , 式(12)可写成 
u &OverBar; k = - u &OverBar; k &prime; + v k &prime; &prime; &prime;
对于上述重复控制器设计,做以下说明: 
(1)幂次吸引律中引入dk+1反映了对于给定周期模式的扰动信号的抑制措施,为dk+1的补偿值,用于补偿非周期性扰动。 
一种简单的补偿值确定方法是
Figure BDA00002391190000162
这里,提供一种dk界已知时的补偿值确定方法。设等效扰动dk的上、下界分别为du、dl,则dk满足不等式 
dl≤dk≤du                    (13) 
d &OverBar; = d u + d l 2 , &Delta; = d u - d l 2 , 则, 
| d k - d &OverBar; | &le; &Delta;
可取 
d k + 1 * = d &OverBar; = d u + d l 2 - - - ( 14 )
(2)式(9),(11)与(12)中,ek,yk,yk-1,yk-N/2+1,yk-N/2,yk-N/2-1,yk′+1,yk',yk′-1均可通过测量得到,uk-1,uk-N/2,uk-N/2-1,uk',uk′-1为控制信号的存储值,可从内存中读取。 
(3)对于图2(a)所示整周期(周期为N/2)情形,当N=2时,对称特性变为rk=rk-1。因此,本发明中提出的半周波重复控制器也适用于常值调节问题,此时等效扰动为dk=wk-wk-1。 
(4)上述重复控制器针对二阶系统(1)给出,按照相同的方法同样可给出高阶系统的设计结果。 
系统的重复控制器设计完成之后,需要整定其中的控制器参数,包括表达吸引速度的两个常数ρ、ε,吸引指数λ。具体的参数整定工作可依据表征系统收敛性的指标进行。为表征跟踪误差收敛过程,本发明引入单调减区域,绝对吸引层和稳态误差带概念,具体定义如下: 
单调减区域 
0 < e k + 1 < e k , e k > &Delta; MDR e k < e k + 1 < 0 , e k < - &Delta; MDR
绝对吸引层 
| e k | > &Delta; AAL &DoubleRightArrow; | e k + 1 | < | e k |
稳态误差带 
| e k | &le; &Delta; SSE &DoubleRightArrow; | e k + 1 | &le; &Delta; SSE
这里,ΔMDR为单调减区域边界,ΔAAL为绝对吸引层边界,ΔSSE为稳态误差带边界。 
对于重复控制器作用下导致的闭环系统误差动态,本发明分别给出其单调减区域边界ΔMDR,绝对吸引层边界ΔAAL和稳态误差带边界ΔSSE: 
(1)单调减区域(ΔMDR
ΔMDR=max{ΔMDR1MDR2}                        (15) 
式中,ΔMDR1,ΔMDR2为实数,且由下式确定, 
&rho; &Delta; MDR 1 + &epsiv; &Delta; MDR 1 &lambda; - &Delta; = 0 ( 1 - &rho; ) &Delta; MDR 2 - &epsiv; &Delta; MDR 2 &lambda; - &Delta; = 0
(2)绝对吸引层(ΔAAL
ΔAAL=max{ΔAAL1AAL2}                        (16) 
式中,ΔAAL1,ΔAAL2为实数,且由下式确定, 
&rho; &Delta; AAL 1 + &epsiv; &Delta; AAL 1 &lambda; - &Delta; = 0 ( 2 - &rho; ) &Delta; AAL 2 - &epsiv; &Delta; AAL 2 &lambda; - &Delta; = 0
(3)稳态误差带(ΔSSE
ΔSSE的具体取值可依据ΔAAL来确定, 
a.当 0 < &Delta; AAL < &epsiv;&lambda; 1 - &rho; 1 - &lambda; 时 
ΔSSEAAL                        (17) 
b.当 &epsiv;&lambda; 1 - &rho; 1 - &lambda; &le; &Delta; AAL < x SSE 时 
&Delta; SSE = - ( 1 - &rho; ) &epsiv;&lambda; 1 - &rho; 1 - &lambda; + &epsiv; &epsiv;&lambda; 1 - &rho; 1 - &lambda; &lambda; + &Delta; - - - ( 18 )
c.当ΔAAL≥xSSE时 
ΔSSEAAL                    (19) 
其中,xSSE为方程 ( 1 - &rho; ) x - &epsiv; x &lambda; + ( 1 - &rho; ) &epsiv;&lambda; 1 - &rho; 1 - &lambda; - &epsiv; &epsiv;&lambda; 1 - &rho; 1 - &lambda; &lambda; = 0 的正实根。 
针对一些实际中常用的λ取值,即λ=1/2,1/3,2/3,1/4,3/4五种情形,下述我们分别给出各自的单调减区域边界ΔMDR,绝对吸引层边界ΔAAL和稳态误差带边界ΔSSE表达式: 
(一)λ=1/2情形, 
(1)单调减区域(ΔMDR
&Delta; MDR = ( &epsiv; + &epsiv; 2 + 4 &Delta; ( 1 - &rho; ) 2 ( 1 - &rho; ) ) 2 &epsiv; > &Delta; ( 1 - 2 &rho; ) 2 ( - &epsiv; + &epsiv; 2 + 4 &rho;&Delta; 2 &rho; ) 2 &epsiv; &le; &Delta; ( 1 - 2 &rho; ) 2 - - - ( 20 )
(2)绝对收吸引层(ΔAAL
&Delta; AAL = ( &epsiv; + &epsiv; 2 + 4 &Delta; ( 2 - &rho; ) 2 ( 2 - &rho; ) ) 2 &epsiv; > &Delta; ( 1 - &rho; ) ( - &epsiv; + &epsiv; 2 + 4 &rho;&Delta; 2 &rho; ) 2 &epsiv; &le; &Delta; ( 1 - &rho; ) - - - ( 21 )
(3)稳态误差带(ΔSSE
&Delta; SSE = ( &epsiv; + &epsiv; 2 + 4 &Delta; ( 1 - &rho; ) 2 ( 2 - &rho; ) ) 2 &epsiv; > 2 ( 1 - &rho; ) &Delta; &rho; &epsiv; 2 4 ( 1 - &rho; ) + &Delta; c 0 < &epsiv; &le; 2 ( 1 - &rho; ) &Delta; &rho; ( - &epsiv; + &epsiv; 2 + 4 &rho;&Delta; 2 &rho; ) 2 0 < &epsiv; &le; c 0 - - - ( 22 )
其中, c 0 = 2 ( 1 - &rho; ) ( 2 2 - &rho; - 2 ) &Delta; 4 ( 1 - &rho; ) - &rho; 2 .
(二)λ=1/3情形, 
(1)单调减区域(ΔMDR
0 < &epsiv; < 27 &Delta; 2 ( 1 - &rho; ) 4 3 时 
&Delta; MDR = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 9 ( 1 - &rho; ) &Delta; - c 2 3 + 9 ( 1 - &rho; ) &Delta; + c 2 3 18 ( 1 - &rho; ) 2 3 ) 3 } - - - ( 23 )
式中, c 1 = 81 &rho; 2 &Delta; 2 + 12 &rho; &epsiv; 3 , c 2 = 81 ( 1 - &rho; ) 2 &Delta; 2 - 12 ( 1 - &rho; ) &epsiv; 3
&epsiv; = 27 &Delta; 2 ( 1 - &rho; ) 4 3 时 
&Delta; MDR = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 3 &Delta; &epsiv; ) 3 } - - - ( 24 )
&epsiv; > 27 &Delta; 2 ( 1 - &rho; ) 4 3 时 
&Delta; MDR = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 3 ( 1 - &rho; ) &epsiv; ( cos ( &theta; 1 / 3 ) + 3 sin ( &theta; 1 / 3 ) ) 3 ( 1 - &rho; ) ) 3 } - - - ( 25 )
式中,θ1=arccosβ1(-1<β1<0)。 
(2)绝对吸引层(ΔAAL
0 < &epsiv; < 27 &Delta; 2 ( 2 - &rho; ) 4 3 时 
&Delta; AAL = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 9 ( 1 - &rho; ) &Delta; - c 3 3 + 9 ( 1 - &rho; ) &Delta; + c 3 3 18 ( 1 - &rho; ) 2 3 ) 3 } - - - ( 26 )
式中, c 3 = 81 ( 2 - &rho; ) 2 &Delta; 2 - 12 ( 2 - &rho; ) &epsiv; 3 .
&epsiv; = 27 &Delta; 2 ( 2 - &rho; ) 4 3 时 
&Delta; AAL = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 3 &Delta; &epsiv; ) 3 } - - - ( 27 )
&epsiv; > 27 &Delta; 2 ( 2 - &rho; ) 4 3 时 
&Delta; AAL = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 3 ( 1 - &rho; ) &epsiv; ( cos ( &theta; 2 / 3 ) + 3 sin ( &theta; 2 / 3 ) ) 3 ( 2 - &rho; ) ) 3 } - - - ( 28 )
式中,θ2=arccosβ2
Figure BDA000023911900001912
(-1<β2<0)。 
(3)稳态误差带(ΔSSE
当λ=1/3时,具有干扰抑制项的误差动态方程式(11)的极值点
Figure BDA000023911900001913
0 < &Delta; AAL < ( 3 ( 1 - &rho; ) &epsiv; ) - 3 / 2 时 
ΔSSEAAL                        (29) 
( 3 ( 1 - &rho; ) &epsiv; ) - 3 / 2 &le; &Delta; AAL < x 1 时, 
&Delta; SSE = 4 &epsiv; 3 27 ( 1 - &rho; ) + &Delta; - - - ( 30 )
当ΔAAL≥x1时 
ΔSSEAAL                    (31) 
其中,x1为方程 ( 1 - &rho; ) x - &epsiv; x 1 / 3 - 4 &epsiv; 3 27 ( 1 - &rho; ) = 0 的正实根。 
(三)λ=2/3情形, 
(1)单调减区域(ΔMDR
0 < &epsiv; < 27 &rho; 2 &Delta; 4 3 时 
&Delta; MDR = max { ( - &epsiv; + c 5 1 / 3 + c 6 1 / 3 3 &rho; ) 3 , ( &epsiv; - c 7 1 / 3 - c 8 1 / 3 3 ( 1 - &rho; ) ) 3 } - - - ( 32 )
式中, c 5 = &epsiv; 3 + 3 &rho; - 9 &rho;&Delta; + c 9 2 , c 6 = &epsiv; 3 + 3 &rho; - 9 &rho;&Delta; - c 9 2 ,
c 7 = - &epsiv; 3 + 3 ( 1 - &rho; ) - 9 ( 1 - &rho; ) &Delta; + c 10 2 , c 8 = - &epsiv; 3 + 3 ( 1 - &rho; ) - 9 ( 1 - &rho; ) &Delta; - c 10 2 .
其中, c 9 = 81 &rho; 2 &Delta; 2 - 12 &epsiv; 3 &Delta; , c 10 = 81 ( 1 - &rho; ) 2 &Delta; 2 + 12 &epsiv; 3 &Delta; .
&epsiv; = 27 &rho; 2 &Delta; 4 3 时, 
&Delta; MDR = max { ( - &epsiv; &rho; + 9 &rho;&Delta; &epsiv; 2 ) 3 , ( &epsiv; - c 7 1 / 3 - c 8 1 / 3 3 ( 1 - &rho; ) ) 3 } - - - ( 33 )
&epsiv; > 27 &rho; 2 &Delta; 4 3 时, 
&Delta; MDR = max { ( ( - 1 + cos ( &theta; / 3 ) + 3 1 / 2 sin ( &theta; / 3 ) ) &epsiv; 3 &rho; ) 3 , ( &epsiv; - c 7 1 / 3 - c 8 1 / 3 3 ( 1 - &rho; ) ) 3 } - - - ( 34 )
式中,θ=arccosβ,(-1<β<1)。 
(2)绝对吸引层(ΔAAL
0 < &epsiv; < 27 &rho; 2 &Delta; 4 3 时 
&Delta; AAL = max { ( - &epsiv; + c 5 1 / 3 + c 6 1 / 3 3 &rho; ) 3 , ( &epsiv; - c 11 1 / 3 - c 12 1 / 3 3 ( 2 - &rho; ) ) 3 } - - - ( 35 )
式中, c 11 = - &epsiv; 3 + 3 ( 2 - &rho; ) - 9 ( 2 - &rho; ) &Delta; + c 13 2 , c 12 = - &epsiv; 3 + 3 ( 2 - &rho; ) - 9 ( 2 - &rho; ) &Delta; - c 13 2
其中, c 13 = 81 ( 2 - &rho; ) 2 &Delta; 2 + 12 &epsiv; 3 &Delta;
&epsiv; = 27 &rho; 2 &Delta; 4 3 时, 
&Delta; AAL = max { ( - &epsiv; &rho; + 9 &rho;&Delta; &epsiv; 2 ) 3 , ( &epsiv; - c 11 1 / 3 - c 12 1 / 3 3 ( 2 - &rho; ) ) 3 } - - - ( 36 )
&epsiv; > 27 &rho; 2 &Delta; 4 3 时, 
&Delta; AAL = max { ( ( - 1 + cos ( &theta; / 3 ) + 3 sin ( &theta; / 3 ) ) &epsiv; 3 &rho; ) 3 , ( &epsiv; - c 11 1 / 3 - c 12 1 / 3 3 ( 1 - &rho; ) ) 3 } - - - ( 37 )
(3)稳态误差带(ΔSSE
当λ=2/3时,具有干扰抑制项的误差动态方程式(11)的极值点
0 < &Delta; AAL < ( 3 ( 1 - &rho; ) &epsiv; ) - 3 时 
ΔSSEAAL                        (38) 
( 3 ( 1 - &rho; ) &epsiv; ) - 3 &le; &Delta; AAL < x 2 时 
&Delta; SSE = 2 &epsiv; 3 27 ( 1 - &rho; ) 2 + &Delta; - - - ( 39 )
当ΔAAL≥x2时 
ΔSSEAAL                        (40) 
其中,x2为方程 ( 1 - &rho; ) x - &epsiv; x 2 / 3 - 2 &epsiv; 3 27 ( 1 - &rho; ) 2 = 0 的正实根。 
(四)λ=1/4情形, 
(1)单调减区域(ΔMDR
&Delta; MDR = max ( ( - c 14 2 + 1 2 - c 14 + 2 &epsiv; &rho; c 14 ) 4 , ( c 15 2 + 1 2 - c 15 + 2 &epsiv; ( 1 - &rho; ) c 15 ) 4 ) - - - ( 41 )
式中, c 14 = - 4 2 3 &rho;&Delta; &rho; c 16 + c 16 3 2 3 &rho; , c 15 = - 4 2 3 ( 1 - &rho; ) &Delta; ( 1 - &rho; ) c 17 + c 17 3 2 3 ( 1 - &rho; ) .
其中, c 16 = 27 &rho; &epsiv; 2 + 6912 &rho; 3 &Delta; 3 + 729 &rho; 2 &epsiv; 4 , 3
c 17 = 27 ( 1 - &rho; ) &epsiv; 2 + 6912 ( 1 - &rho; ) 3 &Delta; 3 + 729 ( 1 - &rho; ) 2 &epsiv; 4 3 .
(2)绝对吸引层(ΔAAL
&Delta; AAL = max { ( - c 14 2 + 1 2 - c 14 + 2 &epsiv; &rho; c 14 ) 4 , ( c 18 2 + 1 2 - c 18 + 2 &epsiv; ( 2 - &rho; ) c 18 ) 4 } - - - ( 42 )
式中, c 18 = - 4 2 3 ( 1 - &rho; ) &Delta; ( 2 - &rho; ) c 19 + c 19 3 2 3 ( 2 - &rho; ) .
其中, c 19 = 27 ( 2 - &rho; ) &epsiv; 2 + 6912 ( 2 - &rho; ) 3 &Delta; 3 + 729 ( 2 - &rho; ) 2 &epsiv; 4 3 .
(3)稳态误差带(ΔSSE
当λ=1/4时,具有干扰抑制项的误差动态方程式(11)的极值点
Figure BDA000023911900002210
0 < &Delta; AAL < ( 4 ( 1 - &rho; ) &epsiv; ) - 4 / 3 时 
ΔSSEAAL                    (43) 
( 4 ( 1 - &rho; ) &epsiv; ) - 4 / 3 &le; &Delta; AAL < x 3 时 
&Delta; SSE = 27 &epsiv; 4 256 ( 1 - &rho; ) 3 + &Delta; - - - ( 44 )
当ΔAAL≥x3时 
ΔSSEAAL                (45) 
其中,x3为方程 ( 1 - &rho; ) x - &epsiv; x 1 / 4 - 27 &epsiv; 4 256 ( 1 - &rho; ) 3 = 0 的正实根。 
(五)λ=3/4情形, 
(1)单调减区域(ΔMDR
&Delta; MDR 1 = max { ( - &epsiv; 4 &rho; - c 20 2 + 1 2 &epsiv; 2 2 &rho; 2 - c 21 + &epsiv; 3 4 &rho; 3 c 20 ) 4 , ( - &epsiv; 4 &rho; + c 20 2 + 1 2 &epsiv; 2 2 &rho; 2 - c 21 - &epsiv; 3 4 &rho; 3 c 20 ) 4 } - - - ( 46 )
式中, 21 4 2 3 22 22 3  。 

Claims (3)

1.一种用于位置伺服系统的半周期重复控制器,被控对象为重复伺服系统,其输入输出特性为:
A(q-1)yk=q-dB(q-1)uk+wk
其中,d表示延迟,uk和yk分别表示k时刻的输入和输出信号,wk为k时刻的干扰信号,A(q-1)和B(q-1)为关于q-1的多项式,
A(q-1)=1+a1q-1+…+anq-n
B(q-1)=b0+b1q-1+…+bmq-m
其中,q-1是一步延迟算子,n为A(q-1)的阶数,m为B(q-1)的阶数,a1,...,an,b0,…,bm为系统参数且b0≠0;d为整数,且d≥1;
其特征在于:给定参考信号rk,该参考信号具有半周期对称特性:
P1.rk=±rk-N/2
P2.rk=±rk′
其中,k′=(ceil(2k/N)-1)N-k,k≥N/2,rk-N/2,rk′分别表示k-N/2,k′时刻的参考信号;
根据参考信号半周期对称特性,构造等效扰动dk
对于P1
dk=wk±wk-N/2
对于P2
dk=wk±wk',k'=(ceil(2k/N)-1)N-k
其中,wk-N/2,wk'分别表示k-N/2,k'时刻伺服系统所受的扰动信号;
构造带干扰抑制作用的幂次吸引律,提供的离散形式的幂次吸引律为:
ek+1=(1-ρ)ek-ε|ek|λsgn(ek)
其中,ek=rk-yk表示跟踪误差,ρ、ε为表达吸引速度的两个常数,λ为吸引指数,相应地各自取值范围为:ε>0,0<ρ<1,0<λ<1;
对于dk=wk+wk-N/2情形,设计半周期重复控制器,先给出误差动态方程:
ek+1=rk+1+yk+1-N/2+A'(q-1)(yk+yk-N/2)-q-d+1B(q-1)(uk+uk-N/2)-dk+1式中,
A'(q-1)=a1+a2q-1+…+anq-n+1=q(A(q-1)-1)
代入幂次吸引律,得
uk=-uk-N/2+[q-d+1B(q-1)]-1[rk+1+yk+1-N/2+A'(q-1)(yk+yk-N/2)-(1-ρ)ek+ε|ek|λsgn(ek)-dk+1]
为实现上述控制器,需给出dk+1的补偿值
Figure FDA00002391189900021
,并用其代替dk+1,本发明提供的半周期重复控制器具有如下形式:
u k = - u k - N / 2 + [ q - d + 1 B ( q - 1 ) ] - 1 [ r k + 1 + y k + 1 - N / 2 + A &prime; ( q - 1 ) ( y k + y k - N / 2 ) - ( 1 - &rho; ) e k + &epsiv; | e k | &lambda; sgn ( e k ) - d k + 1 * ] v k = [ q - d + 1 B ( q - 1 ) ] - 1 [ r k + 1 + y k + 1 - N / 2 + A &prime; ( q - 1 ) ( y k + y k - N / 2 ) - ( 1 - &rho; ) e k + &epsiv; | e k | &lambda; sgn ( e k ) - d k + 1 * ] , 则有:
uk=-uk-N/2+vk
对于dk=wk-wk-N/2情形,将其归为整周期情形,周期为N/2;对于
Figure FDA00002391189900024
情形,半周期重复控制器:
u k = &PlusMinus; u k &prime; + [ q - d + 1 B ( q - 1 ) ] - 1 [ r k + 1 &PlusMinus; y y &prime; + 1 + A &prime; ( q - 1 ) ( y k &PlusMinus; y k &prime; ) - ( 1 - &rho; ) e k
+ &epsiv; | e k | &lambda; sgn ( e k ) - d k + 1 * ]
v k &prime; = [ q - d + 1 B ( q - 1 ) ] - 1 [ r k + 1 &PlusMinus; y y &prime; + 1 + A &prime; ( q - 1 ) ( y k &PlusMinus; y k &prime; ) - ( 1 - &rho; ) e k + &epsiv; | e k | &lambda; sgn ( e k ) - d k + 1 * ] ,
则有:
uk=±uk'+vk'
半周期重复控制器uk作为被控伺服对象的控制输入,使得伺服系统输出的位置的信号yk跟随参考信号rk变化;
从上述半周期重复控制器,可得下述理想误差动态方程: e k + 1 = ( 1 - &rho; ) e k - &epsiv; | e k | &lambda; sgn ( e k ) + d k + 1 - d k + 1 * , 公式1
其中,
Figure FDA00002391189900033
为等效扰动dk+1的补偿值,
Figure FDA00002391189900034
取为dk+1的平均值或k时刻的等效扰动dk
2.如权利要求1所述的用于位置伺服系统的半周期重复控制器,其特征在于:所述半周期重复控制器的参数包括趋近速度指数ρ,到达速度ε,吸引指数λ,根据表征系统收敛性能的指标进行参数整定;引入表征系统收敛性能指标有单调减区域ΔMDR,绝对吸引层ΔAAL和稳态误差带ΔSSE概念,具体定义如下:
单调减区域ΔMDR
0 < e k + 1 < e k , e k > &Delta; MDR e k < e k + 1 < 0 , e k < - &Delta; MDR
绝对吸引层ΔAAL
| e k | > &Delta; AAL &DoubleRightArrow; | e k + 1 | < | e k |
稳态误差带ΔSSE
| e k | &le; &Delta; SSE &DoubleRightArrow; | e k + 1 | &le; &Delta; SSE
(1)单调减区域ΔMDR
ΔMDR=max{ΔMDR1MDR2}
式中,ΔMDR1,ΔMDR2为实数,且满足
&rho; &Delta; MDR 1 + &epsiv; &Delta; MDR 1 &lambda; - &Delta; = 0 ( 1 - &rho; ) &Delta; MDR 2 - &epsiv; &Delta; MDR 2 &lambda; - &Delta; = 0
(2)绝对吸引层ΔAAL
ΔAAL=max{ΔAAL1AAL2}
式中,ΔAAL1,ΔAAL2为实数,由下式确定,
&rho; &Delta; AAL 1 + &epsiv; &Delta; AAL 1 &lambda; - &Delta; = 0 ( 2 - &rho; ) &Delta; AAL 2 - &epsiv; &Delta; AAL 2 &lambda; - &Delta; = 0
(3)稳态误差带ΔSSE
ΔSSE的具体取值依据ΔAAL来确定,
a.当 0 < &Delta; AAL < &epsiv;&lambda; 1 - &rho; 1 - &lambda;
ΔSSEAAL
b.当 &epsiv;&lambda; 1 - &rho; 1 - &lambda; &le; &Delta; AAL < x SSE
&Delta; SSE = - ( 1 - &rho; ) &epsiv;&lambda; 1 - &rho; 1 - &lambda; + &epsiv; &epsiv;&lambda; 1 - &rho; 1 - &lambda; &lambda; + &Delta;
c.当ΔAAL≥xSSE
ΔSSEAAL
其中,xSSE为方程 ( 1 - &rho; ) x - &epsiv; x &lambda; + ( 1 - &rho; ) &epsiv;&lambda; 1 - &rho; 1 - &lambda; - &epsiv; &epsiv;&lambda; 1 - &rho; 1 - &lambda; &lambda; = 0 的正实根;
对于具体给定的λ值,计算各边界取值,以确定闭环系统性能。
3.如权利要求2所述的用于位置伺服系统的半周期重复控制器,其特征在于:对于λ=1/2,1/3,2/3,1/4,3/4五种情形,依据下面给出的ΔMDR、ΔAAL及ΔSSE表达式来确定各边界取值:
(一)λ=1/2情形,
(1)单调减区域ΔMDR
&Delta; MDR = ( &epsiv; + &epsiv; 2 + 4 &Delta; ( 1 - &rho; ) 2 ( 1 - &rho; ) ) 2 &epsiv; > &Delta; ( 1 - 2 &rho; ) 2 ( - &epsiv; + &epsiv; 2 + 4 &rho;&Delta; 2 &rho; ) 2 &epsiv; &le; &Delta; ( 1 - 2 &rho; ) 2
(2)绝对收吸引层ΔAAL
&Delta; AAL = ( &epsiv; + &epsiv; 2 + 4 &Delta; ( 2 - &rho; ) 2 ( 2 - &rho; ) ) 2 &epsiv; > &Delta; ( 1 - &rho; ) ( - &epsiv; + &epsiv; 2 + 4 &rho;&Delta; 2 &rho; ) 2 &epsiv; &le; &Delta; ( 1 - &rho; )
(3)稳态误差带ΔSSE
&Delta; SSE = ( &epsiv; + &epsiv; 2 + 4 &Delta; ( 1 - &rho; ) 2 ( 2 - &rho; ) ) 2 &epsiv; > 2 ( 1 - &rho; ) &Delta; &rho; &epsiv; 2 4 ( 1 - &rho; ) + &Delta; c 0 < &epsiv; &le; 2 ( 1 - &rho; ) &Delta; &rho; ( - &epsiv; + &epsiv; 2 + 4 &rho;&Delta; 2 &rho; ) 2 0 < &epsiv; &le; c 0 - - - ( 22 )
其中, c 0 = 2 ( 1 - &rho; ) ( 2 2 - &rho; - 2 ) &Delta; 4 ( 1 - &rho; ) - &rho; 2 ;
(二)λ=1/3情形,
(1)单调减区域ΔMDR
0 < &epsiv; < 27 &Delta; 2 ( 1 - &rho; ) 4 3
&Delta; MDR = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 9 ( 1 - &rho; ) &Delta; - c 2 3 + 9 ( 1 - &rho; ) &Delta; + c 2 3 18 ( 1 - &rho; ) 2 3 ) 3 }
式中, c 1 = 81 &rho; 2 &Delta; 2 + 12 &rho; &epsiv; 3 , c 2 = 81 ( 1 - &rho; ) 2 &Delta; 2 - 12 ( 1 - &rho; ) &epsiv; 3
&epsiv; = 27 &Delta; 2 ( 1 - &rho; ) 4 3
&Delta; MDR = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 3 &Delta; &epsiv; ) 3 }
&epsiv; > 27 &Delta; 2 ( 1 - &rho; ) 4 3
&Delta; MDR = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 3 ( 1 - &rho; ) &epsiv; ( cos ( &theta; 1 / 3 ) + 3 sin ( &theta; 1 / 3 ) ) 3 ( 1 - &rho; ) ) 3 }
式中,θ1=arccosβ1
Figure FDA00002391189900063
(-1<β1<0);
(2)绝对吸引层ΔAAL
0 < &epsiv; < 27 &Delta; 2 ( 2 - &rho; ) 4 3
&Delta; AAL = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 9 ( 1 - &rho; ) &Delta; - c 3 3 + 9 ( 1 - &rho; ) &Delta; + c 3 3 18 ( 1 - &rho; ) 2 3 ) 3 }
式中, c 3 = 81 ( 2 - &rho; ) 2 &Delta; 2 - 12 ( 2 - &rho; ) &epsiv; 3 ;
&epsiv; = 27 &Delta; 2 ( 2 - &rho; ) 4 3
&Delta; AAL = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 3 &Delta; &epsiv; ) 3 }
&epsiv; > 27 &Delta; 2 ( 2 - &rho; ) 4 3
&Delta; AAL = max { ( 9 &rho;&Delta; - c 1 3 + 9 &rho;&Delta; + c 1 3 18 &rho; 2 3 ) 3 , ( 3 ( 1 - &rho; ) &epsiv; ( cos ( &theta; 2 / 3 ) + 3 sin ( &theta; 2 / 3 ) ) 3 ( 2 - &rho; ) ) 3 }
式中,θ2=arccosβ2
Figure FDA000023911899000611
(-1<β2<0);
(3)稳态误差带ΔSSE
当λ=1/3时,具有干扰抑制项的误差动态方程的极值点
| e k | = ( 3 ( 1 - &rho; ) &epsiv; ) - 3 / 2 ;
0 < &Delta; AAL < ( 3 ( 1 - &rho; ) &epsiv; ) - 3 / 2
ΔSSEAAL
( 3 ( 1 - &rho; ) &epsiv; ) - 3 / 2 &le; &Delta; AAL < x 1 时,
&Delta; SSE = 4 &epsiv; 3 27 ( 1 - &rho; ) + &Delta;
当ΔAAL≥x1
ΔSSEAAL
其中,x1为方程 ( 1 - &rho; ) x - &epsiv; x 1 / 3 - 4 &epsiv; 3 27 ( 1 - &rho; ) = 0 的正实根;
(三)λ=2/3情形,
(1)单调减区域ΔMDR
0 < &epsiv; < 27 &rho; 2 &Delta; 4 3
&Delta; MDR = max { ( - &epsiv; + c 5 1 / 3 + c 6 1 / 3 3 &rho; ) 3 , ( &epsiv; - c 7 1 / 3 - c 8 1 / 3 3 ( 1 - &rho; ) ) 3 }
式中, c 5 = &epsiv; 3 + 3 &rho; - 9 &rho;&Delta; + c 9 2 , c 6 = &epsiv; 3 + 3 &rho; - 9 &rho;&Delta; - c 9 2 ,
c 7 = - &epsiv; 3 + 3 ( 1 - &rho; ) - 9 ( 1 - &rho; ) &Delta; + c 10 2 , c 8 = - &epsiv; 3 + 3 ( 1 - &rho; ) - 9 ( 1 - &rho; ) &Delta; - c 10 2 ;
其中, c 9 = 81 &rho; 2 &Delta; 2 - 12 &epsiv; 3 &Delta; , c 10 = 81 ( 1 - &rho; ) 2 &Delta; 2 + 12 &epsiv; 3 &Delta; ;
&epsiv; = 27 &rho; 2 &Delta; 4 3 时,
&Delta; MDR = max { ( - &epsiv; &rho; + 9 &rho;&Delta; &epsiv; 2 ) 3 , ( &epsiv; - c 7 1 / 3 - c 8 1 / 3 3 ( 1 - &rho; ) ) 3 }
&epsiv; > 27 &rho; 2 &Delta; 4 3 时,
&Delta; MDR = max { ( ( - 1 + cos ( &theta; / 3 ) + 3 1 / 2 sin ( &theta; / 3 ) ) &epsiv; 3 &rho; ) 3 , ( &epsiv; - c 7 1 / 3 - c 8 1 / 3 3 ( 1 - &rho; ) ) 3 }
式中,θ=arccosβ,(-1<β<1);
(2)绝对吸引层ΔAAL
0 < &epsiv; < 27 &rho; 2 &Delta; 4 3
&Delta; AAL = max { ( - &epsiv; + c 5 1 / 3 + c 6 1 / 3 3 &rho; ) 3 , ( &epsiv; - c 11 1 / 3 - c 12 1 / 3 3 ( 2 - &rho; ) ) 3 }
式中, c 11 = - &epsiv; 3 + 3 ( 2 - &rho; ) - 9 ( 2 - &rho; ) &Delta; + c 13 2 , c 12 = - &epsiv; 3 + 3 ( 2 - &rho; ) - 9 ( 2 - &rho; ) &Delta; - c 13 2
其中, c 13 = 81 ( 2 - &rho; ) 2 &Delta; 2 + 12 &epsiv; 3 &Delta;
&epsiv; = 27 &rho; 2 &Delta; 4 3 时,
&Delta; AAL = max { ( - &epsiv; &rho; + 9 &rho;&Delta; &epsiv; 2 ) 3 , ( &epsiv; - c 11 1 / 3 - c 12 1 / 3 3 ( 2 - &rho; ) ) 3 }
&epsiv; > 27 &rho; 2 &Delta; 4 3 时,
&Delta; AAL = max { ( ( - 1 + cos ( &theta; / 3 ) + 3 sin ( &theta; / 3 ) ) &epsiv; 3 &rho; ) 3 , ( &epsiv; - c 11 1 / 3 - c 12 1 / 3 3 ( 1 - &rho; ) ) 3 }
(3)稳态误差带ΔSSE
当λ=2/3时,具有干扰抑制项的误差动态方程的极值点
| e k | = ( 3 ( 1 - &rho; ) &epsiv; ) - 3 ;
0 < &Delta; AAL < ( 3 ( 1 - &rho; ) &epsiv; ) - 3
ΔSSEAAL
( 3 ( 1 - &rho; ) &epsiv; ) - 3 &le; &Delta; AAL < x 2
&Delta; SSE = 2 &epsiv; 3 27 ( 1 - &rho; ) 2 + &Delta;
当ΔAAL≥x2
ΔSSEAAL
其中,x2为方程 ( 1 - &rho; ) x - &epsiv; x 2 / 3 - 2 &epsiv; 3 27 ( 1 - &rho; ) 2 = 0 的正实根;
(四)λ=1/4情形,
(1)单调减区域ΔMDR
&Delta; MDR = max ( ( - c 14 2 + 1 2 - c 14 + 2 &epsiv; &rho; c 14 ) 4 , ( c 15 2 + 1 2 - c 15 + 2 &epsiv; ( 1 - &rho; ) c 15 ) 4 )
式中, c 14 = - 4 2 3 &rho;&Delta; &rho; c 16 + c 16 3 2 3 &rho; , c 15 = - 4 2 3 ( 1 - &rho; ) &Delta; ( 1 - &rho; ) c 17 + c 17 3 2 3 ( 1 - &rho; ) ;
其中, c 16 = 27 &rho; &epsiv; 2 + 6912 &rho; 3 &Delta; 3 + 729 &rho; 2 &epsiv; 4 , 3
c 17 = 27 ( 1 - &rho; ) &epsiv; 2 + 6912 ( 1 - &rho; ) 3 &Delta; 3 + 729 ( 1 - &rho; ) 2 &epsiv; 4 3 ;
(2)绝对吸引层ΔAAL
&Delta; AAL = max { ( - c 14 2 + 1 2 - c 14 + 2 &epsiv; &rho; c 14 ) 4 , ( c 18 2 + 1 2 - c 18 + 2 &epsiv; ( 2 - &rho; ) c 18 ) 4 }
式中, c 18 = - 4 2 3 ( 1 - &rho; ) &Delta; ( 2 - &rho; ) c 19 + c 19 3 2 3 ( 2 - &rho; ) ;
其中, c 19 = 27 ( 2 - &rho; ) &epsiv; 2 + 6912 ( 2 - &rho; ) 3 &Delta; 3 + 729 ( 2 - &rho; ) 2 &epsiv; 4 3 ;
(3)稳态误差带ΔSSE
当λ=1/4时,具有干扰抑制项的误差动态方程的极值点
| e k | = ( 4 ( 1 - &rho; ) &epsiv; ) - 4 / 3 ;
0 < &Delta; AAL < ( 4 ( 1 - &rho; ) &epsiv; ) - 4 / 3
ΔSSEAAL
( 4 ( 1 - &rho; ) &epsiv; ) - 4 / 3 &le; &Delta; AAL < x 3
&Delta; SSE = 27 &epsiv; 4 256 ( 1 - &rho; ) 3 + &Delta;
当ΔAAL≥x3
ΔSSEAAL
其中,x3为方程 ( 1 - &rho; ) x - &epsiv; x 1 / 4 - 27 &epsiv; 4 256 ( 1 - &rho; ) 3 = 0 的正实根;
(五)λ=3/4情形,
(1)单调减区域ΔMDR
&Delta; MDR 1 = max { ( - &epsiv; 4 &rho; - c 20 2 + 1 2 &epsiv; 2 2 &rho; 2 - c 21 + &epsiv; 3 4 &rho; 3 c 20 ) 4 , ( - &epsiv; 4 &rho; + c 20 2 + 1 2 &epsiv; 2 2 &rho; 2 - c 21 - &epsiv; 3 4 &rho; 3 c 20 ) 4 }
式中, c 21 = - 4 2 3 &Delta; c 22 + c 22 3 2 3 &rho; , c 20 = &epsiv; 2 4 &rho; 2 + c 21 ,
其中, c 22 = - 27 &epsiv; 2 &Delta; + 6912 &rho; 3 &Delta; 3 + 729 &epsiv; 4 &Delta; 2 3 ;
&Delta; MDR = max { &Delta; MDR 1 , ( &epsiv; 4 ( 1 - &rho; ) + c 23 2 + 1 2 &epsiv; 2 2 ( 1 - &rho; ) 2 - c 24 + &epsiv; 3 4 ( 1 - &rho; ) 3 c 23 ) 4 }
式中, c 24 = - 4 2 3 &Delta; c 25 + c 25 3 2 3 ( 1 - &rho; ) , c 23 = &epsiv; 2 4 ( 1 - &rho; ) 2 + c 24 ,
其中, c 25 = - 27 &epsiv; 2 &Delta; + 6912 ( 1 - &rho; ) 3 &Delta; 3 + 729 &epsiv; 4 &Delta; 2 3 ;
(2)绝对吸引层ΔAAL
&Delta; AAL = max { &Delta; MDR 1 , ( &epsiv; 4 ( 2 - &rho; ) + c 26 2 + 1 2 &epsiv; 2 2 ( 2 - &rho; ) 2 - c 27 - &epsiv; 3 4 ( 2 - &rho; ) 3 c 26 ) 4
式中, c 27 = - 4 2 3 &Delta; c 28 + c 28 3 2 3 ( 2 - &rho; ) , c 26 = &epsiv; 2 4 ( 2 - &rho; ) 2 + c 27 ,
其中, c 28 = - 27 &epsiv; 2 &Delta; + 6912 ( 2 - &rho; ) 3 &Delta; 3 + 729 &epsiv; 4 &Delta; 2 3 ;
(3)稳态误差带ΔSSE
当λ=3/4时,具有干扰抑制项的误差动态方程的极值点
| e k | = ( 3 &epsiv; 4 ( 1 - &rho; ) ) 4 ;
0 < &Delta; AAL < ( 3 &epsiv; 4 ( 1 - &rho; ) ) 4
ΔSSEAAL
( 3 &epsiv; 4 ( 1 - &rho; ) ) 4 &le; &Delta; AAL < x 4
&Delta; SSE = 27 &epsiv; 4 256 ( 1 - &rho; ) 3 + &Delta;
当ΔAAL≥x4
ΔSSEAAL
其中,x4为方程 ( 1 - &rho; ) x - &epsiv; x 3 / 4 - 27 &epsiv; 4 256 ( 1 - &rho; ) 3 = 0 的正实根。
CN201210450584.3A 2012-11-12 2012-11-12 用于位置伺服系统的半周期重复控制器 Active CN103048921B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210450584.3A CN103048921B (zh) 2012-11-12 2012-11-12 用于位置伺服系统的半周期重复控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210450584.3A CN103048921B (zh) 2012-11-12 2012-11-12 用于位置伺服系统的半周期重复控制器

Publications (2)

Publication Number Publication Date
CN103048921A true CN103048921A (zh) 2013-04-17
CN103048921B CN103048921B (zh) 2015-08-05

Family

ID=48061604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210450584.3A Active CN103048921B (zh) 2012-11-12 2012-11-12 用于位置伺服系统的半周期重复控制器

Country Status (1)

Country Link
CN (1) CN103048921B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399485A (zh) * 2013-08-07 2013-11-20 浙江工业大学 用于位置伺服系统的部分周期重复控制器
CN103605288A (zh) * 2013-09-30 2014-02-26 浙江工业大学 一种基于吸引律的1/4周期重复控制器
CN103809430A (zh) * 2014-02-26 2014-05-21 浙江工业大学 用于周期伺服系统的离散重复控制器
CN104615130A (zh) * 2015-03-05 2015-05-13 哈尔滨工业大学 基于时间采样的机电伺服系统位置域周期性干扰的抑制方法
CN105334733A (zh) * 2015-10-23 2016-02-17 浙江工业大学 适用于位置伺服的分数周期重复控制器
CN105867110A (zh) * 2016-04-13 2016-08-17 浙江工业大学 一种用于电机伺服系统的离散重复控制方法
CN107544245A (zh) * 2017-08-25 2018-01-05 浙江工业大学 采用扰动扩张补偿的一阶惯性吸引律的用于电机伺服系统的离散重复控制方法
CN108646574A (zh) * 2018-07-26 2018-10-12 台州学院 一种基于幂次吸引律的离散重复控制器及其控制方法
CN108828958A (zh) * 2018-08-21 2018-11-16 浙江工业大学 一种采用干扰差分抑制策略的离散时间控制器无切换吸引律设计方法
CN109031957A (zh) * 2018-10-09 2018-12-18 台州学院 一种基于吸引律的离散多周期重复控制器
CN109085758A (zh) * 2018-10-20 2018-12-25 台州学院 用于位置伺服系统的多周期滑模重复控制器
CN109100938A (zh) * 2018-08-21 2018-12-28 浙江工业大学 一种采用干扰差分补偿的离散时间控制器吸引律设计方法
CN109188908A (zh) * 2018-09-25 2019-01-11 浙江工业大学 基于指数型无切换吸引律的数字控制器设计方法
CN109358502A (zh) * 2018-10-20 2019-02-19 台州学院 一种用于电机伺服系统的离散多周期滑模重复控制方法
CN110032073A (zh) * 2019-05-10 2019-07-19 浙江工业大学 具有等效扰动补偿的1/2幂次吸引重复控制方法
CN110376899A (zh) * 2019-08-14 2019-10-25 台州学院 一种采用周期干扰差分补偿的双模结构半周期重复控制器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070067051A1 (en) * 2005-09-22 2007-03-22 Ramos Jesus L Repetitive controller to compensate for odd harmonics
CN101887238A (zh) * 2010-06-25 2010-11-17 东南大学 一种特定次重复控制器及控制方法
CN101976042A (zh) * 2010-09-09 2011-02-16 浙江工业大学 适用于周期伺服系统的离散滑模重复控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070067051A1 (en) * 2005-09-22 2007-03-22 Ramos Jesus L Repetitive controller to compensate for odd harmonics
CN101887238A (zh) * 2010-06-25 2010-11-17 东南大学 一种特定次重复控制器及控制方法
CN101976042A (zh) * 2010-09-09 2011-02-16 浙江工业大学 适用于周期伺服系统的离散滑模重复控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙明轩等: "离散时间重复控制的理想误差动态设计方法", 《第24届中国控制与决策会议论文集》 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399485A (zh) * 2013-08-07 2013-11-20 浙江工业大学 用于位置伺服系统的部分周期重复控制器
CN103399485B (zh) * 2013-08-07 2016-03-30 浙江工业大学 用于位置伺服系统的部分周期重复控制器
CN103605288A (zh) * 2013-09-30 2014-02-26 浙江工业大学 一种基于吸引律的1/4周期重复控制器
CN103605288B (zh) * 2013-09-30 2016-08-17 浙江工业大学 一种基于吸引律的1/4周期重复控制器
CN103809430B (zh) * 2014-02-26 2016-09-28 浙江工业大学 用于周期伺服系统的离散重复控制器
CN103809430A (zh) * 2014-02-26 2014-05-21 浙江工业大学 用于周期伺服系统的离散重复控制器
CN104615130A (zh) * 2015-03-05 2015-05-13 哈尔滨工业大学 基于时间采样的机电伺服系统位置域周期性干扰的抑制方法
CN104615130B (zh) * 2015-03-05 2017-05-24 哈尔滨工业大学 基于时间采样的机电伺服系统位置域周期性干扰的抑制方法
CN105334733A (zh) * 2015-10-23 2016-02-17 浙江工业大学 适用于位置伺服的分数周期重复控制器
CN105334733B (zh) * 2015-10-23 2017-11-07 浙江工业大学 适用于位置伺服的分数周期重复控制器
CN105867110A (zh) * 2016-04-13 2016-08-17 浙江工业大学 一种用于电机伺服系统的离散重复控制方法
CN105867110B (zh) * 2016-04-13 2019-01-08 浙江工业大学 一种用于电机伺服系统的离散重复控制方法
CN107544245A (zh) * 2017-08-25 2018-01-05 浙江工业大学 采用扰动扩张补偿的一阶惯性吸引律的用于电机伺服系统的离散重复控制方法
CN107544245B (zh) * 2017-08-25 2020-08-04 浙江工业大学 采用扰动扩张补偿的一阶惯性吸引律的用于电机伺服系统的离散重复控制方法
CN108646574A (zh) * 2018-07-26 2018-10-12 台州学院 一种基于幂次吸引律的离散重复控制器及其控制方法
CN108646574B (zh) * 2018-07-26 2022-02-08 台州学院 一种基于幂次吸引律的离散重复控制器及其控制方法
CN109100938A (zh) * 2018-08-21 2018-12-28 浙江工业大学 一种采用干扰差分补偿的离散时间控制器吸引律设计方法
CN108828958A (zh) * 2018-08-21 2018-11-16 浙江工业大学 一种采用干扰差分抑制策略的离散时间控制器无切换吸引律设计方法
CN109100938B (zh) * 2018-08-21 2021-02-26 浙江工业大学 一种采用干扰差分补偿的离散时间控制器吸引律设计方法
CN108828958B (zh) * 2018-08-21 2021-02-26 浙江工业大学 一种采用干扰差分抑制策略的离散时间控制器无切换吸引律设计方法
CN109188908B (zh) * 2018-09-25 2021-02-26 浙江工业大学 基于指数型无切换吸引律的数字控制器设计方法
CN109188908A (zh) * 2018-09-25 2019-01-11 浙江工业大学 基于指数型无切换吸引律的数字控制器设计方法
CN109031957A (zh) * 2018-10-09 2018-12-18 台州学院 一种基于吸引律的离散多周期重复控制器
CN109031957B (zh) * 2018-10-09 2022-02-25 台州学院 一种基于吸引律的离散多周期重复控制器
CN109358502A (zh) * 2018-10-20 2019-02-19 台州学院 一种用于电机伺服系统的离散多周期滑模重复控制方法
CN109085758A (zh) * 2018-10-20 2018-12-25 台州学院 用于位置伺服系统的多周期滑模重复控制器
CN109085758B (zh) * 2018-10-20 2022-02-18 台州学院 用于位置伺服系统的多周期滑模重复控制器
CN109358502B (zh) * 2018-10-20 2022-02-25 台州学院 一种用于电机伺服系统的离散多周期滑模重复控制方法
CN110032073A (zh) * 2019-05-10 2019-07-19 浙江工业大学 具有等效扰动补偿的1/2幂次吸引重复控制方法
CN110032073B (zh) * 2019-05-10 2022-05-03 浙江工业大学 具有等效扰动补偿的1/2幂次吸引重复控制方法
CN110376899A (zh) * 2019-08-14 2019-10-25 台州学院 一种采用周期干扰差分补偿的双模结构半周期重复控制器
CN110376899B (zh) * 2019-08-14 2022-02-18 台州学院 一种采用周期干扰差分补偿的双模结构半周期重复控制器

Also Published As

Publication number Publication date
CN103048921B (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
CN103048921A (zh) 用于位置伺服系统的半周期重复控制器
CN103399485B (zh) 用于位置伺服系统的部分周期重复控制器
CN103197556B (zh) 基于吸引律的二分之一周期重复控制方法
CN101976042B (zh) 适用于周期伺服系统的离散滑模重复控制方法
Zurita-Bustamante et al. A comparison between the GPI and PID controllers for the stabilization of a DC–DC “buck” converter: A field programmable gate array implementation
Humaidi et al. PSO-based active disturbance rejection control for position control of magnetic levitation system
CN103809430B (zh) 用于周期伺服系统的离散重复控制器
CN105549381A (zh) 一种基于吸引律的离散重复控制方法
CN105867110B (zh) 一种用于电机伺服系统的离散重复控制方法
CN102207729B (zh) 基于理想误差动态的半周期重复控制器
CN108958041B (zh) 一种基于双曲正割吸引律的离散双周期重复控制方法
CN107544245A (zh) 采用扰动扩张补偿的一阶惯性吸引律的用于电机伺服系统的离散重复控制方法
Choi Adaptive control of a chaotic permanent magnet synchronous motor
CN109188908B (zh) 基于指数型无切换吸引律的数字控制器设计方法
CN108983615A (zh) 基于反双曲正弦吸引律的离散双周期重复控制器
CN103605288B (zh) 一种基于吸引律的1/4周期重复控制器
Xiao et al. Full‐state discrete‐time model‐based stability analysis and parameter design of dual active bridge converter in energy storage system
Wang et al. Full digital deadbeat speed control for permanent magnet synchronous motor with load compensation
Li et al. Coupling modeling and adaptive control for piezoelectric-actuated positioning stage
Fu et al. Model predictive control for DAB under extended‐phase‐shift considering components uncertainty
Ding et al. Sensorless Control of Surface-Mounted Permanent Magnet Synchronous Motor Using Adaptive Robust UKF
CN109100938A (zh) 一种采用干扰差分补偿的离散时间控制器吸引律设计方法
Hou et al. Model based control and MFAC, which is better in simulation?
Das et al. Impact of fractional order integral performance indices in LQR based PID controller design via optimum selection of weighting matrices
Galdos et al. Robust controller design by convex optimization based on finite frequency samples of spectral models

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20191224

Address after: 314200 Building 2, east side of Xinxing 7th Road, north side of Duli Road, Pinghu Economic Development Zone, Pinghu City, Jiaxing City, Zhejiang Province

Patentee after: Zhejiang Anxin Electric Co.,Ltd.

Address before: 510000 unit 2414-2416, building, No. five, No. 371, Tianhe District, Guangdong, China

Patentee before: GUANGDONG GAOHANG INTELLECTUAL PROPERTY OPERATION Co.,Ltd.

Effective date of registration: 20191224

Address after: 510000 unit 2414-2416, building, No. five, No. 371, Tianhe District, Guangdong, China

Patentee after: GUANGDONG GAOHANG INTELLECTUAL PROPERTY OPERATION Co.,Ltd.

Address before: Hangzhou City, Zhejiang province 310014 City Zhaohui District Six

Patentee before: Zhejiang University of Technology

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210427

Address after: 118001 No.7, Guoyuan Road, Yalujiang village, Yalujiang office, Zhen'an District, Dandong City, Liaoning Province

Patentee after: Liaoning Jill Electronics Co.,Ltd.

Address before: 314200 Building 2, east side of Xinxing 7th Road, north side of Duli Road, Pinghu Economic Development Zone, Pinghu City, Jiaxing City, Zhejiang Province

Patentee before: Zhejiang Anxin Electric Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220215

Address after: 118012 No. 7, Guoyuan Road, Yalujiang village, Yalujiang office, Zhen'an District, Dandong City, Liaoning Province

Patentee after: Liaoning Jill Electronics Co.,Ltd.

Patentee after: China Petroleum Group Bohai Petroleum Equipment Manufacturing Co.,Ltd. Liaohe thermal extraction machinery manufacturing branch

Address before: 118001 No. 7, Guoyuan Road, Yalujiang village, Yalujiang office, Zhen'an District, Dandong City, Liaoning Province

Patentee before: Liaoning Jill Electronics Co.,Ltd.

TR01 Transfer of patent right