CN109100938A - 一种采用干扰差分补偿的离散时间控制器吸引律设计方法 - Google Patents

一种采用干扰差分补偿的离散时间控制器吸引律设计方法 Download PDF

Info

Publication number
CN109100938A
CN109100938A CN201810951946.4A CN201810951946A CN109100938A CN 109100938 A CN109100938 A CN 109100938A CN 201810951946 A CN201810951946 A CN 201810951946A CN 109100938 A CN109100938 A CN 109100938A
Authority
CN
China
Prior art keywords
interference
formula
error
reference signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810951946.4A
Other languages
English (en)
Other versions
CN109100938B (zh
Inventor
孙明轩
胡志云
李威
张钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201810951946.4A priority Critical patent/CN109100938B/zh
Publication of CN109100938A publication Critical patent/CN109100938A/zh
Application granted granted Critical
Publication of CN109100938B publication Critical patent/CN109100938B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

一种采用干扰差分抑制策略的离散时间控制器吸引律设计方法,给定模块产生参考信号;依据给定参考信号的具体形式,构造相应的干扰差分补偿反馈环节,其输出信号用于离散时间控制器中的干扰补偿;基于吸引律构建理想误差动态,依据理想误差动态设计离散时间控制器,将当前的控制器计算获得的信号作为伺服对象的输入。具体的控制器参数整定可依据表征系统收敛性能的指标进行,且提供了表征跟踪误差收敛过程的稳态误差带、绝对吸引层和单调减区域的具体表达式。本发明提供的离散时间控制器设计,根据给定参考信号,采用相应干扰差分补偿措施,通过抑制干扰提高跟踪精度。

Description

一种采用干扰差分补偿的离散时间控制器吸引律设计方法
技术领域
本发明涉及一种采用干扰差分抑制策略的离散时间控制器吸引律设计方法,该方法适于位置伺服系统,也适用于其他工业应用场合。
背景技术
趋近律方法是伺服系统滑模控制器设计的有效工具,由于采用趋近律,闭环系统动态过程表现为趋近过程与滑动模态,其稳定性与收敛性由具体的趋近律和切换函数形式所决定。实际控制器设计需考虑各种扰动的影响,将扰动抑制措施“嵌入”在原趋近律中,修改后的趋近律形成理想切换动态。这样,依据理想切换动态设计的控制器能够有效抑制扰动。
吸引律方法直接采用跟踪误差信号,无需定义切换函数,控制器设计更为直接、简洁。吸引律反映了不考虑扰动时期望的系统误差动态特性;在存在干扰的情形下,直接依据吸引律导致的控制器无法实现。可将干扰抑制措施“嵌入”吸引律,构建具有扰动抑制作用的理想误差动态。依据构造的理想误差动态方程设计离散时间控制器,闭环系统动态过程由理想误差动态所决定,且具有理想误差动态所表征的期望跟踪性能。
吸引律方法有别于离散滑模控制的趋近律方法。两者的主要区别表现在:吸引律方法将跟踪误差取代切换函数、原点取代切换面;趋近律方法要求有限时间达到切换面,而吸引律方法要求有限时间达到原点;吸引律方法设计的闭环系统仍具有关于参数漂移和外部干扰的鲁棒性能,只是滑模控制注重滑模运动的不变性,而吸引律方法追求系统稳态的不变性。
以吸引律方法设计离散控制器时,刻画跟踪误差瞬态和稳态行为的指标可由理想误差动态给出,具体有下述四个指标:稳态误差带、绝对吸引层、单调递减区域以及跟踪误差首次进入稳态误差带所需的最多步数。实际上,四个指标的具体取值依赖于控制器参数,控制器参数不同,四个指标的取值也不同。一旦给定理想误差动态形式,可预先给出四个指标的具体表达式,用于控制器参数整定。目前已发表的吸引律方法中,四个指标均依赖于等效干扰信号的界。有效抑制干扰、减小等效干扰信号的界是吸引律方法亟待解决的难题。
发明内容
本发明提供一种适用于位置伺服系统的离散时间控制器设计吸引律方法。为抑制干扰信号对伺服系统性能的影响,提高跟踪控制精度,采用干扰差分补偿技术,将其嵌入在吸引律中,以便构建具有扰动抑制能力的理想误差动态。依据理想误差动态设计离散时间控制器,使得闭环系统具有理想误差动态所刻画的特性,从而提高位置伺服系统抗干扰能力和跟踪性能。控制器设计采用无切换吸引律,可以消除抖振现象。本发明具体给出稳态误差带、绝对吸引层、单调减区域以及跟踪误差首次进入稳态误差带所需的最多步数等四个指标的具体表达式,可用于指导控制器参数整定。
本发明解决上述技术问题采用的技术方案为:
一种采用干扰差分补偿的离散时间控制器吸引律设计方法,包括以下步骤:
步骤1.给定参考信号rk,为时间变量k的多项式,M表示该多项式的最高幂次,三种参考信号如下:
1)方波信号,M=0
2)三角波信号,M=1
3)S曲线,M=3
其中,A为幅值,N为参考信号在一个周期中的采样次数;
步骤2.构造理想误差动态
针对无切换吸引律
ek+1=(1-ρ)ek (4)
其中,0<ρ<1,ek=rk-yk为k时刻的系统跟踪误差,yk为k时刻的系统实际输出信号,将干扰抑制措施嵌入该吸引律,构造理想误差动态
其中,dk+1为k+1时刻的等效干扰,用于补偿等效干扰。为等效干扰补偿误差;
步骤3.干扰差分补偿策略
取等效干扰补偿作用为针对具体的参考信号定义等效干扰,其形式为:
M=0时的等效干扰信号
dk+1=wk+1 (6)
M=1时的等效干扰信号
dk+1=wk+1-wk (7)
M=3时的等效干扰信号
dk+1=[(wk+1-wk)-(wk-wk-1)]-[(wk-wk-1)-(wk-1-wk-2)] (8)
其中,wk+1为k+1时刻的干扰;
定义干扰差分步数为L,L表示干扰补偿误差包含L个相继时刻的干扰,如式(6),两步干扰差分dk+1-dk=wk+1-wk,包含wk+1与wk两个时刻干扰,为有效抑制干扰,在选择等效干扰时,应满足如下条件
其中,为不小于·的最小整数;
步骤4.控制器设计
依据理想误差动态(5)和等效干扰信号dk+1,给出如下控制器的表达式:
1)对于方波参考信号式(1),
其中,F(q-1)=B(q-1)-b0
2)对于三角波参考信号式(2),
其中,
3)对于S曲线参考信号式(3),
式(10)至式(12)中,A(q-1)、B(q-1)为伺服系统
A(q-1)yk=q-1B(q-1)uk+wk (13)
关于q-1的参数多项式:
A(q-1)=1+a1q-1+a2q-2+……+anq-n
B(q-1)=b0+b1q-1+b2q-2+……+bmq-m
其中,uk与yk分别为伺服系统k时刻的输入及输出信号,q-1为一步延迟算子,m、n分别为A(q-1)、B(q-1)的阶数,b0≠0,1≤m≤n。
进一步,所述方法还包括:
步骤5.性能分析
给出稳态误差带、绝对吸引层、单调减区域以及跟踪误差首次进入稳态误差带所需最多步数四个指标的具体表达式,用于刻画系统跟踪性能及指导控制器参数整定,其中,稳态误差带、绝对吸引层以及单调减区域定义如下:
1)稳态误差带(ΔSSE)
2)绝对吸引层(ΔAAL)
3)单调减区域(ΔMDR)
等效干扰补偿误差满足时,各指标的表达式如下:
稳态误差带(ΔSSE)
绝对吸引层(ΔAAL)
单调减区域(ΔMDR)
收敛步数
其中,e0为跟踪误差初始值,干扰补偿误差满足
d*为跟踪误差从e0到进入稳态误差带时,干扰补偿误差累积的平均值,满足如下等式
本发明技术构思为:提供一种用于位置伺服系统跟踪控制器设计的吸引律方法。根据给定参考信号定义等效干扰,将干扰抑制措施嵌入吸引律中,形成具有干扰抑制作用的理想误差动态。依据理想误差动态设计离散时间控制器,以实现对给定参考信号的精确跟踪。
本发明的有益效果主要表现在:根据给定参考信号,采用相应干扰差分补偿措施,通过抑制干扰提高跟踪精度。同时,采用无切换离散时间吸引律,消除系统抖振。
附图说明
图1为伺服系统框图。
图2—图4为rk=10sin(2πfkTs)deg,f=1Hz,Ts=0.01,Δ=0.38时,采用控制器式(21)的数值仿真,其中,图2是ρ=0.4时的跟踪误差信号ek;图3是ρ=0.6时的跟踪误差信号ek;图4是干扰补偿误差
图5—图8为参考信号rk如式(1),A=5,Ts=0.1,ρ=0.6时,采用控制器式(21)的数值仿真,其中,图5是参考信号rk与输出信号yk;图6是跟踪误差信号ek;图7是干扰补偿误差图8是控制信号uk
图9—图12为参考信号rk如式(2),A=20,Ts=0.1,ρ=0.6时,采用控制器式(21)的数值仿真,其中,图9是参考信号rk与输出信号yk;图10是跟踪误差信号ek;图11是干扰补偿误差图12是控制信号uk
图13—图16为参考信号rk如式(2),A=20,Ts=0.1,ρ=0.6时,采用控制器式(22)的数值仿真,其中,图13是参考信号rk与输出信号yk;图14是跟踪误差信号ek;图15是干扰补偿误差图16是控制信号uk
图17—图20为参考信号rk如式(3),A=5,Ts=0.1,ρ=0.6时,采用控制器式(21)的数值仿真,其中,图17是参考信号rk与输出信号yk;图18是跟踪误差信号ek;图19是干扰补偿误差图20是控制信号uk
图21—图24为参考信号rk如式(3),A=5,Ts=0.1,ρ=0.6时,采用控制器式(22)的数值仿真,其中,图21是参考信号rk与输出信号yk;图22是跟踪误差信号ek;图23是干扰补偿误差图24是控制信号uk
图25—图28为参考信号rk如式(3),A=5,Ts=0.1,ρ=0.6时,采用控制器式(23)的数值仿真,其中,图25是参考信号rk与输出信号yk;图26是跟踪误差信号ek;图27是干扰补偿误差图28是控制信号uk
图29为参考信号rk如式(1),A=15deg,Ts=0.2ms,ρ=0.5时,采用控制器式(21)的实验结果:
图30—图33为参考信号rk如式(2),A=45deg,Ts=0.2ms,ρ=0.5时,采用控制器式(21)的实验结果,其中,图30是参考信号rk与输出信号yk;图31是跟踪误差信号ek;图32是干扰补偿误差图33是控制信号uk
图34—图37为参考信号rk如式(2),A=45deg,Ts=0.2ms,ρ=0.5时,采用控制器式(22)的实验结果,其中,图34是参考信号rk与输出信号yk;图35是踪误差信号ek;图36是干扰补偿误差图37是控制信号uk
图38—图41为参考信号rk如式(3),A=180deg,Ts=0.2ms,ρ=0.5时,采用控制器式(21)的实验结果,其中,图38是参考信号rk与输出信号yk;图39是跟踪误差信号ek;图40是干扰补偿误差图41是控制信号uk
图42—图45为参考信号rk如式(3),A=180deg,Ts=0.2ms,ρ=0.5时,采用控制器式(22)的实验结果,其中,图42是参考信号rk与输出信号yk;图43是跟踪误差信号ek;图44是干扰补偿误差图45是控制信号uk
图46—图49为参考信号rk如式(3),A=180deg,Ts=0.2ms,ρ=0.5时,采用控制器式(23)的实验结果,其中,图46是参考信号rk与输出信号yk;图47是跟踪误差信号ek;图48是干扰补偿误差图49是控制信号uk
具体实施方式
下面结合附图对本发明具体实施方式做进一步描述。
图1为伺服系统框图。参照图2—图49,一种采用干扰差分抑制策略的离散时间控制器吸引律设计方法,采用干扰差分补偿、有效抑制干扰的离散伺服系统,离散时间控制器吸引律设计方法包括如下步骤:
步骤1.给定参考信号rk
给定参考信号rk为时间变量k的多项式,M表示该多项式的最高幂次;三种参考信号如下:
1)方波信号,M=0
2)三角波信号,M=1
3)S曲线,M=3
其中,A为幅值,N为参考信号在一个周期中的采样次数。
步骤2.构造理想误差动态
针对无切换吸引律
ek+1=(1-ρ)ek (4)
其中,0<ρ<1,ek=rk-yk为k时刻的系统跟踪误差,yk为k时刻的系统实际输出信号。将干扰抑制措施嵌入该吸引律,构造理想误差动态
其中,dk+1为k+1时刻的等效干扰,用于补偿等效干扰。为等效干扰补偿误差;
步骤3.干扰差分补偿策略
等效干扰补偿措施为针对给定参考信号定义等效干扰,其形式为:
M=0时的等效干扰信号
dk+1=wk+1 (6)
M=1时的等效干扰信号
dk+1=wk+1-wk (7)
M=3时的等效干扰信号
dk+1=[(wk+1-wk)-(wk-wk-1)]-[(wk-wk-1)-(wk-1-wk-2)] (8)
其中,wk+1为k+1时刻的干扰;
定义干扰差分步数为L,L表示干扰补偿误差包含L个相继时刻的干扰,如式(6),两步干扰差分dk+1-dk=wk+1-wk,包含wk+1与wk两个时刻干扰,为有效抑制干扰,在选择等效干扰时,应满足如下条件
其中,为不小于·的最小整数;
步骤4.控制器设计
依据理想误差动态(5)和等效干扰信号dk+1的表达式,容易给出如下控制器:
1)对于方波参考信号式(1),控制器为
2)对于三角波参考信号式(2),控制器为
3)对于S曲线参考信号式(3),控制器为
式(10)、式(11)和式(12)中,a1,a2,b0,b1为伺服系统
yk+1+a1yk+a2yk-1=b0uk+b1uk-1+wk+1 (13)
的参数。
步骤5.性能分析
给出稳态误差带、绝对吸引层、单调减区域以及跟踪误差首次进入稳态误差带所需最多步数等四个指标的具体表达式,用于刻画系统跟踪性能及指导控制器参数整定。其中,稳态误差带、绝对吸引层以及单调减区域定义如下
1)稳态误差带(ΔSSE)
2)绝对吸引层(ΔAAL)
3)单调减区域(ΔMDR)
等效干扰补偿误差满足时,各指标的表达式如下:
稳态误差带(ΔSSE)
绝对吸引层(ΔAAL)
单调减区域(ΔMDR)
收敛步数
其中,e0为跟踪误差初始值,干扰补偿误差满足
d*为跟踪误差从e0到进入稳态误差带时,干扰补偿误差累积的平均值,满足如下等式
由式(14)知,跟踪误差的稳态误差带随Δ的减小而减小,因此通过采用干扰差分补偿措施,可提高控制精度。
本实施例中,永磁同步电机装置执行位置精确跟踪任务,设计离散时间控制器用于位置环控制,其中电流环与速度环控制器由ELMO驱动器提供;位置环控制器由DSP开发板TMS320F2812提供。
伺服系统的数学模型如下
yk+1-1.5001yk+0.4989yk-1=2.1589uk-0.5113uk-1+wk+1 (20)
对于M=0,由式(10)知
对于M=1,由式(11)知
对于M=3,由式(12)知
通过数值仿真和实验结果验证本发明提供离散伺服系统中干扰差分补偿措施的有效性。
仿真分为两部分,第一部分验证式(14)至式(16)给出的性能指标具体表达式,第二部分验证干扰差分补偿措施的干扰抑制效果。
(1)给定参考信rk=10sin(2πfkTs)deg,频率f=1Hz,采样周期Ts=0.01,干扰为wk=0.12|mod(k,20)-10|+0.16|mod(k+7,20)-10|。在控制器式(21)作用下,参数ρ不同取值,系统(20)的性能指标也会不同,见图2—图4
(i)当控制器参数为Δ=0.38,ρ=0.4时(参见图2和图4),性能指标为
ΔAAL=ΔSSE=ΔMDR=0.95
(ii)当控制器参数为Δ=0.38,ρ=0.6时(参见图3和图4),性能指标为
ΔAAL=ΔSSE=0.63<ΔMDR=0.95
通过仿真,结果表明稳态误差带ΔSSE、绝对吸引层ΔAAL及单调减区域ΔMDR分别满足式(14)、式(15)和式(16)。
(2)参考信号分别为方波信号式(1)、三角波信号式(2)和S曲线式(3),幅值A分别为5、10、5。为验证干扰差分步数L在满式(9)时,设计的控制器能够实现对相应参考信号的精确跟踪,扰动信号选为wk=0.1rk,采样周期Ts=0.1,控制器参数ρ=0.6。
1)参考信号rk为式(1),采用控制器式(21),仿真结果见图5—图8,图中,ΔSSE=0deg。
2)参考信号rk为式(2),采用控制器为式(21),仿真结果见图9—图12,图中,Δ=0.1deg,ΔSSE=0.167deg。
3)参考信号rk为式(2),采用控制器为式(22),仿真结果见图13—图16,图中,ΔSSE=0deg。
4)参考信号rk为式(3),采用控制器为式(21),仿真结果见图17—图20,图中,Δ=0.12deg,ΔSSE=0.2deg。
5)参考信号rk为式(3),采用控制器为式(22),仿真结果见图21—图24,图中,Δ=0.012deg,ΔSSE=0.02deg。
6)参考信号rk为式(3),采用控制器为式(23),仿真结果见图25—图28,图中,ΔSSE=0deg。
通过仿真(2),表明当M与L满足式(9)时,采用干扰差分补偿设计的控制器能够实现对给定参考信号的精确跟踪,当M与L不满足式(9)时,L越接近跟踪效果越好,且控制过程无抖振。
在位置伺服装置上验证本发明提供的控制方法,图1为位置伺服系统框图。参考信号分别为方波信号式(1)、三角波信号式(2)和S曲线式(3),这3种参考信号关于变量k的最大幂次分别为0、1和3。分别采用控制器式(21)、式(22)和式(23)验证干扰差分补偿技术的效果。实验中采样周期Ts=0.2ms,控制器参数ρ=0.5,参考信号式(1)、式(2)和式(3)的幅值A分别为15deg、180deg和180deg。实验结果如下:
1)参考信号rk如式(1),采用控制器式(21),实验结果见图29。图中,ΔSSE=0.03deg。
2)参考信号rk如式(2),采用控制器式(21),实验结果见图30—图33。图中,ΔSSE=0.05deg。
3)参考信号rk如式(2),采用控制器式(22),实验结果见图34—图37。图中,ΔSSE=0.02deg。
4)参考信号rk如式(3),采用控制器式(21),实验结果见图38—图41。图中,ΔSSE=0.2deg。
5)参考信号rk如式(3),采用控制器式(22),实验结果见图42—图45。图中,ΔSSE=0.115deg。
6)参考信号rk如式(3),采用控制器式(23),实验结果见图46—图49。图中,ΔSSE=0.05deg。
实验结果表明,当M与L满足式(9)时,采用干扰差分补偿设计的控制器能够实现对给定参考信号的精确跟踪,当M与L不满足式(9)时,L越接近系统跟踪性能越好,且控制过程无抖振。

Claims (2)

1.一种采用干扰差分抑制策略的离散时间控制器吸引律设计方法,其特征在于:所述方法包括以下步骤:
步骤1.给定参考信号rk
给定参考信号rk,为时间变量k的多项式,M表示该多项式的最高幂次,三种参考信号如下:
1)方波信号,M=0
2)三角波信号,M=1
3)S曲线,M=3
其中,A为幅值,N为参考信号在一个周期中的采样次数;
步骤2.构造理想误差动态
针对无切换吸引律
ek+1=(1-ρ)ek (4)
其中,0<ρ<1,ek=rk-yk为k时刻的系统跟踪误差,yk为k时刻的系统实际输出信号;将干扰抑制措施嵌入该吸引律,可构造理想误差动态
其中,dk+1为k+1时刻的等效干扰,用于补偿等效干扰;为等效干扰补偿误差;
步骤3.干扰差分补偿策略
本发明取等效干扰补偿作用为针对具体的参考信号定义等效干扰,其形式为:
M=0时的等效干扰信号
dk+1=wk+1 (6)
M=1时的等效干扰信号
dk+1=wk+1-wk (7)
M=3时的等效干扰信号
dk+1=[(wk+1-wk)-(wk-wk-1)]-[(wk-wk-1)-(wk-1-wk-2)] (8)
其中,wk+1为k+1时刻的干扰;
定义干扰差分步数为L,L表示干扰补偿误差包含L个相继时刻的干扰;如式(6),两步干扰差分dk+1-dk=wk+1-wk,包含wk+1与wk两个时刻干扰;为有效抑制干扰,在选择等效干扰时,应满足如下条件
其中,为不小于·的最小整数;
步骤4.控制器设计
依据理想误差动态(5)和等效干扰信号dk+1,给出如下控制器的表达式:
1)对于方波参考信号式(1),
其中,F(q-1)=B(q-1)-b0
2)对于三角波参考信号式(2),
其中,
3)对于S曲线参考信号式(3),
式(10)至式(12)中,A(q-1)、B(q-1)为伺服系统
A(q-1)yk=q-1B(q-1)uk+wk (13)
关于q-1的参数多项式:
A(q-1)=1+a1q-1+a2q-2+……+anq-n
B(q-1)=b0+b1q-1+b2q-2+……+bmq-m
其中,uk与yk分别为伺服系统k时刻的输入及输出信号,q-1为一步延迟算子,m、n分别为A(q-1)、B(q-1)的阶数,b0≠0,1≤m≤n。
2.如权利要求1所述的一种采用干扰差分抑制策略的离散时间控制器吸引律设计方法,其特征在于:所述方法还包括:
步骤5.性能分析
给出稳态误差带、绝对吸引层、单调减区域以及跟踪误差首次进入稳态误差带所需最多步数四个指标的具体表达式,用于刻画系统跟踪性能及指导控制器参数整定;其中,稳态误差带、绝对吸引层以及单调减区域定义如下:
1)稳态误差带(ΔSSE)
2)绝对吸引层(ΔAAL)
3)单调减区域(ΔMDR)
等效干扰补偿误差满足时,各指标的表达式如下:
稳态误差带(ΔSSE)
绝对吸引层(ΔAAL)
单调减区域(ΔMDR)
收敛步数
其中,e0为跟踪误差初始值,干扰补偿误差满足
d*为跟踪误差从e0到进入稳态误差带时,干扰补偿误差累积的平均值,满足如下等式
CN201810951946.4A 2018-08-21 2018-08-21 一种采用干扰差分补偿的离散时间控制器吸引律设计方法 Active CN109100938B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810951946.4A CN109100938B (zh) 2018-08-21 2018-08-21 一种采用干扰差分补偿的离散时间控制器吸引律设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810951946.4A CN109100938B (zh) 2018-08-21 2018-08-21 一种采用干扰差分补偿的离散时间控制器吸引律设计方法

Publications (2)

Publication Number Publication Date
CN109100938A true CN109100938A (zh) 2018-12-28
CN109100938B CN109100938B (zh) 2021-02-26

Family

ID=64850441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810951946.4A Active CN109100938B (zh) 2018-08-21 2018-08-21 一种采用干扰差分补偿的离散时间控制器吸引律设计方法

Country Status (1)

Country Link
CN (1) CN109100938B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110716430A (zh) * 2019-09-27 2020-01-21 浙江工业大学 一种采用等效扰动补偿的伺服系统快速吸引重复控制方法
CN112462614A (zh) * 2020-12-08 2021-03-09 北京品德技术有限公司 改进的ladrc线性自抗扰控制系统及参数整定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6671637B2 (en) * 2002-01-29 2003-12-30 Sumitomo Heavy Industries, Ltd. Thrust ripple measuring apparatus and method in linear motor
JP2007012253A (ja) * 2005-06-27 2007-01-18 Samsung Electronics Co Ltd 外乱補償方法、状態制御装置、トラック追従制御装置、ハードディスクドライブ、記録媒体
CN103048921A (zh) * 2012-11-12 2013-04-17 浙江工业大学 用于位置伺服系统的半周期重复控制器
CN103605288A (zh) * 2013-09-30 2014-02-26 浙江工业大学 一种基于吸引律的1/4周期重复控制器
CN106444372A (zh) * 2016-08-25 2017-02-22 浙江工业大学 用于电机伺服系统的滑模重复控制器
CN107544245A (zh) * 2017-08-25 2018-01-05 浙江工业大学 采用扰动扩张补偿的一阶惯性吸引律的用于电机伺服系统的离散重复控制方法
CN107544244A (zh) * 2017-08-25 2018-01-05 浙江工业大学 基于椭圆吸引律和等效扰动扩张状态补偿的用于电机伺服系统的离散重复控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6671637B2 (en) * 2002-01-29 2003-12-30 Sumitomo Heavy Industries, Ltd. Thrust ripple measuring apparatus and method in linear motor
JP2007012253A (ja) * 2005-06-27 2007-01-18 Samsung Electronics Co Ltd 外乱補償方法、状態制御装置、トラック追従制御装置、ハードディスクドライブ、記録媒体
CN103048921A (zh) * 2012-11-12 2013-04-17 浙江工业大学 用于位置伺服系统的半周期重复控制器
CN103605288A (zh) * 2013-09-30 2014-02-26 浙江工业大学 一种基于吸引律的1/4周期重复控制器
CN106444372A (zh) * 2016-08-25 2017-02-22 浙江工业大学 用于电机伺服系统的滑模重复控制器
CN107544245A (zh) * 2017-08-25 2018-01-05 浙江工业大学 采用扰动扩张补偿的一阶惯性吸引律的用于电机伺服系统的离散重复控制方法
CN107544244A (zh) * 2017-08-25 2018-01-05 浙江工业大学 基于椭圆吸引律和等效扰动扩张状态补偿的用于电机伺服系统的离散重复控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LINGWEI WU等: "Convergence Performance of Discrete Power Attracting Law", 《2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE》 *
周文委等: "带扰动补偿的无抖振离散重复控制器设计", 《控制与决策》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110716430A (zh) * 2019-09-27 2020-01-21 浙江工业大学 一种采用等效扰动补偿的伺服系统快速吸引重复控制方法
CN110716430B (zh) * 2019-09-27 2022-05-03 浙江工业大学 一种采用等效扰动补偿的伺服系统快速吸引重复控制方法
CN112462614A (zh) * 2020-12-08 2021-03-09 北京品德技术有限公司 改进的ladrc线性自抗扰控制系统及参数整定方法

Also Published As

Publication number Publication date
CN109100938B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
Tee et al. Adaptive control of electrostatic microactuators with bidirectional drive
CN109188908A (zh) 基于指数型无切换吸引律的数字控制器设计方法
Zhang et al. Continuous robust tracking control for magnetic levitation system with unidirectional input constraint
CN104111607B (zh) 一种考虑输入时滞的电机位置伺服系统的控制方法
Mao et al. Design and implementation of continuous finite-time sliding mode control for 2-DOF inertially stabilized platform subject to multiple disturbances
CN108646574A (zh) 一种基于幂次吸引律的离散重复控制器及其控制方法
CN108828958A (zh) 一种采用干扰差分抑制策略的离散时间控制器无切换吸引律设计方法
Li et al. Position tracking control for permanent magnet linear motor via fast nonsingular terminal sliding mode control
CN104360635A (zh) 一种电机位置伺服系统的抗干扰控制方法
Wang et al. Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique
CN103048921A (zh) 用于位置伺服系统的半周期重复控制器
CN107544245A (zh) 采用扰动扩张补偿的一阶惯性吸引律的用于电机伺服系统的离散重复控制方法
CN109100938A (zh) 一种采用干扰差分补偿的离散时间控制器吸引律设计方法
CN104270053A (zh) 基于状态估计的电机位置伺服系统的输出反馈控制方法
CN105867110A (zh) 一种用于电机伺服系统的离散重复控制方法
CN108983615A (zh) 基于反双曲正弦吸引律的离散双周期重复控制器
CN108155833A (zh) 考虑电气特性的电机伺服系统渐近稳定控制方法
CN103605288B (zh) 一种基于吸引律的1/4周期重复控制器
CN110389528A (zh) 基于扰动观测的数据驱动mems陀螺仪驱动控制方法
Maeng et al. Adaptive sliding mode control of a chaotic nonsmooth-air-gap permanent magnet synchronous motor with uncertainties
CN110134014A (zh) 周期伺服系统幂次吸引重复控制的等效扰动补偿方法
Sun et al. Robust adaptive control of a one degree of freedom electrostatic microelectromechanical systems model with output-error-constrained tracking
CN103812368B (zh) 用于逆变器的四分之一周期重复控制器
Al-Samarraie Invariant sets in sliding mode control theory with application to servo actuator system with friction
CN105157727A (zh) 基于线性化反馈的微陀螺仪神经网络全局滑模控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant