CN102962467B - 一种用细菌制备粒径可调的贵金属纳米材料的方法 - Google Patents

一种用细菌制备粒径可调的贵金属纳米材料的方法 Download PDF

Info

Publication number
CN102962467B
CN102962467B CN201210417735.5A CN201210417735A CN102962467B CN 102962467 B CN102962467 B CN 102962467B CN 201210417735 A CN201210417735 A CN 201210417735A CN 102962467 B CN102962467 B CN 102962467B
Authority
CN
China
Prior art keywords
noble metal
inorganic salts
particle diameter
bacterium
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210417735.5A
Other languages
English (en)
Other versions
CN102962467A (zh
Inventor
高峰
杨志
李昭慧
何凤娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201210417735.5A priority Critical patent/CN102962467B/zh
Publication of CN102962467A publication Critical patent/CN102962467A/zh
Application granted granted Critical
Publication of CN102962467B publication Critical patent/CN102962467B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明提供一种用细菌制备粒径可调的贵金属纳米材料的方法,属于无机纳米材料制备技术领域。步骤为:将细菌放入培养液中混匀后,加入无机盐一起发酵反应,得到无机贵金属纳米粒子;或将细菌放入培养液中,培养发酵,在细菌发酵液中加入无机盐进行反应,得到无机贵金属纳米粒子。通过改变加入无机盐的量来控制纳米粒子的大小;所述的细菌为酵母菌、乳酸菌;所述无机盐是指Cu,Ag,Pt,Pd的无机盐。本发明以细菌、培养液及无机盐为原料,通过细菌发酵制备贵金属纳米材料,通过改变加入无机盐的量来控制纳米粒子的大小,以及加入不同种类的无机盐,得到不同构形的复合贵金属纳米粒子,制备方法简单、快速、安全。

Description

一种用细菌制备粒径可调的贵金属纳米材料的方法
技术领域
本发明涉及的是一种无机纳米材料的制备方法,具体地说,涉及的是一种用细菌制备粒径可调的无机纳米材料的新方法。
背景技术
地球上约有三分之二的元素是金属元素,金属纳米材料独特的力学、电学、光学、磁学、热学以及催化性能日益受到研究者的关注。特别是贵金属纳米材料具有特殊的电子结构,属于介观粒子,在一些特定的晶面上存在着表面电子态,其费米能级恰好位于体能带结构沿该晶向的禁带之中,处于此表面态的电子由于功函数的束缚而不能逸出外围,又由于体能态的限制而又不能深入内层,形成了只能平行于表面方向运动的二维电子云,这是纳米贵金属颗粒所具有表面效应、量子效应和宏观量子隧道效应的物理基础。因此,贵金属纳米粒子已经广泛应用于军事、化工、生物医学、环境、光学等领域。
贵金属纳米粒子的制备方法有很多种,一般采用化学的和物理的方法制备得到,传统的化学方法主要是气相沉积法、沉淀法、溶胶凝胶法、微乳液法、水热法、离子交换法等;传统的物理方法主要是溅射法、离子注入法、真空冷凝法等,这些传统的方法可制备出形貌可控、粒径可调、晶型可选的纳米材料,这些纳米材料在光电子学、化学、物理学、材料科学与工程、生物学和医学等领域显示出了强大的应用潜力,具有广阔的发展前景。在上述传统的纳米材料制备方法中,物理方法需要使用昂贵的设备及复杂的操作技能,化学制备方法使用有机溶剂、表面活性剂甚至毒性试剂,对生态系统和环境带来安全隐患,而且传统的制备方法要求严格控制反应条件和化学计量。这些缺陷制约无机纳米产品的市场化发展。从长远来看,研发绿色环保型纳米材料的制备技术是将来的发展趋势,符合建设经济环保型和低碳社会的发展要求,具有重要的意义。科学家在许多生物体中发现有纳米粒子存在的迹象,如:一些树叶中含有的金、银纳米粒子,这些生物体产生的粒子是在常温、常压体系环境中合成的,有着复杂多样的结构,是现有的任何高级加工技术所不能做到的。
经检索,公开号为101368194A的中国发明专利,该专利公开了一种“三角金纳米片的微生物还原制备方法,其特征在于包括以下步骤:1)取微生物干菌粉加入水后煮沸1~30min,冷却至室温后过滤;2)往滤液中添加氯金酸,置于50~90℃的水浴摇床中振荡反应10~600min,产物为边长5~1000nm的三角金纳米片。”该专利采用细菌在煮沸的条件下裂解,利用裂解液来制备金纳米片的,方法简单,但需要加热煮沸。本发明是利用细菌在培养发酵的过程产生新的物质来制备贵金属纳米粒子的,细菌可以规模化培养发酵,因此,可以大批量制备纳米粒子,整个制备过程在常温条件下进行,方法更简单,而且可以合成Cu,Ag,Pt,Pd系列金属纳米粒子。
发明内容
针对现有技术中的缺陷,本发明提供一种用细菌制备粒径可调贵金属纳米材料的方法,以不同种类的细菌为原料,利用细菌发酵,在常温、常压下制备形貌尺寸大小可控、结构层次多样化的贵金属纳米结构材料。
本发明是通过以下技术方案实现的,本发明具体为:将细菌放入培养液中混匀后,加入无机盐一起发酵反应,得到无机贵金属纳米粒子;或者将细菌放入培养液中,培养发酵,在细菌发酵液中加入无机盐进行反应,得到无机贵金属纳米粒子;通过改变加入无机盐的量来控制纳米粒子的大小;其中:所述的细菌为酵母菌、乳酸菌中的一种或它们相互混合的任意一种;所述无机盐是指Cu,Ag,Pt,Pd的无机盐中的一种或它们相互混合的任意一种。
优选地,所述的培养液包括碳源料、氮源料、缓冲盐或碱类用水配制而成,其中碳源料在水中的重量浓度为0.2%~20%,氮源料的重量浓度为0%~20%,用缓冲盐或碱类调培养液的pH值5~10。
优选地,所述培养液中的碳源料包括麦芽糖、蔗糖、葡萄糖、果糖、乳糖、半乳糖、木糖、阿拉伯糖、可溶性淀粉、苦杏仁苷、甘露糖、山梨糖、蜜二糖、纤维二糖、海藻糖、棉籽糖、鼠李糖、松三糖、菊糖、核糖、甘露醇、山梨醇、肌醇中的一种或它们相互混合的任意一种。
优选地,所述培养液中的氮源料包括酵母膏、蛋白胨、硫酸铵、豆芽汁、马铃薯汁、牛肉膏、氨基酸、尿素,硝酸钾、柠檬酸铵中的一种或它们相互混合的任意一种。
优选地,所述的缓冲盐或碱类包括磷酸氢二钾、磷酸氢二钠、氢氧化钠、氢氧化钾中的一种或它们相互混合的任意一种。
优选地,所述培养发酵的培养条件是温度范围4℃~45℃,振荡速度20r/min~300r/min,时间0小时~3天。
优选地,所述的细菌发酵液是指发酵后除去细菌的发酵液或者带有细菌的发酵液中的一种。
优选地,所述的无机盐包括氯化金(氯金酸)、氯化钯、硝酸钯、硝酸银、氯化铂、氯化铜、硫酸铜、氯化亚铜中的一种或它们相互混合的任意一种。
优选地,所述的反应条件是温度4℃~45℃,振荡速度0r/min~300r/min,反应时间0.5小时~4天。
本发明通过改变加入无机盐的量来控制纳米粒子的大小,加入无机盐后整个体系中无机盐的浓度范围0.1~5mmol/L,获得纳米粒子大小0.1nm~100nm。若加入不同种类的无机盐,则得到不同构形的复合纳米粒子MAu(M=Cu,Ag,Pt,Pd)。
与现有技术相比,本发明具有如下的有益效果:
本发明以细菌、培养液及无机盐为原料,通过细菌发酵制备贵金属纳米材料,通过改变加入无机盐的量来控制纳米粒子的大小,以及加入不同种类的无机盐,得到不同构形的复合贵金属纳米粒子,制备方法简便快速、安全、绿色环保,可规模化合成,成本低。该方法将微生物技术与纳米制备技术相结合,得到的贵金属纳米粒子粒径分布均匀、可控、分散性好,为无机纳米材料的制备提供新方法。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1.
豆芽汁的配制:黄豆芽200g加水1000mL,煮沸1小时,过滤后补足水分。
培养液的配制:在1升水中加入50克碳源料(其中30克麦芽糖,20克乳糖),10克氮源料(即10克上述配制的豆芽汁),用氢氧化钠调节pH至7,灭菌20min,得到培养液。
称取0.1克酵母菌及0.1克乳酸菌,加入50毫升培养液,在30℃振荡(250r/min),发酵培养3小时,在发酵液中加入不同量的氯金酸,在30℃反应时间24小时,得到不同粒径的金纳米粒子,如果氯金酸在反应中的浓度0.5mM~2.5mM,得到金粒子的粒径在30nm~0.5nm,分散性好的金纳米粒子水溶液。
如果在上述发酵液中加入硝酸银(或氯化钯、氯化铂、氯化铜),方法相同,得到的就是分散性好的银纳米粒子(或钯纳米粒子、铂纳米粒子、铜纳米粒子)。
实施例2.
培养液的配制:在1升水中加入45克碳源料(其中5克可溶性淀粉,20克蔗糖,20克葡萄糖),2克氮源料(其中1克硫酸铵,1克柠檬酸铵),用氢氧化钠调节pH至6.5,灭菌20min,得到培养液。
称取0.1克酵母菌,加入50毫升培养液,在30℃振荡(200r/min),发酵24小时,过滤得发酵液,在发酵液中加入不同量的氯金酸,在4℃~35℃反应时间4天~0.5小时(注温度低反应时间长),得到不同粒径的金纳米粒子,如果氯金酸在滤液中的浓度0.5mmol/L~2.5mmol/L,分别得到的金粒子粒径在20nm~0.2nm,分散性好、透明稳定的金纳米粒子水溶液。
如果在上述滤液中加入硝酸银(或氯化钯、氯化铂),方法相同,得到的就是分散性好的银纳米粒子(或钯纳米粒子、铂纳米粒子)。
实施例3.
培养液的配制:在1升水中加入25克碳源料(即25克蔗糖),没有加入氮源料(即0克氮源料),用氢氧化钠调节pH至8,灭菌20min,得到培养液。
称取0.5克酵母菌,加入25毫升培养液,在35℃振荡(250r/min),发酵培养2小时,在发酵液中加入实施例2中制备得到的金纳米粒子及不同量的硝酸银,在28℃振荡(100r/min),反应24小时,得到金银复合纳米粒子,复合粒子的形貌有球型或棒型的纳米粒子水溶液。
如果在上述发酵液中加入氯化钯(或氯化铂),方法相同,得到的就是分散性好的钯金复合纳米粒子(或铂金复合纳米粒子)。
实施例4.
培养液的配制:在1升水中加入50克碳源料(其中20克果糖,20克乳糖,10克葡萄糖),20克氮源料(即20蛋白胨),用氢氧化钠调节pH至6,灭菌20min,得到培养液。
称取0.5克乳酸菌,加入25毫升培养液,在35℃振荡(250r/min),发酵培养2小时,在发酵液中加入不同量的氯金酸,在28℃振荡(100r/min),反应24小时,得到金纳米粒子。
实施例5.
用实施例3的培养液,称取0.5克酵母菌,加入25毫升培养液,在35℃振荡(250r/min),发酵培养0.5小时后,加入氯化金及氯化钯混合溶液、在28℃振荡(100r/min),反应24小时,制备得到结构层次多样化的金钯复合纳米粒子。
实施例6.
培养液的配制:在1升水中加入40克碳源料(其中20克蔗糖,20克葡萄糖),1克氮源料(其中1克赖氨酸),用氢氧化钠调节pH至9,灭菌20min,得到培养液。
称取0.3克酵母菌,加入25毫升培养液,混匀后,直接加入不同量的氯金酸,在30℃振荡(200r/min),一起发酵反应20小时,得到金纳米粒子。
如果在上述直接加入氯化钯(或氯化铂,或硝酸银),方法相同,得到的就是分散性好的钯纳米粒子(或铂纳米粒子,或银纳米粒子)。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

1.一种用细菌制备粒径可调贵金属纳米材料的方法,其特征在于:将细菌放入培养液中混匀后,加入无机盐一起发酵反应,得到无机贵金属纳米粒子;或者将细菌放入培养液中,培养发酵,在细菌发酵液中加入无机盐进行反应,得到无机贵金属纳米粒子;通过改变加入无机盐的量来控制纳米粒子的大小;其中:
所述的细菌为酵母菌、乳酸菌中的一种或它们相互混合的任意一种;
所述无机盐是指Cu,Ag,Pt,Pd的无机盐中的一种或它们相互混合的任意一种。
2.根据权利要求1所述的一种用细菌制备粒径可调贵金属纳米材料的方法,其特征在于,所述的培养液为碳源料、氮源料、缓冲盐或碱类用水配制而成,其中碳源料在水中的重量浓度为0.2%~20%,氮源料的重量浓度为0%~20%,用缓冲盐或碱类调培养液的pH值5~10。
3.根据权利要求2所述的一种用细菌制备粒径可调贵金属纳米材料的方法,其特征在于,所述培养液中的碳源料为麦芽糖、蔗糖、葡萄糖、果糖、乳糖、半乳糖、木糖、阿拉伯糖、可溶性淀粉、苦杏仁苷、甘露糖、山梨糖、蜜二糖、纤维二糖、海藻糖、棉籽糖、鼠李糖、松三糖、菊糖、核糖、甘露醇、山梨醇、肌醇中的一种或它们相互混合的任意一种。
4.根据权利要求2所述的一种用细菌制备粒径可调贵金属纳米材料的方法,其特征在于,所述培养液中的氮源料为酵母膏、蛋白胨、硫酸铵、豆芽汁、马铃薯汁、牛肉膏、氨基酸、尿素,硝酸钾、柠檬酸铵中的一种或它们相互混合的任意一种。
5.根据权利要求2所述的一种用细菌制备粒径可调贵金属纳米材料的方法,其特征在于,所述的缓冲盐或碱类为磷酸氢二钾、磷酸氢二钠、氢氧化钠、氢氧化钾中的一种或它们相互混合的任意一种。
6.根据权利要求1-5任一项所述的一种用细菌制备粒径可调贵金属纳米材料的方法,其特征在于,所述培养发酵的培养条件是温度范围4℃~45℃,振荡速度20r/min~300r/min,发酵时间0小时~3天。
7.根据权利要求1-5任一项所述的一种用细菌制备粒径可调贵金属纳米材料的方法,其特征在于,所述的细菌发酵液是指发酵后除去细菌的发酵液或者带有细菌的发酵液中的一种。
8.根据权利要求1-5任一项所述的一种用细菌制备粒径可调贵金属纳米材料的方法,其特征在于,所述的无机盐为氯化金、氯化钯、硝酸钯、硝酸银、氯化铂、氯化铜、硫酸铜、氯化亚铜中的一种或它们相互混合的任意一种。
9.根据权利要求1-5任一项所述的一种用细菌制备粒径可调贵金属纳米材料的方法,其特征在于,所述的反应条件是温度4℃~45℃,振荡速度0r/min~300r/min,反应时间0.5小时~4天。
10.根据权利要求1-5任一项所述的一种用细菌制备粒径可调贵金属纳米材料的方法,其特征在于,所述通过改变加入无机盐的量来控制纳米粒子的大小,具体为:加入无机盐后整个体系中无机盐的浓度范围0.1~5mmol/L,获得纳米粒子大小0.1nm~100nm。
CN201210417735.5A 2012-10-26 2012-10-26 一种用细菌制备粒径可调的贵金属纳米材料的方法 Expired - Fee Related CN102962467B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210417735.5A CN102962467B (zh) 2012-10-26 2012-10-26 一种用细菌制备粒径可调的贵金属纳米材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210417735.5A CN102962467B (zh) 2012-10-26 2012-10-26 一种用细菌制备粒径可调的贵金属纳米材料的方法

Publications (2)

Publication Number Publication Date
CN102962467A CN102962467A (zh) 2013-03-13
CN102962467B true CN102962467B (zh) 2015-04-01

Family

ID=47793060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210417735.5A Expired - Fee Related CN102962467B (zh) 2012-10-26 2012-10-26 一种用细菌制备粒径可调的贵金属纳米材料的方法

Country Status (1)

Country Link
CN (1) CN102962467B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602707B (zh) * 2013-04-25 2015-11-18 胡文锋 一种利用乳酸菌生物合成纳米氧化锌的方法及纳米氧化锌复合饲料添加剂
EP2818056A1 (en) * 2013-06-25 2014-12-31 Biosearch S.A. Probiotic bacteria comprising metals, metal nanoparticles and uses thereof
CN104745637A (zh) * 2015-02-27 2015-07-01 河南师范大学 一种以微生物细胞分泌液为基质制备硒纳米颗粒的方法
CN105780067B (zh) * 2016-02-01 2018-09-11 中国科学院生态环境研究中心 电极活性生物膜原位合成三维纳米钯催化层的方法及应用
CN107243645B (zh) * 2017-06-06 2019-12-10 东南大学 一种利用植物乳杆菌胞外多糖合成贵金属纳米颗粒的方法
CN107265886A (zh) * 2017-06-07 2017-10-20 常州市海若纺织品有限公司 一种环氧树脂改性淀粉成膜剂
CN109277582A (zh) * 2018-10-18 2019-01-29 楚雄师范学院 一种生物纳米银的制作方法
CN112250043B (zh) * 2020-10-26 2022-12-06 武汉工程大学 一种单分散纳米颗粒材料的制备方法
CN114951680B (zh) * 2022-05-17 2023-07-14 徐州工程学院 一种具有生物沉默区拉曼信号的双配体金纳米粒子的合成方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152492A (ja) * 2005-12-05 2007-06-21 Bridgestone Corp 金属ナノチューブ及びその製造方法
JP2008031491A (ja) * 2006-07-26 2008-02-14 Sumitomo Metal Mining Co Ltd 銅微粉とその製造方法及び導電性ペースト
CN101506371A (zh) * 2006-07-05 2009-08-12 詹森药业有限公司 制备金属纳米颗粒的方法
CN101602109A (zh) * 2009-06-15 2009-12-16 中北大学 一种银纳米材料的制备方法
CN101977509A (zh) * 2008-01-04 2011-02-16 詹森药业有限公司 具有比表面积的银纳米颗粒及其制备方法
CN102978241A (zh) * 2006-07-05 2013-03-20 詹森药业有限公司 制备金属纳米颗粒的方法
CN103071808A (zh) * 2012-12-06 2013-05-01 山东理工大学 金属纳米粒子的绿色合成方法
CN103572060A (zh) * 2013-11-26 2014-02-12 厦门大学 一种从水溶液中回收金离子的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152492A (ja) * 2005-12-05 2007-06-21 Bridgestone Corp 金属ナノチューブ及びその製造方法
CN101506371A (zh) * 2006-07-05 2009-08-12 詹森药业有限公司 制备金属纳米颗粒的方法
CN102978241A (zh) * 2006-07-05 2013-03-20 詹森药业有限公司 制备金属纳米颗粒的方法
JP2008031491A (ja) * 2006-07-26 2008-02-14 Sumitomo Metal Mining Co Ltd 銅微粉とその製造方法及び導電性ペースト
CN101977509A (zh) * 2008-01-04 2011-02-16 詹森药业有限公司 具有比表面积的银纳米颗粒及其制备方法
CN101602109A (zh) * 2009-06-15 2009-12-16 中北大学 一种银纳米材料的制备方法
CN103071808A (zh) * 2012-12-06 2013-05-01 山东理工大学 金属纳米粒子的绿色合成方法
CN103572060A (zh) * 2013-11-26 2014-02-12 厦门大学 一种从水溶液中回收金离子的方法

Also Published As

Publication number Publication date
CN102962467A (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
CN102962467B (zh) 一种用细菌制备粒径可调的贵金属纳米材料的方法
Gupta et al. Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw
CN102703561B (zh) 一种利用微生物发酵生产活化硒矿粉的方法
CN102660160B (zh) 一种二氧化硅包覆银核的复合颗粒及其制备方法和应用
CN103567431A (zh) 一种纳米银胶体溶液及其制备方法
CN103250739A (zh) 氧化石墨烯/银颗粒纳米复合物的制备方法及应用
CN110317744B (zh) 一种生产蓝紫色素的马赛菌及其生产蓝紫色素的方法
CN102965418A (zh) 生物燕麦多肽的提取方法及其用途
CN104911215A (zh) 一种基于微生物代谢活动合成CdS量子点的方法
CN104874809A (zh) 一种sers基底复合材料及其制备方法
CN104450564B (zh) 一株可制备Ag/AgCl纳米颗粒的硫酸盐还原菌
CN101831465B (zh) 一种提高丙酸生产强度的生产工艺
CN110153440B (zh) 一种日本曲霉发酵液绿色制备纳米银的方法及应用
CN106513701B (zh) 一种制备收集纳米银的生态方法
CN108456649A (zh) 还原粘土矿物中Fe(III)的变形杆菌及其抑制粘土膨胀性应用
CN105463051A (zh) 一种双模板生物催化还原制备石墨烯的方法
CN1322112C (zh) 一种偶发分枝杆菌及在微生物转化生产睾酮中的应用
CN109964957A (zh) 一种Cu2O/Ag纳米抗菌材料的绿色制备方法
Zhang et al. Xanthan production on polyurethane foam and its enhancement by air pressure pulsation
CN104911214B (zh) 一种硒化铜纳米材料的生物调控制备方法
CN116333938A (zh) 海洋细菌及其在生物纳米硒制备中的应用
CN104480025B (zh) 一种链格孢菌y1309‑1及其应用
CN101709283A (zh) 一株枯草芽孢杆菌及其在生物催化生产烟酸中的应用
CN104357497A (zh) 一种提高产酸丙酸杆菌丙酸产量的方法
CN114524470A (zh) 一种铁酸镍纳米粒子及其绿色合成方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150401

Termination date: 20171026

CF01 Termination of patent right due to non-payment of annual fee