CN102959661B - 蓄电器件用引线电极及其制造方法和连接方法 - Google Patents

蓄电器件用引线电极及其制造方法和连接方法 Download PDF

Info

Publication number
CN102959661B
CN102959661B CN201180031494.4A CN201180031494A CN102959661B CN 102959661 B CN102959661 B CN 102959661B CN 201180031494 A CN201180031494 A CN 201180031494A CN 102959661 B CN102959661 B CN 102959661B
Authority
CN
China
Prior art keywords
layer
plating
electrode
coating
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180031494.4A
Other languages
English (en)
Other versions
CN102959661A (zh
Inventor
中村胜司
鹤田加
鹤田加一
尾崎裕治
渡会重明
高木英则
大堀优
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senju Metal Industry Co Ltd
Original Assignee
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senju Metal Industry Co Ltd filed Critical Senju Metal Industry Co Ltd
Publication of CN102959661A publication Critical patent/CN102959661A/zh
Application granted granted Critical
Publication of CN102959661B publication Critical patent/CN102959661B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/32Filling or coating with impervious material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base

Abstract

本发明涉及一种蓄电器件用电极,其与现有的利用点焊或螺栓紧固的接合相比,可以增大接触面积,降低接合部位的电阻值,能够有效地供给蓄电器件的电压而不使之减小。本发明的蓄电器件用电极在由Al构成的阳极电极的连接端子部(10a)上通过镀覆形成Zn层(21)或Zn合金层、Ni层(22)、Sn层(23)或Sn合金层。由此,在Sn层(23)或Sn合金层上,可以与由Al的异种金属构成的Cu阴极电极进行软钎焊,从而可以提高Al阳极电极与Cu阴极电极的接合强度。另外,与现有的利用点焊或螺栓紧固的接合相比,由于接触面积大,且接合部位的电阻值降低,因此可以减低蓄电器件的连接电阻的电压下降。

Description

蓄电器件用引线电极及其制造方法和连接方法
技术领域
本发明涉及双电层电容器、锂离子电容器和二次电池等可储存电能的蓄电器件用电极及其制造方法和连接方法。
背景技术
锂离子电容器预期可作为双电层电容器或二次电池的替代物。该锂离子电容器是通过利用负极离子吸储的物理现象而显著提高蓄电效率的电容蓄电器。目前,双电层电容器用于列车、建筑机械等大型机械的电池电动机中产生的电的蓄电,今后,由于小型化,预期可应用于汽车的燃料电池等的蓄电。
锂离子电容器具有非对称电极结构。由此,与双电层电容器比较,具有电压高的长处,与二次电池比较,具有内部电阻低、可短时间进行充放电、充放电导致的劣化少、制品寿命长等长处。然而,锂离子电容器具有能量密度低的缺点。电容器具有卷绕型电容器、层叠型电容器等,哪个都具有阳极和阴极两个电极。
锂离子电容器所具有的两个电极各自是由异种金属构成的,例如,阳极的引线电极使用Al等,阴极的引线电极使用Cu等。要求大的放电能量时,并联地连接使用,要求高电压时,串联地连接使用。
作为用于现有的层叠型锂离子电容器、双电层电容器和二次电池等的引线电极的连接方法,有使用箔状的引线电极、用利用超声波等的点焊来接合的方法(专利文献1)、用在按压状态下与引线电极接触的回转体连接的方法(专利文献2)、用螺栓等固紧箔状的引线电极的方法等。
现有技术文献
专利文献
专利文献1:日本特开2000-90907号公报
专利文献2:日本特开2005-209735号公报
发明内容
发明要解决的问题
然而,如在专利文献1中记载的利用点焊的电极连接方法中,Al电极与Al电极的连接或Cu电极与Cu电极的连接(并联连接)那样,虽然同种金属的电极之间的接合具有高接合强度,但如Al电极与Cu电极的连接(串列连接)那样,在异种金属的接合中,接合强度低,缺乏连接可靠性。
另外,在专利文献2中记载的利用回转体的电极连接方法或利用螺栓紧固的电极连接方法中,由于接触面积小,其接触部位的电阻值增高,因此,发生了显著的电压下降。
发生这种连接电阻导致的电压下降时,供给构成负荷的电气设备等的电压相比于蓄电器件的电压减低。
因此,本发明的目的是解决上述课题,提供蓄电器件用电极及其制造方法和连接方法,该蓄电器件用电极能够提高与异种金属的电极的接合强度,与现有的利用点焊或螺栓紧固的接合相比,可以增大接触面积、降低接合部位的电阻值,可有效地供给蓄电器件的电压而不使之减低。
用于解决问题的方案
本发明人等发现,如果通过焊料能连接蓄电器件的引线电极,则由于能够在引线电极的整个表面连接,因此引线电极的接合强度提高,并且能够在引线电极整个表面连接时连接部位面积增大,连接部位的电阻值降低,由此完成了本发明。
本发明的蓄电器件用电极的特征在于,在由Al构成的阳极电极上通过镀覆形成Zn层或Zn合金层、Ni层、Sn层或Sn合金层。
在本发明的蓄电器件用电极中,在由Al构成的阳极电极上通过镀覆形成Zn层或Zn合金层、Ni层、Sn层或Sn合金层。由此,可以在Sn层或Sn合金层上与由Al的异种金属构成的阴极电极进行软钎焊。
蓄电器件的阳极的引线电极(以下称为“Al阳极电极”)主要使用Al,但Al不能用一般的焊料来进行软钎焊。作为Al用的焊料,已知有Sn-15质量%Zn、Sn-30质量%Zn等,这些焊料通过Zn的作用软钎焊在Al上,在Al阳极电极之间的连接中不发生问题。然而,在这些焊料中,将Al阳极电极与阴极的Cu电极(以下称为“Cu阴极电极”)进行软钎焊时,在高温、高湿度下,表现了Sn-Zn焊料中的Zn离子移动到Cu中的苛肯达尔空洞(Kirkendall void)现象,焊料接合强度降低。尤其,在双电层电容器、锂离子电容器、二次电池中,由于反复充放电,因此容易发热。另外,Sn-Zn焊料容易氧化而使导电性降低。因此,在Al阳极电极与Cu阴极电极中不优选使用Sn-Zn焊料作为焊料来直接接合。
另外,考虑了通过镀覆在Al阳极电极上被覆可与Cu阴极电极进行软钎焊的金属。然而,对于与Cu阴极电极的软钎焊性良好的Sn或Sn合金镀层而言,Sn的标准电极电位为-0.138V,与此相对,Al的标准电极电位为-1.1662V,Al与Cu的标准电极电位差也有1.524V,因此,不能直接地在Al上进行Sn镀覆或Sn合金镀覆。
在本发明中,通过在Al阳极电极上被覆Zn层或Zn合金层,可形成与Al阳极电极密合性良好的Zn或Zn合金的覆膜。而且,如果在该覆膜上形成Sn层或焊料(Sn合金层),则可获得与Cu 阴极电极的软钎焊性良好的Al阳极电极。
Al阳极电极上被覆的Zn层或Zn合金层的覆膜可通过镀覆法形成。在镀覆法中,通常,大多镀覆Zn单质,而作为Zn合金镀覆的一个例子的Zn-6~16%Ni的Zn-Ni合金镀层可以在与Zn相同的锌酸盐(zincate)浴中形成。另外,可用镀覆法形成的其它Zn合金镀层有Zn-Fe镀层、Zn-Al镀层等。
在镀层表面为Zn镀层的状态下,后续工序的Sn层或Sn合金层的镀层难以形成,因此,可以在Zn镀层上被覆作为Sn层或Sn合金层的基底的Ni镀层。通过在Zn镀层上设置Ni层,提高了Sn层或Sn合金层的密合性。另外,位于Zn层与Sn层之间的Ni层起着物理屏障的作用。即,Ni层防止了由Al阳极电极上被覆的Zn移动到Cu阴极电极中而发生的苛肯达尔空洞所引起的接合强度的降低。
本发明的Zn层或Zn合金层、Sn层或Sn合金层可以通过电解电镀来形成,也可以通过化学镀来形成。通过这种镀覆法,不仅所有工序能够在镀覆中统一,而且可获得膜厚精度高的蓄电器件用电极。另外,由于能够形成较薄的膜厚,因此,引线的弯折也是良好的。顺便提一下,用镀覆法形成本发明的蓄电器件用电极的Sn层或Sn合金层时,Sn或Sn合金层是薄的,难以进行软钎焊,因此,理想的是使用树脂粉芯焊料(resin flux cored solder)等进行软钎焊。Sn层或Sn合金层为了容易地用树脂粉芯焊料等进行软钎焊而被覆。
另外,本发明的蓄电器件用电极的制造方法的特征在于,该制造方法包括:用有机溶剂对由Al构成的阳极电极的表面进行脱脂的脱脂工序,对通过该脱脂工序脱脂的阳极电极的表面用蚀刻液进行蚀刻的蚀刻工序,在通过该蚀刻工序蚀刻的阳极电极的表面上用锌酸盐液形成Zn镀层的镀Zn工序,在通过该镀 Zn工序形成的Zn镀层的表面上用Ni镀液形成Ni镀层的镀Ni工序,以及在通过该镀Ni工序形成的Ni镀层的表面上用Sn镀液形成Sn镀层的镀Sn工序。
另外,本发明的蓄电器件用电极的连接方法的特征在于,使用Sn或焊料将在由Al构成的电极上通过镀覆形成有Zn层或Zn合金层、Ni层、Sn层或Sn合金层的阳极电极与由Cu构成的阴极电极进行软钎焊连接。
发明的效果
根据本发明的蓄电器件用电极及其制造方法和连接方法,可以将由Al构成的阳极电极与由Al的异种金属构成的阴极电极进行软钎焊,因此,可以提高阳极电极与阴极电极的接合强度。另外,与现有的利用点焊或螺栓紧固的接合相比,接触面积大,接合部位的电阻值降低,可以减低蓄电器件的连接电阻的电压下降。结果,不减低蓄电器件的电压,可以有效地按负荷供给。
附图说明
图1表示本发明的蓄电器件100的构成例的立体图。
图2表示镀层20的构成例的截面图。
图3表示蓄电器件100的连接例的立体图。
图4表示接合样品的电阻值的特性例的说明图。
图5表示接合样品的电压值的特性例的说明图。
图6表示接合样品的温度的特性例的说明图。
具体实施方式
以下参照附图来说明双电层电容器、锂离子电容器和二次电池等本发明的蓄电器件。
[蓄电器件100的构成例]
首先说明本发明的蓄电器件100的构成例。如图1所示,蓄电器件100由阳极引线电极(以下称为“Al阳极电极10”)、阴极引线电极(以下称为“Cu阴极电极30”)和隔离片40构成,所述阳极引线电极由Al构成,所述阴极引线电极由作为Al的异种金属的Cu构成。
Al阳极电极10和Cu阴极电极30分别设有在一端延伸的连接端子部10a、30a。连接端子部10a、30a串联连接蓄电器件100时,连接端子部10a与连接端子部30a连接,在并联连接蓄电器件100时,连接端子部10a相互连接或连接端子部30a相互连接。另外,连接端子部10a、30a不串联连接或并联连接蓄电器件100,而是构成与外部连接的连接端子。
在连接端子部10a上形成镀层20。镀层20用于将连接端子部10a与连接端子部30a容易且可靠地连接。
[镀层20的构成例]
如图2所示,镀层20在由Al构成的连接端子部10a上通过镀覆形成Zn层21、Ni层22、Sn层23。其中,Zn层21可以是Zn合金层,Sn层23可以是Sn合金层。例如,Zn合金层是Zn-Ni合金、Zn-Fe合金、Zn-Al合金等,Sn合金层是Sn-Bi合金、Sn-Ag合金、Sn-Cu合金等。
Zn层21、Ni层22和Sn层23的厚度影响Al阳极电极10与Cu阴极电极30连接的可靠性。Zn层21的厚度为0.01μm以下时,难以形成Zn层21上形成的Ni层22,Zn层21的厚度为0.15μm以上时,Al的连接端子部10a与Zn层21的密合性变差,因此,有时在该部分发生剥离。Zn层21的厚度优选为0.05~0.1μm。
另外,镀覆Zn层21时,为了提高与Al的连接端子部10a的密合性,碱浴是优选的,例如,在水中溶解了ZnO、Zn、NaOH等的锌酸盐浴和在该锌酸盐浴中添加了NaCN等氰化物的氰化物 浴是优选的。利用锌酸盐浴和氰化物浴的镀覆容易氧化连接端子部10a的Al表面,一次不怎么有效果,因此需要2次以上的处理。
Ni层22的厚度太薄时,Zn层21与Sn层23之间的屏障效果失去,相反如果太厚,进行软钎焊时,该Ni层22与Cu阴极电极30反应,形成Cu3Sn和Cu6Sn5等金属间化合物。Cu3Sn和Cu6Sn5等金属间化合物硬而脆,因此不适合于电极。因此,Ni层22的厚度优选为1~3μm,更优选为2~3μm。
Sn层23的厚度太薄时,Ni层22的Ni氧化,与Cu阴极电极30的软钎焊性变差,而过厚时,Al阳极电极10的弯折加工等中,该Sn层23部分容易破坏。因此,Sn层23的厚度优选为5~15μm。
[蓄电器件100的连接例]
接着,说明蓄电器件100的连接例。如图3所示,将蓄电器件100串联连接时,经由镀层20和焊料50使连接端子部10a与连接端子部30a连接。焊料50难以与连接端子部10a的Al进行软钎焊,与Cu的连接端子部30a和镀层20容易进行软钎焊。顺便提一下,焊料50可以是含铅焊料,也可以是由Sn-Ag-Cu、Sn-Zn构成的无铅焊料。
由此,经由镀层20,能够将Al阳极电极10与Cu阴极电极30进行软钎焊,因此,可以提高Al阳极电极10与Cu阴极电极30的接合强度。另外,与现有的利用点焊或螺栓紧固的接合相比,连接端子部10a与连接端子部30a的接触面积大,接合部(是指连接端子部10a和连接端子部30a接合的部分)的电阻值降低,因此,可以减低蓄电器件100的连接电阻的电压下降。结果,不减小蓄电器件100的电压,可以有效地按负荷供给。
其中,在本实施方式中说明了由Cu构成的阴极电极,但不限于此,本发明可适用于Al的异种金属的阴极电极。
实施例1
接着,说明本发明的蓄电器件100的Al阳极电极10上形成的镀层20的制造方法。镀层20按照以下的1~5的顺序进行制造。
<1.脱脂工序>
使用有机溶剂对长度70mm、宽度50mm、厚度0.2mm大小的连接端子部10a进行浸渍脱脂。
<2.蚀刻工序>
将脱脂的连接端子部10a水洗、碱蚀刻之后,浸渍在酸溶液(蚀刻液)中,将表面粗糙化。通过该工序,由Al构成的连接端子部10a与Zn层21的密合变得良好。
<3.镀Zn工序>
将蚀刻处理的连接端子部10a浸渍于水中溶解有ZnO、Zn、NaOH等的锌酸盐浴,形成Zn镀层(Zn层21)。
为了冲洗掉镀Zn的连接端子部10a上附着的锌酸盐液,进行水洗,此后,将连接端子部10a浸渍在硝酸中,剥离锌酸盐(Zn等)。
再次,将连接端子部10a在锌酸盐浴中浸渍,形成Zn镀层,水洗之后,在硝酸中浸渍,剥离锌酸盐(Zn等)。
其中,代替上述Zn镀层,形成Zn-Ni合金镀层时,使用在锌酸盐浴中添加了ZnCl2、NiCl2等的锌酸盐浴。
<4.镀Ni工序>
将形成了Zn镀层的连接端子部10a浸渍于水中溶解有NiSO4·6H2O、NaH2PO2等的化学镀Ni浴300秒钟左右,形成Ni镀层(Ni层22),进行水洗。其中,Ni镀覆不限于化学镀,也可以是电解电镀。
<5.镀Sn工序>
将形成了Ni镀层的连接端子部10a浸渍于水中溶解有 Na2SO3·3H2O、Sn、NaOH2等的碱性酸性镀Sn浴20分钟左右,形成Sn镀层(Sn层23),进行水洗。此后,通过干燥,完成镀层20。
通过荧光X射线式膜厚计测定在上述1~5的工序中制造的镀层20的膜厚,结果,Zn层21的厚度为0.05μm,Ni层22的厚度为1.5μm,Sn层23的厚度为7μm。
实施例2
使用树脂粉芯焊料将具有实施例1中形成的镀层20的Al阳极电极10与Cu阴极电极30进行软钎焊。树脂粉芯焊料使用RMA08(千住金属工业株式会社制造),在烙铁的尖端温度为300℃、软钎焊时间为10秒的条件下进行软钎焊。
作为比较例1,形成用由Sn-15质量%Zn构成的焊丝将Al阳极电极与Cu阴极电极直接进行软钎焊而获得的连接物。顺便提一下,在该软钎焊中,边施加助熔剂边进行。
作为比较例2,形成用利用超声波的点焊将Al阳极电极与Cu阴极电极连接的连接物。
表1中示出了实施例1、比较例1和2的Al阳极电极与Cu阴极电极的接合强度的测定结果。顺便提一下,该接合强度是根据JIS H8630和JIS C6481用密合强度试验器测定的(试样数N=5)。另外,测定试样加速氧化后的接合强度。该氧化加速条件将试样投入到气氛温度85、湿度85%的恒温槽中24小时,让每隔一秒重复开关(ON/OFF)的100A的电流通过该试样。
[表1]
如表1所示,氧化加速前的接合强度在实施例1中为5.9kg/cm,在比较例1中为5.3kg/cm,在比较例2中为2.9kg/cm。由此可以看出实施例1的接合强度相比于比较例1和2得到提高。
氧化加速后的接合强度在实施例1中为4.5kg/cm,在比较例1中为3.8kg/cm,在比较例2中为0.71kg/cm。由此可以看出,实施例1的接合强度即使在氧化加速后也高于比较例1和2。
氧化加速前的接合强度与氧化加速后的接合强度之差在实施例1中为1.4kg/cm,在比较例1中为1.5kg/cm,在比较例2中为2.19kg/cm。由此可以看出,实施例1的氧化加速前的接合强度与氧化加速后的接合强度之差小于比较例1和2,接合的可靠性得到提高。
接着,在表2中示出了实施例1、比较例1和2的盐水喷雾的环境试验结果(从试验开始到120小时后和600小时后的Al阳极电极与Cu阴极电极的状态)。顺便提一下,该环境试验按照JISC0024进行。
[表2]
如表2所示,从试验开始到120小时后的实施例1没有发生孔蚀和白粉,600小时后的实施例1发生少量白粉。另外,从试验开始到120小时后的比较例1发生了孔蚀,600小时后的比较例1发生大量白粉。另外,从试验开始到120小时后的比较例2发生了白粉,600小时后的比较例2发生大量白粉。发生这种孔蚀或发生大量白粉时,蓄电器件用电极的导电性、强度降低。
照此,实施例1即使在盐水喷雾的环境中也不发生孔蚀,仅仅发生了其程度不影响导电性、强度的少量白粉。即,可以看出,实施例1具有良好导电性,具有对于蓄电器件而言的可靠性。另外可以看出,比较例1和2在盐水喷雾的环境中缺乏导电性,缺乏对于蓄电器件而言的可靠性。
实施例3
用实施例1、比较例1和2的Al阳极电极和Cu阴极电极制作接合样品,使用凯文夹子(Kelvin Clip),用微欧仪按四端子法测定该制作的接合样品的电阻值和电压值。该测定条件是将实施例1、比较例1和2的试样投入到气氛温度85℃、湿度85%的恒温槽中,让每隔一秒重复开关的100A的电流通过该试样。
图4表示纵轴为接合样品的电阻值(μΩ)、横轴为100A的电流重复开关的次数(×1000)时的接合样品的电阻值的特性例的说明图。如图4所示,实施例1的接合样品的电阻值用菱形表示,初期为400μΩ,开关24000次后为440μΩ,开关48000次后为450μΩ,开关75000次后为450μΩ,开关120000次后为470μΩ。比较例1的接合样品的电阻值用四角表示,初期为330μΩ,开关24000次后为360μΩ,开关48000次后为400μΩ,开关75000次后为500μΩ,开关120000次后为600μΩ。比较例2的接合样品的电阻值用三角表示,初期为575μΩ,开关24000次后为600μΩ,开关48000次后为600μΩ,开关75000次后为670μΩ,开关120000 次后为750μΩ。
由此,开关重复次数120000次后的实施例1的电阻值只有比较例1和2的电阻值的6~8成。因此,实施例1中可以减低约60~80%的电损耗。
另外,实施例1的接合样品的电阻值从初期到开关120000次后仅有70μΩ左右的变化,相对于此,比较例1的接合样品的电阻值变化270μΩ,比较例2的接合样品的电阻值变化175μΩ。即,实施例1的可靠性相比于比较例1和2提高。
图5表示纵轴为接合样品的电压值(V)、横轴为100A的电流重复开关的次数(×1000)时的接合样品的电压值的特性例的说明图。如图5所示,实施例1的接合样品的电压值用菱形表示,初期到开关120000次后固定在0.2V。比较例1的接合样品的电压值用四角表示,初期为0.2V,开关24000次后为0.2V,开关48000次后为0.3V,开关75000次后为0.4V,开关120000次后为0.5V。比较例2的接合样品的电压值用三角表示,初期为0.7V,开关24000次后为0.7V,开关48000次后为0.8V,开关75000次后为0.8V,开关120000次后为0.8V。
由此,实施例1即使在开关次数120000次后,接合样品的电压值也没有变化,与比较例1和2相比,可靠性提高。
实施例4
用实施例1、比较例1和2的Al阳极电极和Cu阴极电极制作接合样品,用K型的热电偶测定该制作的接合样品的温度。测定条件与实施例3中所示的测定条件同样,将实施例1、比较例1和2的试样投入到气氛温度85℃、湿度85%的恒温槽中,让每隔一秒重复开关的100A的电流通过该试样。
图6表示纵轴为接合样品的温度(℃)、横轴为100A的电流重复开关的次数(×1000)时的接合样品的温度的特性例的说 明图。如图6所示,实施例1的接合样品的温度用菱形表示,初期为85.55℃,开关24000次后为85.55℃,开关48000次后为85.55℃,开关75000次后为85.77℃,开关120000次后为85.77℃。比较例1的接合样品的温度用四角表示,初期为84.22℃,开关24000次后为84.28℃,开关48000次后为85.11℃,开关75000次后为87.9℃,开关120000次后为90.52℃。比较例2的接合样品的温度用三角表示,初期为96.3℃,开关24000次后为96.89℃,开关48000次后为96.06℃,开关75000次后为97.3℃,开关120000次后为97.3℃。这些温度变化源于接合样品的电阻值变化、焦耳热变化。
由此,实施例1即使在开关次数120000次后,接合样品的温度基本上没有变化(其理由是因为图4所示的接合样品的电阻值低),与比较例1和2相比,可靠性提高。
照此,本发明的蓄电器件100在Al阳极电极10上通过镀覆形成Zn层21、Ni层22、Sn23。由此,用Sn层23可以与由属于Al的异种金属的Cu构成的Cu阴极电极30进行软钎焊。结果,可以提高Al阳极电极10与Cu阴极电极30的接合强度。
另外,蓄电器件100与利用现有的软钎焊的接合(比较例1)或利用超声波的点焊(比较例2)和利用螺栓紧固的接合相比,连接端子部10a与连接端子部30a的接触面积大,接合部的电阻值降低,因此,可以减低蓄电器件100的连接电阻导致的电压下降。结果,不减少蓄电器件100的电压,可以有效地按负荷供给。
产业上的可利用性
本发明的蓄电器件不限于箱形的器件,也能适用于圆筒型的双电层电容器、锂离子电容器和二次电池等蓄电器件。
附图标记说明
10···Al阳极电极,10a、30a···连接端子部,20··· 镀层,21···Zn层,22···Ni层,23···Sn层,30···Cu阴极电极,40···隔离片,50···焊料,100···蓄电器件。

Claims (7)

1.一种蓄电器件用引线电极,其特征在于,其是阳极为Al引线电极,阴极为Cu引线电极的蓄电器件用引线电极,
在由Al构成的阳极电极上通过镀覆形成Zn层或Zn合金层,在所述Zn层或Zn合金层上通过镀覆形成Ni层,在所述Ni层上通过镀覆形成Sn层或Sn合金层,
引线是弯折良好的,
使用Sn或焊料将在由Al构成的电极上通过镀覆形成有Zn层或Zn合金层、Ni层、Sn层或Sn合金层的阳极电极与由Cu构成的阴极电极进行软钎焊连接,
所述蓄电器件用引线电极是通过包括如下工序的方法制造的:
用有机溶剂对由Al构成的阳极电极的表面进行脱脂的脱脂工序,
用蚀刻液对通过所述脱脂工序脱脂的所述阳极电极的表面进行蚀刻的蚀刻工序,
在通过所述蚀刻工序蚀刻的所述阳极电极的表面上用锌酸盐液形成Zn镀层的镀Zn工序,
在通过所述镀Zn工序形成的Zn镀层的表面上用Ni镀液形成Ni镀层的镀Ni工序,以及
在通过所述镀Ni工序形成的Ni镀层的表面上用Sn镀液形成Sn镀层的镀Sn工序。
2.根据权利要求1所述的蓄电器件用引线电极,其特征在于,所述Zn层或Zn合金层具有0.05~0.1μm的厚度。
3.根据权利要求1所述的蓄电器件用引线电极,其特征在于,所述Ni层具有1~3μm的厚度。
4.根据权利要求1所述的蓄电器件用引线电极,其特征在于,所述Sn层或Sn合金层具有5~15μm的厚度。
5.一种弯折良好的蓄电器件用引线电极,其特征在于,在由Al构成的阳极电极上通过镀覆形成Zn层或Zn合金层,在所述Zn层或Zn合金层上通过镀覆形成Ni层,在所述Ni层上通过镀覆形成Sn层或Sn合金层,
所述蓄电器件用引线电极是通过包括如下工序的方法制造的:
用有机溶剂对由Al构成的阳极电极的表面进行脱脂的脱脂工序,
用蚀刻液对通过所述脱脂工序脱脂的所述阳极电极的表面进行蚀刻的蚀刻工序,
在通过所述蚀刻工序蚀刻的所述阳极电极的表面上用锌酸盐液形成Zn镀层的镀Zn工序,
在通过所述镀Zn工序形成的Zn镀层的表面上用Ni镀液形成Ni镀层的镀Ni工序,以及
在通过所述镀Ni工序形成的Ni镀层的表面上用Sn镀液形成Sn镀层的镀Sn工序。
6.一种弯折良好的蓄电器件用引线电极的制造方法,其特征在于,该制造方法包括:
用有机溶剂对由Al构成的阳极电极的表面进行脱脂的脱脂工序,
用蚀刻液对通过所述脱脂工序脱脂的所述阳极电极的表面进行蚀刻的蚀刻工序,
在通过所述蚀刻工序蚀刻的所述阳极电极的表面上用锌酸盐液形成Zn镀层的镀Zn工序,
在通过所述镀Zn工序形成的Zn镀层的表面上用Ni镀液形成Ni镀层的镀Ni工序,以及
在通过所述镀Ni工序形成的Ni镀层的表面上用Sn镀液形成Sn镀层的镀Sn工序。
7.一种弯折良好的蓄电器件用引线电极的连接方法,其特征在于,使用Sn或焊料将阳极电极与由Cu构成的阴极电极进行软钎焊连接,其中所述阳极电极为,在由Al构成的电极上通过镀覆形成Zn层或Zn合金层,在所述Zn层或Zn合金层上通过镀覆形成Ni层,在所述Ni层上通过镀覆形成Sn层或Sn合金层,
所述蓄电器件用引线电极是通过包括如下工序的方法制造的:
用有机溶剂对由Al构成的阳极电极的表面进行脱脂的脱脂工序,
用蚀刻液对通过所述脱脂工序脱脂的所述阳极电极的表面进行蚀刻的蚀刻工序,
在通过所述蚀刻工序蚀刻的所述阳极电极的表面上用锌酸盐液形成Zn镀层的镀Zn工序,
在通过所述镀Zn工序形成的Zn镀层的表面上用Ni镀液形成Ni镀层的镀Ni工序,以及
在通过所述镀Ni工序形成的Ni镀层的表面上用Sn镀液形成Sn镀层的镀Sn工序。
CN201180031494.4A 2010-06-25 2011-06-14 蓄电器件用引线电极及其制造方法和连接方法 Active CN102959661B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010145566A JP5546369B2 (ja) 2010-06-25 2010-06-25 蓄電デバイス用電極、その製造方法及びその接続方法
JP2010-145566 2010-06-25
PCT/JP2011/063575 WO2011162126A1 (ja) 2010-06-25 2011-06-14 蓄電デバイス用電極、その製造方法及びその接続方法

Publications (2)

Publication Number Publication Date
CN102959661A CN102959661A (zh) 2013-03-06
CN102959661B true CN102959661B (zh) 2016-10-26

Family

ID=45371320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180031494.4A Active CN102959661B (zh) 2010-06-25 2011-06-14 蓄电器件用引线电极及其制造方法和连接方法

Country Status (7)

Country Link
US (2) US9368249B2 (zh)
EP (1) EP2587505B1 (zh)
JP (1) JP5546369B2 (zh)
KR (1) KR101472198B1 (zh)
CN (1) CN102959661B (zh)
TW (1) TWI528396B (zh)
WO (1) WO2011162126A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130189560A1 (en) * 2012-01-19 2013-07-25 Ford Global Technologies, Llc Materials And Methods For Joining Battery Cell Terminals And Interconnector Busbars
EP2822143B1 (en) 2012-03-02 2018-02-21 JGC Corporation Power supply device, electricity storage device, and electricity storage system
TWI453087B (zh) * 2012-11-22 2014-09-21 Truan Sheng Lui 光伏鋁銲帶
JP6166735B2 (ja) * 2012-11-30 2017-07-26 千住金属工業株式会社 異種電極接合用積層はんだ材及び電子部品の異種電極の接合方法
JP6676935B2 (ja) * 2015-11-13 2020-04-08 セイコーエプソン株式会社 電気デバイス、圧電モーター、ロボット、ハンド及び送液ポンプ
CN109072470A (zh) * 2016-06-03 2018-12-21 古河电气工业株式会社 表面处理材料及其制造方法和使用表面处理材料而形成的元件
KR102169286B1 (ko) * 2017-07-10 2020-10-23 김기형 미세 파이프 제조방법 및 이에 의해 제조된 미세 파이프
KR102517953B1 (ko) * 2017-10-26 2023-04-03 주식회사 엘지화학 리드 탭 및 이를 구비하는 파우치형 배터리
US11935996B2 (en) * 2021-05-02 2024-03-19 Textron Innovations Inc. Thermally efficient battery cell assembly
KR102523354B1 (ko) * 2022-02-15 2023-04-19 주식회사 티피에스 이차전지용 전극 단자의 표면 처리 방법 및 이를 이용하여 표면 처리된 이차전지용 전극 단자

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204860A (zh) * 2007-12-12 2008-06-25 山东天诺光电材料有限公司 一种复合金属的铝箔带及制备方法和用途

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115667A (ja) * 1984-11-07 1986-06-03 Mitsubishi Metal Corp スパツタリング用タ−ゲツトを冷却板に接合する方法
JP3167360B2 (ja) * 1991-07-24 2001-05-21 電気化学工業株式会社 混成集積回路用基板の製造方法
JPH07157884A (ja) * 1993-12-02 1995-06-20 Three Tec:Kk タングステン合金のメッキ方法
JP3893221B2 (ja) * 1998-09-11 2007-03-14 松下電器産業株式会社 接続リードの接合方法及びこの接合方法を用いた電池パック
KR100346542B1 (ko) * 1999-01-25 2002-07-26 삼성에스디아이 주식회사 리튬 이차 전지
AU4949200A (en) * 1999-05-28 2000-12-18 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor and method of manufacture thereof
EP1202390B1 (en) * 2000-10-25 2008-05-21 Japan Aviation Electronics Industry, Limited An electronic component and a method of manufacturing the same
JP4320548B2 (ja) 2001-03-14 2009-08-26 株式会社ジーエス・ユアサコーポレーション 正極活物質およびこれを用いた非水電解質二次電池
KR100861916B1 (ko) 2001-03-26 2008-10-09 닛신보세키 가부시키 가이샤 이온성 액체, 축전 디바이스용 전해질염, 축전 디바이스용전해액, 전기 2중층 캐패시터, 및 2차전지
JP2003077451A (ja) * 2001-08-30 2003-03-14 Rohm Co Ltd 電池保護モジュール接続構造
JP4430410B2 (ja) 2004-01-20 2010-03-10 日本無線株式会社 蓄電器のリード電極への接続装置、それを備えた蓄電器の充放電装置、蓄電器のリード電極への接続方法、及びそれを用いた蓄電器の充放電方法
CN1985394A (zh) * 2004-07-22 2007-06-20 丰田自动车株式会社 集电板、燃料电池以及它们的制造方法
JP2006040938A (ja) * 2004-07-22 2006-02-09 Nec Tokin Corp 固体電解コンデンサ、それを用いた積層コンデンサおよびその製造方法
JP4160026B2 (ja) * 2004-07-30 2008-10-01 稔之 新井 電気部品用の放熱体
JP4598566B2 (ja) * 2005-03-04 2010-12-15 日本無線株式会社 電気二重層キャパシタ装置
JP4904539B2 (ja) 2006-10-25 2012-03-28 住電朝日精工株式会社 リード部材とその接合方法及び非水電解質蓄電デバイス
JP2009146979A (ja) * 2007-12-12 2009-07-02 Ricoh Microelectronics Co Ltd 光電変換装置
JP2010065916A (ja) * 2008-09-10 2010-03-25 Hitachi Cable Ltd 熱交換器及びその製造方法
JP2010114364A (ja) * 2008-11-10 2010-05-20 Nec Tokin Corp 電気化学デバイス、および電気化学デバイスモジュール
JP2010118625A (ja) * 2008-11-14 2010-05-27 Oh'tec Electronics Corp 電極接続具、それを備えた蓄電装置
US9034500B2 (en) * 2010-04-02 2015-05-19 Toyota Jidosha Kabushiki Kaisha Laminated electrode-type battery, manufacturing method therefor, vehicle, and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204860A (zh) * 2007-12-12 2008-06-25 山东天诺光电材料有限公司 一种复合金属的铝箔带及制备方法和用途

Also Published As

Publication number Publication date
TWI528396B (zh) 2016-04-01
US20130133924A1 (en) 2013-05-30
JP2012009714A (ja) 2012-01-12
US20160254103A1 (en) 2016-09-01
TW201230102A (en) 2012-07-16
EP2587505A1 (en) 2013-05-01
WO2011162126A1 (ja) 2011-12-29
KR101472198B1 (ko) 2014-12-12
EP2587505A4 (en) 2016-01-20
US10121606B2 (en) 2018-11-06
CN102959661A (zh) 2013-03-06
EP2587505B1 (en) 2017-07-26
KR20130030776A (ko) 2013-03-27
US9368249B2 (en) 2016-06-14
JP5546369B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
CN102959661B (zh) 蓄电器件用引线电极及其制造方法和连接方法
JP6220359B2 (ja) フィルム外装電池用タブリード材料及びその製造方法
US8059390B2 (en) Electrolytic capacitor
US20090297939A1 (en) Bus bar and secondary battery module including the same
KR101119832B1 (ko) 2차 전지의 전극단자, 이를 구비한 2차 전지 및 그의 제조방법
JP2006269362A (ja) リチウムイオン二次電池用負極及びその製造方法
JP2004319310A (ja) 電気化学セル
JP2004022306A (ja) リチウム電池用負極及び該リチウム電池用負極の製造方法
JP6232302B2 (ja) リチウムイオン電池用電極タブの製造方法
KR100871917B1 (ko) 납땜성과 염수 내식성이 우수한 이차 전지용 양극 탭 및 그제조 방법과, 이를 이용한 이차 전지 및 이차 전지 모듈
KR20190069485A (ko) 전지용 집전체 및 전지
US20150064570A1 (en) Thin and flexible electrochemical cells
JP6067910B1 (ja) 電解銅箔、その電解銅箔を用いたリチウムイオン二次電池
EP1538709A1 (en) Terminal having surface layer formed of snag-cu alloy
CN108028329A (zh) 电气部件用引线及电气部件
CN106469803A (zh) 电极端子、电化学装置和含电化学装置的电化学装置模块
KR102364363B1 (ko) 수도커패시터용 집전체의 제조 방법
JP2012043747A (ja) 二次電池用電極とその製造方法
KR101481107B1 (ko) 마그네슘 이차전지용 양극 집전체 및 이의 제조 방법
JP4460055B2 (ja) リチウム2次電池電極用銅箔およびその製造方法、該銅箔を用いたリチウム2次電池用電極およびリチウム2次電池
JP2006228652A (ja) リチウム2次電池電極用銅箔およびその製造方法、該銅箔を用いたリチウム2次電池用電極およびリチウム2次電池
WO2023188757A1 (ja) 合金電解箔
JP2013089695A (ja) 電気化学セル、蓋体及び電気化学セルの製造方法
KR20090104446A (ko) 전기화학 셀
KR19990057619A (ko) 리튬 2차전지용 고내식성 캔 및 캡의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant